Problems on General Rings

1. We say that a general ring R is (right) Artinian if every descending chain of (right) ideals terminates. That is, given ideals $R \supseteq I_1 \supseteq I_2 \supseteq \cdots$ there exists some $k \ge 1$ such that $I_k = I_{k+1} = \cdots$. **Prove** that ab = 1 implies ba = 1 in an Artinian ring. [Hint: Consider the descending chain of right ideals $R \supseteq bR \supseteq b^2R \supseteq \cdots$ (I don't use the notation (b^2) since R is not commutative). Show that there exists some $c \in R$ with $b^k = b^{k+1}c$.]

Problems on Integral Domains

2. Let *R* be an integral domain. We say that $a, b \in R$ are associates if b = ua where *u* is a unit. **Prove** that *a* and *b* are associates if and only if (a) = (b).

3. We say that a is a proper divisor of b if b = aq and neither a nor q is a unit. **Prove** that a is a proper divisor of b if and only if (b) < (a) < (1) — where " < " means strict containment of ideals.

It's good to have alternate definitions for important concepts. The next two problems show that "integral domain" equals "subring of a field".

4. Let *R* be a subring of a field (i.e. suppose there exists a field \mathbb{F} and an injective homomorphism $\iota: R \to \mathbb{F}$). **Prove** that *R* is an integral domain.

5. Let R be an integral domain. Put an equivalence relation on the set R^2 of ordered pairs by saying $(a,b) \sim (c,d)$ if and only if ad = bc, and let [(a,b)] denote the \sim -class of (a,b). Now define the field of fractions of R,

$$Frac(R) := \{ [(a, b)] : b \neq 0 \},\$$

with product $[(a, b)] \times [(c, d)] := [(ac, bd)]$ and sum [(a, b)] + [(c, d)] := [(ad + bc, bd)].

- (a) Show that \times and + are well-defined on equivalence classes. (It follows that Frac(R) is a field, but you don't need to verify the boring details.)
- (b) Show that the map $\iota(a) := [(a, 1)]$ is an injective homomorphism $\iota : R \to \operatorname{Frac}(R)$.

[Hint: A better name for [(a, b)] might be a/b. Look in the book.]

Problems on Subrings of $\ensuremath{\mathbb{C}}$

6. Show that the subring $\mathbb{Z}[\sqrt{-2}] := \{a + b\sqrt{-2} : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$ with the norm function $N(a + b\sqrt{-2}) := a^2 + 2b^2$ is a Euclidean domain. [Hint: The principal ideal $(0) \neq (\beta) \subseteq \mathbb{Z}[\sqrt{-2}]$ is a grid of rectangles with side lengths $|\beta|$ and $\sqrt{2}|\beta|$. Recall the proof for $\mathbb{Z}[\sqrt{-1}]$.]

7. Consider the subring $\mathbb{Z}[\sqrt{-3}] \subseteq \mathbb{C}$ with norm $N(a + b\sqrt{-3}) := a^2 + 3b^2$.

- (a) Show that $N(\alpha\beta) = N(\alpha)N(\beta)$ for all $\alpha, \beta \in \mathbb{Z}[\sqrt{-3}]$.
- (b) Show that $u \in \mathbb{Z}[\sqrt{-3}]$ is a unit if and only if N(u) = 1.
- (c) Show that $N(\alpha) = 4$ implies that $\alpha \in \mathbb{Z}[\sqrt{-3}]$ is irreducible.
- (d) Show that $4 \in \mathbb{Z}[\sqrt{-3}]$ can be factored into irreducibles in two distinct ways.

[It follows that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD, hence not a PID, hence not Euclidean. (What happens when you try to generalize your proof from Problem 6?) However $\mathbb{Z}[\sqrt{-3}]$ isn't a total disaster because it "almost" has unique factorization. By "almost" I mean that $\mathbb{Z}[(1 + \sqrt{-3})/2]$ — called the ring of "Eisenstein integers" — is a Unique Factorization Domain. We will see, however, that $\mathbb{Z}[\sqrt{-5}]$ is a total disaster.]