Problems on General Rings

1. We say that a general ring R is (right) Artinian if every descending chain of (right) ideals terminates. That is, given ideals $R \supseteq I_{1} \supseteq I_{2} \supseteq \cdots$ there exists some $k \geq 1$ such that $I_{k}=I_{k+1}=$ \cdots. Prove that $a b=1$ implies $b a=1$ in an Artinian ring. [Hint: Consider the descending chain of right ideals $R \supseteq b R \supseteq b^{2} R \supseteq \cdots$ (I don't use the notation (b^{2}) since R is not commutative). Show that there exists some $c \in R$ with $b^{k}=b^{k+1} c$.]

Problems on Integral Domains

2. Let R be an integral domain. We say that $a, b \in R$ are associates if $b=u a$ where u is a unit. Prove that a and b are associates if and only if $(a)=(b)$.
3. We say that a is a proper divisor of b if $b=a q$ and neither a nor q is a unit. Prove that a is a proper divisor of b if and only if $(b)<(a)<(1)$ - where " $<$ " means strict containment of ideals.

It's good to have alternate definitions for important concepts. The next two problems show that "integral domain" equals "subring of a field".
4. Let R be a subring of a field (i.e. suppose there exists a field \mathbb{F} and an injective homomorphism $\iota: R \rightarrow \mathbb{F})$. Prove that R is an integral domain.
5. Let R be an integral domain. Put an equivalence relation on the set R^{2} of ordered pairs by saying $(a, b) \sim(c, d)$ if and only if $a d=b c$, and let $[(a, b)]$ denote the \sim-class of (a, b). Now define the field of fractions of R,

$$
\operatorname{Frac}(R):=\{[(a, b)]: b \neq 0\},
$$

with product $[(a, b)] \times[(c, d)]:=[(a c, b d)]$ and sum $[(a, b)]+[(c, d)]:=[(a d+b c, b d)]$.
(a) Show that \times and + are well-defined on equivalence classes. (It follows that $\operatorname{Frac}(R)$ is a field, but you don't need to verify the boring details.)
(b) Show that the map $\iota(a):=[(a, 1)]$ is an injective homomorphism $\iota: R \rightarrow \operatorname{Frac}(R)$.
[Hint: A better name for $[(a, b)]$ might be a / b. Look in the book.]
Problems on Subrings of \mathbb{C}
6. Show that the subring $\mathbb{Z}[\sqrt{-2}]:=\{a+b \sqrt{-2}: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$ with the norm function $N(a+$ $b \sqrt{-2}):=a^{2}+2 b^{2}$ is a Euclidean domain. [Hint: The principal ideal $(0) \neq(\beta) \subseteq \mathbb{Z}[\sqrt{-2}]$ is a grid of rectangles with side lengths $|\beta|$ and $\sqrt{2}|\beta|$. Recall the proof for $\mathbb{Z}[\sqrt{-1}]$.]
7. Consider the subring $\mathbb{Z}[\sqrt{-3}] \subseteq \mathbb{C}$ with norm $N(a+b \sqrt{-3}):=a^{2}+3 b^{2}$.
(a) Show that $N(\alpha \beta)=N(\alpha) N(\beta)$ for all $\alpha, \beta \in \mathbb{Z}[\sqrt{-3}]$.
(b) Show that $u \in \mathbb{Z}[\sqrt{-3}]$ is a unit if and only if $N(u)=1$.
(c) Show that $N(\alpha)=4$ implies that $\alpha \in \mathbb{Z}[\sqrt{-3}]$ is irreducible.
(d) Show that $4 \in \mathbb{Z}[\sqrt{-3}]$ can be factored into irreducibles in two distinct ways.
[It follows that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD, hence not a PID, hence not Euclidean. (What happens when you try to generalize your proof from Problem 6?) However $\mathbb{Z}[\sqrt{-3}]$ isn't a total disaster because it "almost" has unique factorization. By "almost" I mean that $\mathbb{Z}[(1+\sqrt{-3}) / 2]$ - called the ring of "Eisenstein integers" - is a Unique Factorization Domain. We will see, however, that $\mathbb{Z}[\sqrt{-5}]$ is a total disaster.]

