1. Let R be a ring. We say that $a \in R$ is nilpotent if $a^n = 0$ for some n. If a is nilpotent, prove that 1 + a and 1 - a are units (i.e. invertible).

Proof. Recall that in any ring we have (-a)(-b) = -(ab) (see HW 3.7 from MTH 561). Thus in any ring with 1 (commutative or not) we have the following identities:

$$1 - a^{n} = (1 - a)(1 + a + a^{2} + \dots + a^{n-1}),$$

$$1 - (-1)^{n}a^{n} = (1 + a)(1 - a + a^{2} - \dots + (-1)^{-1}a^{n-1}).$$

If $a^n = 0$ then we obtain inverses for 1 + a and 1 - a.

2. Let $I \subseteq R$ be an ideal. Prove that I = R if and only if I contains a unit.

Proof. First suppose that I = R then $1 \in I$ so I contains a unit. Conversely, suppose that I contains a unit u, say uv = 1 for $u, v \in R$. But since I is an ideal we have $uv = 1 \in I$. Then for any $a \in R$ we have $a = 1a \in I$. Hence I = R.

3. Let $\varphi : R \to S$ be a ring homomorphism.

- (a) Prove that $\varphi(0_R) = 0_S$.
- (b) Prove that $\varphi(-a) = -\varphi(a)$ for all $a \in R$.
- (c) Let $a \in R$. If $a^{-1} \in R$ exists, prove that $\varphi(a)$ is invertible with $\varphi(a)^{-1} = \varphi(a^{-1})$.

Proof. To prove (a) note that $\varphi(0_R) = \varphi(0_R + 0_R) = \varphi(0_R) + \varphi(0_R)$. Then subtract $\varphi(0_R)$ from both sides to get $0_S = \varphi(0_R)$. To prove (b) consider $a \in R$. Then use part (a) to write $0_S = \varphi(0_R) = \varphi(a - a) = \varphi(a) + \varphi(-a)$. Now subtract $\varphi(a)$ from both sides to get $\varphi(-a) = -\varphi(a)$. To prove (c) consider $a \in R$ and suppose that there exists a^{-1} with $aa^{-1} = a^{-1}a = 1_R$. Applying φ to the three parts of this equation and using the fact that φ is a homomorphism gives $\varphi(a)\varphi(a^{-1}) = \varphi(a^{-1})\varphi(a) = 1_S$. We conclude that $\varphi(a^{-1}) = \varphi(a)^{-1}$.

[Note that the property $\varphi(ab) = \varphi(a)\varphi(b)$ does not imply $\varphi(1_R) = 1_S$ for rings, so we just assume $\varphi(1_R) = 1_S$ (because we want it).]

4. Let $I \subseteq R$ be an **ideal** and consider $a, b, c, d \in R$ with a + I = c + I and b + I = d + I. Prove that (a + b) + I = (c + d) + I and ab + I = cd + I. This shows that addition and multiplication of cosets is well-defined.

Proof. Since a + I = c + I and b + I = d + I there exist $x, y \in I$ with a - c = x and b - d = y. To prove that (a + b) + I = (b + d) + I, first consider an arbitrary element $a + b + u \in (a + b) + I$ with $u \in I$. Then we have $a + b + u = (c + x) + (d + y) + u = (c + d) + (x + y + u) \in (c + d) + I$. Hence $(a + b) + I \subseteq (c + d) + I$. Similarly we find $(c + d) + I \subseteq (a + b) + I$ and hence (a + b) + I = (c + d) + I. To prove that ab + I = cd + I, first consider an arbitrary element $ab + u \in ab + I$ with $u \in I$. Then we have ab + u = (c + x)(d + y) + u = cd + (cy + xd + xy + u). Since cy, xd, xy, u are all in I we conclude that $ab + u = cd + (cy + xd + xy + u) \in cd + I$, hence $ab + I \subseteq cd + I$. The proof of $cd + I \subseteq ab + I$ is similar. We conclude that ab + I = cd + I.

[Note that (a + b) + I = (c + d) + I only requires that I is closed under addition. The proof that ab + I = cd + I really requires that I is an ideal. In other words, if $S \subseteq R$ is an additive subgroup we can always define R/S as an additive group, but we can only define multiplication on R/S when S is an ideal.]

5. When does ab = 1 imply ba = 1? Consider $a, b \in R$ where R is a finite ring, and suppose that ab = 1. Show that $b + (1 - ba)a^i$ is a right inverse of a for all $i \ge 0$. Use this and the finiteness of R to show that ba = 1. [Recall: We have also seen that AB = I implies BA = I for square matrices over a field. Now we have two results of this sort...]

Proof. Suppose that ab = 1 and note that for all $i \ge 0$ we have

$$a[b + (1 - ba)a^{i}] = ab + (a - aba)a^{i} = 1 + a^{i+1} - aba^{i+1} = 1 + a^{i+1} - a^{i+1} = 1$$

Hence $b + (1 - ba)a^i$ is a right inverse of a for all $i \ge 0$. Since our ring is finite there must exist i < j such that $b + (1 - ba)a^i = b + (1 - ba)a^j$. Multiply both sides on the right by b^j and use the fact that ab = 1 to get $b + (1 - ba)b^{j-i} = b + (1 - ba)$. Now subtract b from both sides and use the fact that (1 - ba)b = b - bab = b - b = 0 to find 0 = 1 - ba. We conclude that ba = 1 as desired.

6. Recall that a group G is simple if for any group homomorphism $\varphi : G \to H$ we have ker $\varphi = G$ (the whole group) or ker $\varphi = 1$ (the trivial group). We can define a simple ring similarly in terms of ring homomorphisms. **Prove** that a ring is simple if and only if it is a field. (Hence the term "simple ring" is unnecessary.) [Hint: Look in the book.]

Proof. Recall that $I \subseteq R$ is an ideal if an only if I is the kernel of a ring homomorphism. Thus we can say that a ring R is simple if it has only two ideals: (1) = R and $(0) = \{0\}$.

First suppose that R is a field and let $I \subseteq R$ be an ideal. If $I \neq (0)$ then I contains a nonzero element a. But since R is a field, a is a unit, and we conclude by Problem 2 that I = (1) = R. Hence R is a simple ring.

Conversely, suppose that R is a simple ring and let $a \in R$ be a nonzero element (if R = (0) then R is not really a field, but I forgot to worry about this silly case when I wrote the question). Since (a) is an ideal and $(a) \neq (0)$ we must have (a) = (1). That is, a is a multiple of 1, which means that a is a unit. Since this is true for all nonzero $a \in R$, R is a field (or, I guess, a division ring — I also forgot to say that R is commutative (oh well); in any case, the term "simple ring" is unnecessary).

7. Prove Descartes' Factor Theorem. Let \mathbb{F} be a field and consider the ring $\mathbb{F}[x]$ of polynomials. Given $f(x) \in \mathbb{F}[x]$ and $\alpha \in \mathbb{F}$ such that $f(\alpha) = 0$, prove that $f(x) = (x - \alpha)h(x)$ where $h(x) \in \mathbb{R}[x]$ with deg $(h) = \deg(f) - 1$. [Hint: Observe that $x^n - \alpha^n = (x - \alpha)(x^{n-1} + \alpha x^{n-2} + \cdots + \alpha^{n-2}x + \alpha^{n-1})$ for all $n \ge 0$. Consider the polynomial $f(x) - f(\alpha)$.]

Proof. To save space, we define the polynomial $[n]_{x,\alpha} := (x^{n-1} + x^{n-2}\alpha + \dots + x\alpha^{n-2} + \alpha^{n-1})$ for each positive integer n and real number α . Suppose that $f(x) \in \mathbb{R}[x]$ has degree d and write

$$f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0$$

for $a_0, \ldots, a_d \in \mathbb{R}$ with $a_d \neq 0$. Then applying the identity $x^n - \alpha^n = (x - \alpha)[n]_{x,\alpha}$ we can write

$$f(x) - f(\alpha) = a_d(x^d - \alpha^d) + a_{d-1}(x^{d-1} - \alpha^{d-1}) + \dots + a_1(x - \alpha)$$

= $a_d(x - \alpha)[d]_{x,\alpha} + a_{d-1}(x - \alpha)[d - 1]_{x,\alpha} + \dots + a_1(x - \alpha)[1]_{x,\alpha}$
= $(x - \alpha)(a_d[d]_{x,\alpha} + a_{d-1}[d - 1]_{x,\alpha} + \dots + a_1[1]_{x,\alpha})$
= $(x - \alpha)(a_dx^{d-1} + \text{lower order terms }).$

If $f(\alpha) = 0$ then we obtain $f(x) = (x - \alpha)h(x)$ where $h(x) \in \mathbb{R}[x]$ has degree d - 1.

8. Let \mathbb{R} and \mathbb{C} be the real and complex fields. Let $\varphi : \mathbb{R}[x] \to \mathbb{C}$ be the map that sends a polynomial f(x) to its evaluation $f(i) \in \mathbb{C}$ at x = i.

- (a) Prove that φ is a surjective ring homomorphism.
- (b) Recall the definition of complex conjugation: $\overline{a+ib} := a ib$ for $a, b \in \mathbb{R}$. Prove that $f(-i) = \overline{f(i)} \in \mathbb{C}$ for all $f(x) \in \mathbb{R}[x]$.

(c) Use Descartes' Factor Theorem to prove that the kernel of φ is the principal ideal generated by $x^2 + 1$:

$$\ker \varphi = (x^2 + 1) := \{ (x^2 + 1)g(x) : g(x) \in \mathbb{R}[x] \}.$$

Proof. The multiplicative identity of $\mathbb{R}[x]$ is the constant polynomial $\mathbf{1}(x) = 1$, so clearly $\varphi(\mathbf{1}) = \mathbf{1}(i) = 1 \in \mathbb{C}$, which is the multiplicative identity of \mathbb{C} . To prove (a) we must show that $\varphi(f+g) = \varphi(f) + \varphi(g)$ and $\varphi(fg) = \varphi(f)\varphi(g)$ for all $f, g \in \mathbb{R}[x]$. To this end, let $f(x) = \sum_k a_k x^k$ and $g(x) = \sum_k b_k x^k$. Then we have

$$\varphi(f) + \varphi(g) = f(i) + g(i) = \sum_{k} a_{k}i^{k} + \sum_{k} b_{k}i^{k} = \sum_{k} (a_{k} + b_{k})i^{k} = (f + g)(i) = \varphi(f + g)$$

and also

$$\varphi(f)\varphi(g) = f(i)g(i) = \sum_{k} \left(\sum_{u+v=k} (a_u i^u)(b_v i^v) \right) = \sum_{k} \left(\sum_{u+v=k} a_u b_v \right) i^k = (fg)(i) = \varphi(fg).$$

Notice that the proof of $\varphi(f)\varphi(g) = \varphi(fg)$ uses the fact that \mathbb{C} is commutative. (For this reason we will only consider polynomials over commutative rings.) Finally, note that the map is surjective since for any $a + ib \in \mathbb{C}$ we have $a + ib = \varphi(f)$ with $f(x) = a + xb \in \mathbb{R}[x]$.

Given complex numbers a + ib and c + id note that

$$\overline{a+ib} + \overline{c+id} = (a-ib) + (c-id) = (a+c) - i(b+d)$$
$$= \overline{(a+c) + i(b+d)} = \overline{(a+ib) + (c+id)}$$

and

$$(\overline{a+ib})(\overline{c+id}) = (a-ib)(c-id) = (ac-bd) - i(ad+bc)$$
$$= \overline{(ac-bd) + i(ad+bc)} = \overline{(a+ib)(c+id)}.$$

Combined with the fact that $\overline{1} = 1$ we conclude that complex conjugation $z \to \overline{z}$ is a ring isomorphism $\mathbb{C} \to \mathbb{C}$ (we call it a field automorphism). Furthermore, we have $\overline{z} = z$ for all $z \in \mathbb{R} \subseteq \mathbb{C}$. Now we will prove (b). Let $f(x) = \sum_k a_k x^k$ and consider any complex number $z \in \mathbb{C}$. Then using the homomorphism properties of conjugation we have

$$\overline{f(z)} = \sum_{k} a_k z^k = \sum_{k} \overline{a_k} (\overline{z})^k = \sum_{k} a_k (\overline{z})^k = f(\overline{z}).$$

In particular, taking z = i gives $f(-i) = \overline{f(i)}$.

Finally consider the surjective homomorphism $\varphi : \mathbb{R}[x] \to \mathbb{C}$ given by $\varphi(f) = f(i)$. To prove (c) we will show that ker $\varphi = (x^2 + 1)$. Indeed, if $f(x) \in (x^2 + 1)$ then we can write $f(x) = (x^2 + 1)g(x)$ and then $\varphi(f) = (i^2 + 1)g(i) = 0 \cdot g(x) = 0$, hence $f \in \ker \varphi$ and $(x^2 + 1) \subseteq \ker \varphi$. Conversely, suppose that $f \in \ker \varphi$; i.e. f(i) = 0. By Descartes' Factor Theorem applied to $f(x) \in \mathbb{C}[x]$ (a slightly tricky point) we have f(x) = (x - i)g(x) for some $g(x) \in \mathbb{C}[x]$. But by part (b) we know that f(i) = 0 implies f(-i) = 0 hence $f(-i) = -2i \cdot g(-i) = 0$, which implies that g(-i) = 0. Then Descartes' Factor Theorem implies that g(x) = (x + i)h(x) for some $h(x) \in \mathbb{C}[x]$. Putting this together we get

$$f(x) = (x - i)(x + i)h(x) = (x^2 + 1)h(x)$$

for some $h(x) \in \mathbb{C}[x]$. The only problem left is to show that $h(x) \in \mathbb{R}[x]$. But since f(x) and $(x^2 + 1)$ are in $\mathbb{R}[x]$ we must also have $h(x) \in \mathbb{R}[x]$ (for example, we could do long division to compute $f(x)/(x^2 + 1) = h(x)$). We conclude that $h(x) \in \mathbb{R}[x]$ and hence f(x) is in the ideal $(x^2 + 1)$ as desired.