
Math 562 Spring 2012
Homework 1 Drew Armstrong

1. Let R be a ring. We say that a ∈ R is nilpotent if an = 0 for some n. If a is nilpotent, prove that
1 + a and 1− a are units (i.e. invertible).

Proof. Recall that in any ring we have (−a)(−b) = −(ab) (see HW 3.7 from MTH 561). Thus in
any ring with 1 (commutative or not) we have the following identities:

1− an = (1− a)(1 + a+ a2 + · · ·+ an−1),

1− (−1)nan = (1 + a)(1− a+ a2 − · · ·+ (−1)−1an−1).

If an = 0 then we obtain inverses for 1 + a and 1− a. �

2. Let I ⊆ R be an ideal. Prove that I = R if and only if I contains a unit.

Proof. First suppose that I = R then 1 ∈ I so I contains a unit. Conversely, suppose that I contains
a unit u, say uv = 1 for u, v ∈ R. But since I is an ideal we have uv = 1 ∈ I. Then for any a ∈ R
we have a = 1a ∈ I. Hence I = R. �

3. Let ϕ : R→ S be a ring homomorphism.
(a) Prove that ϕ(0R) = 0S .
(b) Prove that ϕ(−a) = −ϕ(a) for all a ∈ R.
(c) Let a ∈ R. If a−1 ∈ R exists, prove that ϕ(a) is invertible with ϕ(a)−1 = ϕ(a−1).

Proof. To prove (a) note that ϕ(0R) = ϕ(0R+0R) = ϕ(0R)+ϕ(0R). Then subtract ϕ(0R) from both
sides to get 0S = ϕ(0R). To prove (b) consider a ∈ R. Then use part (a) to write 0S = ϕ(0R) = ϕ(a−
a) = ϕ(a)+ϕ(−a). Now subtract ϕ(a) from both sides to get ϕ(−a) = −ϕ(a). To prove (c) consider
a ∈ R and suppose that there exists a−1 with aa−1 = a−1a = 1R. Applying ϕ to the three parts of
this equation and using the fact that ϕ is a homomorphism gives ϕ(a)ϕ(a−1) = ϕ(a−1)ϕ(a) = 1S .
We conclude that ϕ(a−1) = ϕ(a)−1. �

[Note that the property ϕ(ab) = ϕ(a)ϕ(b) does not imply ϕ(1R) = 1S for rings, so we just assume
ϕ(1R) = 1S (because we want it).]

4. Let I ⊆ R be an ideal and consider a, b, c, d ∈ R with a + I = c + I and b + I = d + I. Prove
that (a+ b) + I = (c+ d) + I and ab+ I = cd+ I. This shows that addition and multiplication of
cosets is well-defined.

Proof. Since a+ I = c+ I and b+ I = d+ I there exist x, y ∈ I with a− c = x and b− d = y. To
prove that (a+ b) + I = (b+ d) + I, first consider an arbitrary element a+ b+ u ∈ (a+ b) + I with
u ∈ I. Then we have a+ b+ u = (c+ x) + (d+ y) + u = (c+ d) + (x+ y + u) ∈ (c+ d) + I. Hence
(a+b)+I ⊆ (c+d)+I. Similarly we find (c+d)+I ⊆ (a+b)+I and hence (a+b)+I = (c+d)+I.
To prove that ab+ I = cd+ I, first consider an arbitrary element ab+ u ∈ ab+ I with u ∈ I. Then
we have ab + u = (c + x)(d + y) + u = cd + (cy + xd + xy + u). Since cy, xd, xy, u are all in I we
conclude that ab + u = cd + (cy + xd + xy + u) ∈ cd + I, hence ab + I ⊆ cd + I. The proof of
cd+ I ⊆ ab+ I is similar. We conclude that ab+ I = cd+ I. �

[Note that (a + b) + I = (c + d) + I only requires that I is closed under addition. The proof that
ab + I = cd + I really requires that I is an ideal. In other words, if S ⊆ R is an additive subgroup we
can always define R/S as an additive group, but we can only define multiplication on R/S when S is an
ideal.]



5. When does ab = 1 imply ba = 1? Consider a, b ∈ R where R is a finite ring, and suppose that
ab = 1. Show that b+ (1− ba)ai is a right inverse of a for all i ≥ 0. Use this and the finiteness of R
to show that ba = 1. [Recall: We have also seen that AB = I implies BA = I for square matrices
over a field. Now we have two results of this sort...]

Proof. Suppose that ab = 1 and note that for all i ≥ 0 we have

a[b+ (1− ba)ai] = ab+ (a− aba)ai = 1 + ai+1 − abai+1 = 1 + ai+1 − ai+1 = 1.

Hence b+ (1− ba)ai is a right inverse of a for all i ≥ 0. Since our ring is finite there must exist i < j
such that b + (1 − ba)ai = b + (1 − ba)aj . Multiply both sides on the right by bj and use the fact
that ab = 1 to get b+ (1− ba)bj−i = b+ (1− ba). Now subtract b from both sides and use the fact
that (1− ba)b = b− bab = b− b = 0 to find 0 = 1− ba. We conclude that ba = 1 as desired. �

6. Recall that a group G is simple if for any group homomorphism ϕ : G → H we have kerϕ = G
(the whole group) or kerϕ = 1 (the trivial group). We can define a simple ring similarly in terms
of ring homomorphisms. Prove that a ring is simple if and only if it is a field. (Hence the term
“simple ring” is unnecessary.) [Hint: Look in the book.]

Proof. Recall that I ⊆ R is an ideal if an only if I is the kernel of a ring homomorphism. Thus we
can say that a ring R is simple if it has only two ideals: (1) = R and (0) = {0}.

First suppose that R is a field and let I ⊆ R be an ideal. If I 6= (0) then I contains a nonzero
element a. But since R is a field, a is a unit, and we conclude by Problem 2 that I = (1) = R.
Hence R is a simple ring.

Conversely, suppose that R is a simple ring and let a ∈ R be a nonzero element (if R = (0) then R
is not really a field, but I forgot to worry about this silly case when I wrote the question). Since (a)
is an ideal and (a) 6= (0) we must have (a) = (1). That is, a is a multiple of 1, which means that a is
a unit. Since this is true for all nonzero a ∈ R, R is a field (or, I guess, a division ring — I also forgot
to say that R is commutative (oh well); in any case, the term “simple ring” is unnecessary). �

7. Prove Descartes’ Factor Theorem. Let F be a field and consider the ring F[x] of polynomials.
Given f(x) ∈ F[x] and α ∈ F such that f(α) = 0, prove that f(x) = (x− α)h(x) where h(x) ∈ R[x]
with deg(h) = deg(f)−1. [Hint: Observe that xn−αn = (x−α)(xn−1 +αxn−2 + · · ·+αn−2x+αn−1)
for all n ≥ 0. Consider the polynomial f(x)− f(α).]

Proof. To save space, we define the polynomial [n]x,α := (xn−1 + xn−2α + · · · + xαn−2 + αn−1) for
each positive integer n and real number α. Suppose that f(x) ∈ R[x] has degree d and write

f(x) = adx
d + ad−1x

d−1 + · · · a1x+ a0

for a0, . . . , ad ∈ R with ad 6= 0. Then applying the identity xn − αn = (x− α)[n]x,α we can write

f(x)− f(α) = ad(xd − αd) + ad−1(xd−1 − αd−1) + · · ·+ a1(x− α)

= ad(x− α)[d]x,α + ad−1(x− α)[d− 1]x,α + · · ·+ a1(x− α)[1]x,α
= (x− α)(ad[d]x,α + ad−1[d− 1]x,α + · · ·+ a1[1]x,α)

= (x− α)(adxd−1 + lower order terms ).

If f(α) = 0 then we obtain f(x) = (x− α)h(x) where h(x) ∈ R[x] has degree d− 1. �

8. Let R and C be the real and complex fields. Let ϕ : R[x]→ C be the map that sends a polynomial
f(x) to its evaluation f(i) ∈ C at x = i.

(a) Prove that ϕ is a surjective ring homomorphism.
(b) Recall the definition of complex conjugation: a+ ib := a − ib for a, b ∈ R. Prove that

f(−i) = f(i) ∈ C for all f(x) ∈ R[x].



(c) Use Descartes’ Factor Theorem to prove that the kernel of ϕ is the principal ideal generated
by x2 + 1:

kerϕ = (x2 + 1) := {(x2 + 1)g(x) : g(x) ∈ R[x]}.

Proof. The multiplicative identity of R[x] is the constant polynomial 1(x) = 1, so clearly ϕ(1) =
1(i) = 1 ∈ C, which is the multiplicative identity of C. To prove (a) we must show that ϕ(f + g) =
ϕ(f) + ϕ(g) and ϕ(fg) = ϕ(f)ϕ(g) for all f, g ∈ R[x]. To this end, let f(x) =

∑
k akx

k and
g(x) =

∑
k bkx

k. Then we have

ϕ(f) + ϕ(g) = f(i) + g(i) =
∑
k

aki
k +

∑
k

bki
k =

∑
k

(ak + bk)ik = (f + g)(i) = ϕ(f + g)

and also

ϕ(f)ϕ(g) = f(i)g(i) =
∑
k

( ∑
u+v=k

(auiu)(bviv)

)
=
∑
k

( ∑
u+v=k

aubv

)
ik = (fg)(i) = ϕ(fg).

Notice that the proof of ϕ(f)ϕ(g) = ϕ(fg) uses the fact that C is commutative. (For this
reason we will only consider polynomials over commutative rings.) Finally, note that the map is
surjective since for any a+ ib ∈ C we have a+ ib = ϕ(f) with f(x) = a+ xb ∈ R[x].

Given complex numbers a+ ib and c+ id note that

a+ ib+ c+ id = (a− ib) + (c− id) = (a+ c)− i(b+ d)

= (a+ c) + i(b+ d) = (a+ ib) + (c+ id)

and

(a+ ib)(c+ id) = (a− ib)(c− id) = (ac− bd)− i(ad+ bc)

= (ac− bd) + i(ad+ bc) = (a+ ib)(c+ id).

Combined with the fact that 1 = 1 we conclude that complex conjugation z → z is a ring isomor-
phism C→ C (we call it a field automorphism). Furthermore, we have z = z for all z ∈ R ⊆ C. Now
we will prove (b). Let f(x) =

∑
k akx

k and consider any complex number z ∈ C. Then using the
homomorphism properties of conjugation we have

f(z) =
∑
k

akzk =
∑
k

ak(z)k =
∑
k

ak(z)k = f(z).

In particular, taking z = i gives f(−i) = f(i).
Finally consider the surjective homomorphism ϕ : R[x] → C given by ϕ(f) = f(i). To prove (c)

we will show that kerϕ = (x2 + 1). Indeed, if f(x) ∈ (x2 + 1) then we can write f(x) = (x2 + 1)g(x)
and then ϕ(f) = (i2 + 1)g(i) = 0 · g(x) = 0, hence f ∈ kerϕ and (x2 + 1) ⊆ kerϕ. Conversely,
suppose that f ∈ kerϕ; i.e. f(i) = 0. By Descartes’ Factor Theorem applied to f(x) ∈ C[x] (a
slightly tricky point) we have f(x) = (x − i)g(x) for some g(x) ∈ C[x]. But by part (b) we know
that f(i) = 0 implies f(−i) = 0 hence f(−i) = −2i · g(−i) = 0, which implies that g(−i) = 0.
Then Descartes’ Factor Theorem implies that g(x) = (x+ i)h(x) for some h(x) ∈ C[x]. Putting this
together we get

f(x) = (x− i)(x+ i)h(x) = (x2 + 1)h(x)
for some h(x) ∈ C[x]. The only problem left is to show that h(x) ∈ R[x]. But since f(x) and
(x2 + 1) are in R[x] we must also have h(x) ∈ R[x] (for example, we could do long division to
compute f(x)/(x2 + 1) = h(x)). We conclude that h(x) ∈ R[x] and hence f(x) is in the ideal
(x2 + 1) as desired. �


