1. Let R be a ring. We say that $a \in R$ is nilpotent if $a^{n}=0$ for some n. If a is nilpotent, prove that $1+a$ and $1-a$ are units (i.e. invertible).

Proof. Recall that in any ring we have $(-a)(-b)=-(a b)$ (see HW 3.7 from MTH 561). Thus in any ring with 1 (commutative or not) we have the following identities:

$$
\begin{aligned}
1-a^{n} & =(1-a)\left(1+a+a^{2}+\cdots+a^{n-1}\right), \\
1-(-1)^{n} a^{n} & =(1+a)\left(1-a+a^{2}-\cdots+(-1)^{-1} a^{n-1}\right) .
\end{aligned}
$$

If $a^{n}=0$ then we obtain inverses for $1+a$ and $1-a$.
2. Let $I \subseteq R$ be an ideal. Prove that $I=R$ if and only if I contains a unit.

Proof. First suppose that $I=R$ then $1 \in I$ so I contains a unit. Conversely, suppose that I contains a unit u, say $u v=1$ for $u, v \in R$. But since I is an ideal we have $u v=1 \in I$. Then for any $a \in R$ we have $a=1 a \in I$. Hence $I=R$.
3. Let $\varphi: R \rightarrow S$ be a ring homomorphism.
(a) Prove that $\varphi\left(0_{R}\right)=0_{S}$.
(b) Prove that $\varphi(-a)=-\varphi(a)$ for all $a \in R$.
(c) Let $a \in R$. If $a^{-1} \in R$ exists, prove that $\varphi(a)$ is invertible with $\varphi(a)^{-1}=\varphi\left(a^{-1}\right)$.

Proof. To prove (a) note that $\varphi\left(0_{R}\right)=\varphi\left(0_{R}+0_{R}\right)=\varphi\left(0_{R}\right)+\varphi\left(0_{R}\right)$. Then subtract $\varphi\left(0_{R}\right)$ from both sides to get $0_{S}=\varphi\left(0_{R}\right)$. To prove (b) consider $a \in R$. Then use part (a) to write $0_{S}=\varphi\left(0_{R}\right)=\varphi(a-$ $a)=\varphi(a)+\varphi(-a)$. Now subtract $\varphi(a)$ from both sides to get $\varphi(-a)=-\varphi(a)$. To prove (c) consider $a \in R$ and suppose that there exists a^{-1} with $a a^{-1}=a^{-1} a=1_{R}$. Applying φ to the three parts of this equation and using the fact that φ is a homomorphism gives $\varphi(a) \varphi\left(a^{-1}\right)=\varphi\left(a^{-1}\right) \varphi(a)=1_{S}$. We conclude that $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$.
[Note that the property $\varphi(a b)=\varphi(a) \varphi(b)$ does not imply $\varphi\left(1_{R}\right)=1_{S}$ for rings, so we just assume $\varphi\left(1_{R}\right)=1_{S}$ (because we want it).]
4. Let $I \subseteq R$ be an ideal and consider $a, b, c, d \in R$ with $a+I=c+I$ and $b+I=d+I$. Prove that $(a+b)+I=(c+d)+I$ and $a b+I=c d+I$. This shows that addition and multiplication of cosets is well-defined.

Proof. Since $a+I=c+I$ and $b+I=d+I$ there exist $x, y \in I$ with $a-c=x$ and $b-d=y$. To prove that $(a+b)+I=(b+d)+I$, first consider an arbitrary element $a+b+u \in(a+b)+I$ with $u \in I$. Then we have $a+b+u=(c+x)+(d+y)+u=(c+d)+(x+y+u) \in(c+d)+I$. Hence $(a+b)+I \subseteq(c+d)+I$. Similarly we find $(c+d)+I \subseteq(a+b)+I$ and hence $(a+b)+I=(c+d)+I$. To prove that $a b+I=c d+I$, first consider an arbitrary element $a b+u \in a b+I$ with $u \in I$. Then we have $a b+u=(c+x)(d+y)+u=c d+(c y+x d+x y+u)$. Since $c y, x d, x y, u$ are all in I we conclude that $a b+u=c d+(c y+x d+x y+u) \in c d+I$, hence $a b+I \subseteq c d+I$. The proof of $c d+I \subseteq a b+I$ is similar. We conclude that $a b+I=c d+I$.
[Note that $(a+b)+I=(c+d)+I$ only requires that I is closed under addition. The proof that $a b+I=c d+I$ really requires that I is an ideal. In other words, if $S \subseteq R$ is an additive subgroup we can always define R / S as an additive group, but we can only define multiplication on R / S when S is an ideal.]
5. When does $a b=1$ imply $b a=1$? Consider $a, b \in R$ where R is a finite ring, and suppose that $a b=1$. Show that $b+(1-b a) a^{i}$ is a right inverse of a for all $i \geq 0$. Use this and the finiteness of R to show that $b a=1$. [Recall: We have also seen that $A B=I$ implies $B A=I$ for square matrices over a field. Now we have two results of this sort...]
Proof. Suppose that $a b=1$ and note that for all $i \geq 0$ we have

$$
a\left[b+(1-b a) a^{i}\right]=a b+(a-a b a) a^{i}=1+a^{i+1}-a b a^{i+1}=1+a^{i+1}-a^{i+1}=1 .
$$

Hence $b+(1-b a) a^{i}$ is a right inverse of a for all $i \geq 0$. Since our ring is finite there must exist $i<j$ such that $b+(1-b a) a^{i}=b+(1-b a) a^{j}$. Multiply both sides on the right by b^{j} and use the fact that $a b=1$ to get $b+(1-b a) b^{j-i}=b+(1-b a)$. Now subtract b from both sides and use the fact that $(1-b a) b=b-b a b=b-b=0$ to find $0=1-b a$. We conclude that $b a=1$ as desired.
6. Recall that a group G is simple if for any group homomorphism $\varphi: G \rightarrow H$ we have $\operatorname{ker} \varphi=G$ (the whole group) or $\operatorname{ker} \varphi=1$ (the trivial group). We can define a simple ring similarly in terms of ring homomorphisms. Prove that a ring is simple if and only if it is a field. (Hence the term "simple ring" is unnecessary.) [Hint: Look in the book.]
Proof. Recall that $I \subseteq R$ is an ideal if an only if I is the kernel of a ring homomorphism. Thus we can say that a ring R is simple if it has only two ideals: $(1)=R$ and $(0)=\{0\}$.

First suppose that R is a field and let $I \subseteq R$ be an ideal. If $I \neq(0)$ then I contains a nonzero element a. But since R is a field, a is a unit, and we conclude by Problem 2 that $I=(1)=R$. Hence R is a simple ring.

Conversely, suppose that R is a simple ring and let $a \in R$ be a nonzero element (if $R=(0)$ then R is not really a field, but I forgot to worry about this silly case when I wrote the question). Since (a) is an ideal and $(a) \neq(0)$ we must have $(a)=(1)$. That is, a is a multiple of 1 , which means that a is a unit. Since this is true for all nonzero $a \in R, R$ is a field (or, I guess, a division ring - I also forgot to say that R is commutative (oh well); in any case, the term "simple ring" is unnecessary).
7. Prove Descartes' Factor Theorem. Let \mathbb{F} be a field and consider the ring $\mathbb{F}[x]$ of polynomials. Given $f(x) \in \mathbb{F}[x]$ and $\alpha \in \mathbb{F}$ such that $f(\alpha)=0$, prove that $f(x)=(x-\alpha) h(x)$ where $h(x) \in \mathbb{R}[x]$ with $\operatorname{deg}(h)=\operatorname{deg}(f)-1$. [Hint: Observe that $x^{n}-\alpha^{n}=(x-\alpha)\left(x^{n-1}+\alpha x^{n-2}+\cdots+\alpha^{n-2} x+\alpha^{n-1}\right)$ for all $n \geq 0$. Consider the polynomial $f(x)-f(\alpha)$.]
Proof. To save space, we define the polynomial $[n]_{x, \alpha}:=\left(x^{n-1}+x^{n-2} \alpha+\cdots+x \alpha^{n-2}+\alpha^{n-1}\right)$ for each positive integer n and real number α. Suppose that $f(x) \in \mathbb{R}[x]$ has degree d and write

$$
f(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots a_{1} x+a_{0}
$$

for $a_{0}, \ldots, a_{d} \in \mathbb{R}$ with $a_{d} \neq 0$. Then applying the identity $x^{n}-\alpha^{n}=(x-\alpha)[n]_{x, \alpha}$ we can write

$$
\begin{aligned}
f(x)-f(\alpha) & =a_{d}\left(x^{d}-\alpha^{d}\right)+a_{d-1}\left(x^{d-1}-\alpha^{d-1}\right)+\cdots+a_{1}(x-\alpha) \\
& =a_{d}(x-\alpha)[d]_{x, \alpha}+a_{d-1}(x-\alpha)[d-1]_{x, \alpha}+\cdots+a_{1}(x-\alpha)[1]_{x, \alpha} \\
& =(x-\alpha)\left(a_{d}[d]_{x, \alpha}+a_{d-1}[d-1]_{x, \alpha}+\cdots+a_{1}[1]_{x, \alpha}\right) \\
& =(x-\alpha)\left(a_{d} x^{d-1}+\text { lower order terms }\right) .
\end{aligned}
$$

If $f(\alpha)=0$ then we obtain $f(x)=(x-\alpha) h(x)$ where $h(x) \in \mathbb{R}[x]$ has degree $d-1$.
8. Let \mathbb{R} and \mathbb{C} be the real and complex fields. Let $\varphi: \mathbb{R}[x] \rightarrow \mathbb{C}$ be the map that sends a polynomial $f(x)$ to its evaluation $f(i) \in \mathbb{C}$ at $x=i$.
(a) Prove that φ is a surjective ring homomorphism.
(b) Recall the definition of complex conjugation: $\overline{a+i b}:=a-i b$ for $a, b \in \mathbb{R}$. Prove that $f(-i)=\overline{f(i)} \in \mathbb{C}$ for all $f(x) \in \mathbb{R}[x]$.
(c) Use Descartes' Factor Theorem to prove that the kernel of φ is the principal ideal generated by $x^{2}+1$:

$$
\operatorname{ker} \varphi=\left(x^{2}+1\right):=\left\{\left(x^{2}+1\right) g(x): g(x) \in \mathbb{R}[x]\right\} .
$$

Proof. The multiplicative identity of $\mathbb{R}[x]$ is the constant polynomial $\mathbf{1}(x)=1$, so clearly $\varphi(\mathbf{1})=$ $\mathbf{1}(i)=1 \in \mathbb{C}$, which is the multiplicative identity of \mathbb{C}. To prove (a) we must show that $\varphi(f+g)=$ $\varphi(f)+\varphi(g)$ and $\varphi(f g)=\varphi(f) \varphi(g)$ for all $f, g \in \mathbb{R}[x]$. To this end, let $f(x)=\sum_{k} a_{k} x^{k}$ and $g(x)=\sum_{k} b_{k} x^{k}$. Then we have

$$
\varphi(f)+\varphi(g)=f(i)+g(i)=\sum_{k} a_{k} i^{k}+\sum_{k} b_{k} i^{k}=\sum_{k}\left(a_{k}+b_{k}\right) i^{k}=(f+g)(i)=\varphi(f+g)
$$

and also

$$
\varphi(f) \varphi(g)=f(i) g(i)=\sum_{k}\left(\sum_{u+v=k}\left(a_{u} i^{u}\right)\left(b_{v} i^{v}\right)\right)=\sum_{k}\left(\sum_{u+v=k} a_{u} b_{v}\right) i^{k}=(f g)(i)=\varphi(f g) .
$$

Notice that the proof of $\varphi(f) \varphi(g)=\varphi(f g)$ uses the fact that \mathbb{C} is commutative. (For this reason we will only consider polynomials over commutative rings.) Finally, note that the map is surjective since for any $a+i b \in \mathbb{C}$ we have $a+i b=\varphi(f)$ with $f(x)=a+x b \in \mathbb{R}[x]$.

Given complex numbers $a+i b$ and $c+i d$ note that

$$
\begin{aligned}
\overline{a+i b}+\overline{c+i d}=(a-i b)+(c-i d)=(a+c)-i(b+d) & \\
& =\overline{(a+c)+i(b+d)}=\overline{(a+i b)+(c+i d)}
\end{aligned}
$$

and

$$
\begin{aligned}
(\overline{a+i b})(\overline{c+i d})=(a-i b)(c-i d)=(a c-b d)-i(a d & +b c) \\
& =\overline{(a c-b d)+i(a d+b c)}=\overline{(a+i b)(c+i d)}
\end{aligned}
$$

Combined with the fact that $\overline{1}=1$ we conclude that complex conjugation $z \rightarrow \bar{z}$ is a ring isomorphism $\mathbb{C} \rightarrow \mathbb{C}$ (we call it a field automorphism). Furthermore, we have $\bar{z}=z$ for all $z \in \mathbb{R} \subseteq \mathbb{C}$. Now we will prove (b). Let $f(x)=\sum_{k} a_{k} x^{k}$ and consider any complex number $z \in \mathbb{C}$. Then using the homomorphism properties of conjugation we have

$$
\overline{f(z)}=\overline{\sum_{k} a_{k} z^{k}}=\sum_{k} \overline{a_{k}}(\bar{z})^{k}=\sum_{k} a_{k}(\bar{z})^{k}=f(\bar{z}) .
$$

In particular, taking $z=i$ gives $f(-i)=\overline{f(i)}$.
Finally consider the surjective homomorphism $\varphi: \mathbb{R}[x] \rightarrow \mathbb{C}$ given by $\varphi(f)=f(i)$. To prove (c) we will show that $\operatorname{ker} \varphi=\left(x^{2}+1\right)$. Indeed, if $f(x) \in\left(x^{2}+1\right)$ then we can write $f(x)=\left(x^{2}+1\right) g(x)$ and then $\varphi(f)=\left(i^{2}+1\right) g(i)=0 \cdot g(x)=0$, hence $f \in \operatorname{ker} \varphi$ and $\left(x^{2}+1\right) \subseteq \operatorname{ker} \varphi$. Conversely, suppose that $f \in \operatorname{ker} \varphi$; i.e. $f(i)=0$. By Descartes' Factor Theorem applied to $f(x) \in \mathbb{C}[x]$ (a slightly tricky point) we have $f(x)=(x-i) g(x)$ for some $g(x) \in \mathbb{C}[x]$. But by part (b) we know that $f(i)=0$ implies $f(-i)=0$ hence $f(-i)=-2 i \cdot g(-i)=0$, which implies that $g(-i)=0$. Then Descartes' Factor Theorem implies that $g(x)=(x+i) h(x)$ for some $h(x) \in \mathbb{C}[x]$. Putting this together we get

$$
f(x)=(x-i)(x+i) h(x)=\left(x^{2}+1\right) h(x)
$$

for some $h(x) \in \mathbb{C}[x]$. The only problem left is to show that $h(x) \in \mathbb{R}[x]$. But since $f(x)$ and $\left(x^{2}+1\right)$ are in $\mathbb{R}[x]$ we must also have $h(x) \in \mathbb{R}[x]$ (for example, we could do long division to compute $\left.f(x) /\left(x^{2}+1\right)=h(x)\right)$. We conclude that $h(x) \in \mathbb{R}[x]$ and hence $f(x)$ is in the ideal $\left(x^{2}+1\right)$ as desired.

