1. Let R be a ring. We say that $a \in R$ is nilpotent if $a^{n}=0$ for some n. If a is nilpotent, prove that $1+a$ and $1-a$ are units (i.e. invertible).
2. Let $I \subseteq R$ be an ideal. Prove that $I=R$ if and only if I contains a unit.
3. Let $\varphi: R \rightarrow S$ be a ring homomorphism.
(a) Prove that $\varphi\left(0_{R}\right)=0_{S}$.
(b) Prove that $\varphi(-a)=-\varphi(a)$ for all $a \in R$.
(c) Let $a \in R$. If $a^{-1} \in R$ exists, prove that $\varphi(a)$ is invertible with $\varphi(a)^{-1}=\varphi\left(a^{-1}\right)$.
4. Let $I \subseteq R$ be an ideal and consider $a, b, c, d \in R$ with $a+I=c+I$ and $b+I=d+I$. Prove that $(a+b)+I=(c+d)+I$ and $a b+I=c d+I$. This shows that addition and multiplication of cosets is well-defined.
5. When does $a b=1$ imply $b a=1$? Consider $a, b \in R$ where R is a finite ring, and suppose that $a b=1$. Show that $b+(1-b a) a^{i}$ is a right inverse of a for all $i \geq 0$. Use this and the finiteness of R to show that $b a=1$. [Recall: We have also seen that $A B=I$ implies $B A=I$ for square matrices over a field. Now we have two results of this sort...]
6. Recall that a group G is simple if for any group homomorphism $\varphi: G \rightarrow H$ we have $\operatorname{ker} \varphi=G$ (the whole group) or $\operatorname{ker} \varphi=1$ (the trivial group). We can define a simple ring similarly in terms of ring homomorphisms. Prove that a ring is simple if and only if it is a field. (Hence the term "simple ring" is unnecessary.) [Hint: Look in the book.]
7. Prove Descartes' Factor Theorem. Let \mathbb{F} be a field and consider the ring $\mathbb{F}[x]$ of polynomials. Given $f(x) \in \mathbb{F}[x]$ and $\alpha \in \mathbb{F}$ such that $f(\alpha)=0$, prove that $f(x)=(x-\alpha) h(x)$ where $h(x) \in \mathbb{R}[x]$ with $\operatorname{deg}(h)=\operatorname{deg}(f)-1$. [Hint: Observe that $x^{n}-\alpha^{n}=(x-\alpha)\left(x^{n-1}+\right.$ $\alpha x^{n-2}+\cdots+\alpha^{n-2} x+\alpha^{n-1}$) for all $n \geq 0$. Consider the polynomial $f(x)-f(\alpha)$.]
8. Let \mathbb{R} and \mathbb{C} be the real and complex fields. Let $\varphi: \mathbb{R}[x] \rightarrow \mathbb{C}$ be the map that sends a polynomial $f(x)$ to its evaluation $f(i) \in \mathbb{C}$ at $x=i$.
(a) Prove that φ is a surjective ring homomorphism.
(b) Recall the definition of complex conjugation: $\overline{a+i b}:=a-i b$ for $a, b \in \mathbb{R}$. Prove that $f(-i)=\overline{f(i)} \in \mathbb{C}$ for all $f(x) \in \mathbb{R}[x]$.
(c) Use Descartes' Factor Theorem to prove that the kernel of φ is the principal ideal generated by $x^{2}+1$:

$$
\operatorname{ker} \varphi=\left(x^{2}+1\right):=\left\{\left(x^{2}+1\right) g(x): g(x) \in \mathbb{R}[x]\right\}
$$

[This exercise shows that we could replace \mathbb{C} by the quotient ring $\mathbb{R}[x] /\left(x^{2}+1\right)$. This is the "grown-up" definition of \mathbb{C}.]

