
Math 562 Friday, April 27
Exam 3 Drew Armstrong

There are 3 problems and 4 pages. This is a closed book test. Any student caught cheating
will receive a score of zero.

1. Let F ⊆ K be a finite-dimensional (hence algebraic) extension of characteristic 0 fields.

(a) [1 pt] State the definition of the Galois group G := Gal(K/F ).

Proof. Let Aut(K) be the group (under composition) of field automorphisms of K.
Then G is the subgroup {µ ∈ Aut(K) : µ(a) = a ∀a ∈ F} ≤ Aut(K) that fixes F
pointwise. �

(b) [3 pts] Prove that G is finite. [Hint: Primitive Element Theorem.]

Proof. Since the extension K/F of characteristic 0 fields is finite and algebraic,
Steinitz’ Primitive Element Theorem tells us that there exists γ ∈ K such that
K = F (γ). Now an element µ ∈ G is determined by the single value µ(γ) ∈ K.
Furthermore, by (c) we know that µ(γ) is a root of the minimal polynomial mγ(x) ∈
F [x]. There are at most deg(mγ(x)) such roots, hence |G| ≤ deg(mγ(x)). �

(c) [1 pt] For all f(x) ∈ F [x], α ∈ K, µ ∈ G, prove that µ(f(α)) = f(µ(α)).

Proof. Let f(x) =
∑

k≥0 akx
k. Then since µ(ak) = ak for each coefficient ak ∈ F ,

we have

µ(f(α)) = µ

∑
k≥0

akα
k

 =
∑
k≥0

µ(ak)µ(α)k =
∑
k≥0

akµ(α)k = f(µ(α)).

�

[Now here I made a boo boo. For part (d) we must assume that F = KG (i.e. that the
extension K/F is normal). It seems that this didn’t bother the students (the power of
suggestion is strong). But to you on the internets: I intended Probem 1 to deal with
not-necessarily-normal field extensions. In this regard parts (d),(e),(f) — part (f) in
particular — are quite silly. Read with caution. Also, I apologize.]

(d) [2 pts] Given any β ∈ K, consider its G-orbit {β = β1, β2, . . . , βr}. Explain why
the polynomial g(x) := (x− β1) · · · (x− βr) ∈ K[x] is actually in F [x].

Proof. The coefficients of g(x) are symmetric in the βi (in fact they’re the elemen-
tary symmetric combinations of the βi). Since an element µ ∈ G acts by permuting
the βi (why?), we find that each coefficient is fixed by each element of G. Hence
the coefficients are in KG = F . �

(e) [2 pts] Use (c) and (d) to prove that g(x) is the minimal polynomial for β over
F . [Hint: Consider any f(x) ∈ F [x] with f(β) = 0. Show that g(x) divides f(x).]



Proof. We have g(x) ∈ F [x] with g(β) = 0. Choose any other f(x) ∈ F [x] with
f(β) = 0. Since {β = β1, . . . , βr} is a G-orbit, there exists for each i some µi ∈ G
such that µi(β) = βi. Then by (c) we have f(βi) = f(µi(β)) = µi(f(β)) = µi(0) = 0
for all i. By the Factor Theorem we can write f(x) = (x− β1) · · · (x− βr)h(x) for
some h(x) ∈ F [x]; in other words g(x) divides f(x). We conclude that g(x) is the
minpoly. �

(f) [1 pt] Use (d) and (e) to prove that [K : F ] divides |G|. [Hint: Orbit-Stabilizer.]

Proof. Let β be a primitive element for K/F so that [K : F ] = deg(mβ(x)) = r.
Since r is the size of a G-orbit, it divides |G| by the Orbit-Stabilizer Theorem. �

[Actually, since we assumed F = KG in part (d), it’s true that [K : F ] = |G|.]

2. Now let F ⊆ K be a normal extension of characteristic 0 fields, and let G := Gal(F/K).

(a) [1 pt] State some definition of “normal” for the field extension F ⊆ K.

Proof. We say that K/F is normal if K is a splitting field for some polynomial
f(x) ∈ F [x]. �

(b) [1 pt] Given a subgroup H ≤ G, state the definition of KH .

Proof.
KH := {a ∈ K : µ(a) = a ∀µ ∈ H}

�

(c) [2 pt] Prove that KH is a subfield of K.

Proof. We have µ(0) = 0 and µ(1) = 1 for all µ ∈ H, hence 0, 1 ∈ KH . For
a, b ∈ KH we have µ(a + b) = µ(a) + µ(b) = a + b and µ(ab) = µ(a)µ(b) = ab,
hence a + b, ab ∈ KH . Finally, if 0 6= a ∈ KH and µ ∈ H then we have 1 =
µ(1) = µ(aa−1) = µ(a)µ(a−1) = aµ(a−1). We conclude that µ(a−1) = a−1, hence
a−1 ∈ KH . �

(d) [1 pt] What does the Fundamental Theorem tell us about Gal(K/KH)? [Hint: It’s
equal to...]

Proof. Gal(K/KH) = H. �

(e) [1 pt] If H EG is normal, what does the Fundamental Theorem tell us about the
quotient group G/H? [Hint: It’s isomorphic to...]

Proof. G/H = Gal(K/F )/Gal(K/KH) ≈ Gal(KH/F ). �

3. Let γ := 3
√

2 ∈ R and ω := e2πi/3 ∈ C.

(a) [1 pt] State one reason why the extension Q(γ, ω)/Q is normal.

Proof. We’ve seen that Q(γ, ω) is the splitting field for x3 − 2 ∈ Q[x], hence it’s
normal. �



(b) [3 pts] Draw the lattice of all intermediate fields between Q and Q(γ, ω). Label
the edges with the degrees of the extensions. Indicate which of the fields are
normal over Q.

Proof. There are six intermediate fields:

Q(γ, ω),Q(γ),Q(ωγ),Q(ω2γ),Q(ω),Q.
Of these, three are normal over Q:

Q(γ, ω),Q(ω),Q.
The picture is in the Course Notes. �

(c) [0 pts] Have a nice summer.


