There are 3 problems and 4 pages. This is a closed book test. Any student caught cheating will receive a score of zero.

- **1.** Let *R* be a commutative ring with 1 and let $I \subseteq R$ be a **maximal ideal**.
 - (a) Given $a \in R$ with $a \notin I$, prove that I < (a) + I (i.e. strict containment of ideals).

Proof. Note that $a \in (a) + I$ but $a \notin I$. Since $I \subseteq (a) + I$ by definition, we conclude that I < (a) + I.

(b) Use part (a) to **prove that there exist** $b \in R$ and $u \in I$ such that 1 = ab + u.

Proof. Since I is maximal and I < (a) + I we conclude that (a) + I = R. Then since $1 \in R = (a) + I$, there exist $b \in R$ and $u \in I$ such that 1 = ab + u. \Box

(c) **Prove that** R/I is a field. (Write out the full proof in nice words, using ideas from parts (a) and (b).)

Proof. Let a + I be any nonzero element of R/I (i.e. $a + I \neq I$). In particular we have $a \notin I$ so by parts (a) and (b) there exist $b \in R$ and $u \in I$ such that 1 = ab + u. This implies that (a + I)(b + I) = ab + I = 1 - u + I = 1 + I and so a + I is invertible. We conclude that R/I is a field.

2. Consider a field extension $F \subseteq K$ with $\alpha \in K$ algebraic over F. Let $(m_{\alpha}(x))$ be the kernel of the evaluation map $\varphi_{\alpha} : F[x] \to K$, where $m_{\alpha}(x) \in F[x]$ is monic.

(a) Prove that $m_{\alpha}(x)$ is irreducible.

Proof. Suppose that $m_{\alpha}(x) = f(x)g(x) \in F[x]$. Then applying φ_{α} shows that $0 = m_{\alpha}(\alpha) = f(\alpha)g(\alpha)$. Since F is a domain we have (without loss of generality) that $f(\alpha) = 0$ and hence $f(x) \in \ker \varphi_{\alpha} = (m_{\alpha}(x))$. Since f(x) and $m_{\alpha}(x)$ divide each other, they are associates in F[x]. Hence $m_{\alpha}(x)$ has no proper factorization. \Box

(b) Using part (a), prove that $(m_{\alpha}(x)) \subseteq F[x]$ is a maximal ideal (hence $F[x]/(m_{\alpha}(x))$ is a field by Problem 1).

Proof. Suppose that there exists an ideal $J \subseteq F[x]$ with $(m_{\alpha}(x) < J < F[x]]$. Since F[x] is a PID we have J = (f(x)) for some $f(x) \in F[x]$, and then f(x) is a proper factor of $m_{\alpha}(x)$. This contradicts the fact that $m_{\alpha}(x)$ is irreducible. Hence ideal $(m_{\alpha}(x)) \subseteq F[x]$ is maximal and $F[x]/(m_{\alpha}(x))$ is a field. \Box

(c) Prove that the map $\phi: F \to F[x]/(m_{\alpha}(x))$ defined by $\phi(a) := a + (m_{\alpha}(x))$ is injective. (Since ϕ is obviously a ring homomorphism — don't prove this — we can say that $F \approx \phi(F) \subseteq F[x]/(m_{\alpha}(x))$ is a field extension.)

Proof. Suppose that $\phi(a) = \phi(b)$, i.e. $a + (m_{\alpha}(x)) = b + (m_{\alpha}(x))$. Then $a - b \in (m_{\alpha}(x))$ implies that $m_{\alpha}(x)$ divides a - b in F[x]. If $a - b \neq 0$ this means that $\deg(a - b) \ge \deg(m_{\alpha}(x)) \ge 1$, which is a contradiction. Hence a - b = 0. \Box

(d) The "first isomorphism theorem" turns the evaluation map $\varphi_{\alpha} : F[x] \to K$ into an isomorphism of fields $F[x]/(m_{\alpha}(x)) \xrightarrow{\sim} \operatorname{im} \varphi_{\alpha} =: F(a) \subseteq K$. What is the definition of the isomorphism?

$$f(x) + (m_{\alpha}(x)) \mapsto \varphi_{\alpha}(f(x)) = f(\alpha)$$

(e) Under the isomorphism, which element of $F[x]/(m_{\alpha}(x))$ gets sent to $\alpha \in K$? $\boxed{x + (m_{\alpha}(x)) \mapsto \alpha}$

3. Let
$$\gamma = \sqrt[3]{2} \in \mathbb{R}$$
 and let $\omega = e^{2\pi i/3} \in \mathbb{C}$.

(a) What is the minimal polynomial of γ over \mathbb{Q} ? (Just state it — no need for proof.)

$$x^3 - 2 \in \mathbb{Q}[x]$$

(b) What is the minimal polynomial of ω over $\mathbb{Q}(\gamma)$? (Again, don't prove it.)

$$x^2 + x + 1 \in \mathbb{Q}(\gamma)[x]$$

(c) Tell me a basis for the vector space $\mathbb{Q}(\gamma, \omega)$ over \mathbb{Q} . [Hint: Tower Law.]

Proof. Since $1, \gamma, \gamma^2$ is a basis for $\mathbb{Q}(\gamma)$ over \mathbb{Q} , and $1, \omega$ is a basis for $\mathbb{Q}(\gamma, \omega)$ over $\mathbb{Q}(\gamma)$, the Tower Law says that $1, \gamma, \gamma^2, \omega, \omega\gamma, \omega\gamma^2$ is a basis for $\mathbb{Q}(\gamma, \omega)$ over \mathbb{Q} . \Box

(d) The number $\gamma + \omega \in \mathbb{C}$ is a root of the polynomial

$$x^{6} + 3x^{5} + 6x^{4} + 3x^{3} + 9x + 9 \in \mathbb{Q}[x].$$

Furthermore, this polynomial is irreducible over \mathbb{Q} . (Just believe me.) Use this information to **prove that** $\mathbb{Q}(\gamma, \omega) = \mathbb{Q}(\gamma + \omega)$.

Proof. Since $\gamma + \omega \in \mathbb{Q}(\gamma, \omega)$ we have $\mathbb{Q}(\gamma + \omega) \subseteq \mathbb{Q}(\gamma + \omega)$, and the Tower Law says that

$$[\mathbb{Q}(\gamma,\omega):\mathbb{Q}] = [\mathbb{Q}(\gamma,\omega):\mathbb{Q}(\gamma+\omega)] \cdot [\mathbb{Q}(\gamma+\omega):\mathbb{Q}].$$

From part (c), we know that $[\mathbb{Q}(\gamma, \omega) : \mathbb{Q}] = 6$ since $\mathbb{Q}(\gamma, \omega)$ has a basis of size 6 over \mathbb{Q} . We also know that $f(x) = x^6 + 3x^5 + 6x^4 + 3x^3 + 9x + 9$ is divisible by the minimal polynomial of $\gamma + \omega$ over \mathbb{Q} . Since f(x) is irreducible and monic, this implies that f(x) is the minimal polynomial of $\gamma + \omega$ over \mathbb{Q} , and hence $[\mathbb{Q}(\gamma + \omega) : \mathbb{Q}] = \deg(f) = 6$. We conclude that $[\mathbb{Q}(\gamma, \omega) : \mathbb{Q}(\gamma + \omega)] = 1$, hence $\mathbb{Q}(\gamma, \omega) = \mathbb{Q}(\gamma + \omega)$.