There are 3 problems and 4 pages. This is a closed book test. Any student caught cheating will receive a score of zero.

1. Let R be a commutative ring with 1 and let $I \subseteq R$ be a maximal ideal.
(a) Given $a \in R$ with $a \notin I$, prove that $I<(a)+I$ (i.e. strict containment of ideals).

Proof. Note that $a \in(a)+I$ but $a \notin I$. Since $I \subseteq(a)+I$ by definition, we conclude that $I<(a)+I$.
(b) Use part (a) to prove that there exist $b \in R$ and $u \in I$ such that $1=a b+u$.

Proof. Since I is maximal and $I<(a)+I$ we conclude that $(a)+I=R$. Then since $1 \in R=(a)+I$, there exist $b \in R$ and $u \in I$ such that $1=a b+u$.
(c) Prove that R / I is a field. (Write out the full proof in nice words, using ideas from parts (a) and (b).)

Proof. Let $a+I$ be any nonzero element of R / I (i.e. $a+I \neq I$). In particular we have $a \notin I$ so by parts (a) and (b) there exist $b \in R$ and $u \in I$ such that $1=a b+u$. This implies that $(a+I)(b+I)=a b+I=1-u+I=1+I$ and so $a+I$ is invertible. We conclude that R / I is a field.
2. Consider a field extension $F \subseteq K$ with $\alpha \in K$ algebraic over F. Let $\left(m_{\alpha}(x)\right)$ be the kernel of the evaluation map $\varphi_{\alpha}: F[x] \rightarrow K$, where $m_{\alpha}(x) \in F[x]$ is monic.
(a) Prove that $m_{\alpha}(x)$ is irreducible.

Proof. Suppose that $m_{\alpha}(x)=f(x) g(x) \in F[x]$. Then applying φ_{α} shows that $0=$ $m_{\alpha}(\alpha)=f(\alpha) g(\alpha)$. Since F is a domain we have (without loss of generality) that $f(\alpha)=0$ and hence $f(x) \in \operatorname{ker} \varphi_{\alpha}=\left(m_{\alpha}(x)\right)$. Since $f(x)$ and $m_{\alpha}(x)$ divide each other, they are associates in $F[x]$. Hence $m_{\alpha}(x)$ has no proper factorization.
(b) Using part (a), prove that $\left(m_{\alpha}(x)\right) \subseteq F[x]$ is a maximal ideal (hence $F[x] /\left(m_{\alpha}(x)\right)$ is a field by Problem 1).

Proof. Suppose that there exists an ideal $J \subseteq F[x]$ with $\left(m_{\alpha}(x)<J<F[x]\right.$. Since $F[x]$ is a PID we have $J=(f(x))$ for some $f(x) \in F[x]$, and then $f(x)$ is a proper factor of $m_{\alpha}(x)$. This contradicts the fact that $m_{\alpha}(x)$ is irreducible. Hence ideal $\left(m_{\alpha}(x)\right) \subseteq F[x]$ is maximal and $F[x] /\left(m_{\alpha}(x)\right)$ is a field.
(c) Prove that the $\operatorname{map} \phi: F \rightarrow F[x] /\left(m_{\alpha}(x)\right)$ defined by $\phi(a):=a+\left(m_{\alpha}(x)\right)$ is injective. (Since ϕ is obviously a ring homomorphism - don't prove this - we can say that $F \approx \phi(F) \subseteq F[x] /\left(m_{\alpha}(x)\right)$ is a field extension.)

Proof. Suppose that $\phi(a)=\phi(b)$, i.e. $a+\left(m_{\alpha}(x)\right)=b+\left(m_{\alpha}(x)\right)$. Then $a-b \in$ ($m_{\alpha}(x)$) implies that $m_{\alpha}(x)$ divides $a-b$ in $F[x]$. If $a-b \neq 0$ this means that $\operatorname{deg}(a-b) \geq \operatorname{deg}\left(m_{\alpha}(x)\right) \geq 1$, which is a contradiction. Hence $a-b=0$.
(d) The "first isomorphism theorem" turns the evaluation map $\varphi_{\alpha}: F[x] \rightarrow K$ into an isomorphism of fields $F[x] /\left(m_{\alpha}(x)\right) \xrightarrow{\sim} \operatorname{im} \varphi_{\alpha}=: F(a) \subseteq K$. What is the definition of the isomorphism?

$$
f(x)+\left(m_{\alpha}(x)\right) \mapsto \varphi_{\alpha}(f(x))=f(\alpha)
$$

(e) Under the isomorphism, which element of $F[x] /\left(m_{\alpha}(x)\right)$ gets sent to $\alpha \in K$?

$$
x+\left(m_{\alpha}(x)\right) \mapsto \alpha
$$

3. Let $\gamma=\sqrt[3]{2} \in \mathbb{R}$ and let $\omega=e^{2 \pi i / 3} \in \mathbb{C}$.
(a) What is the minimal polynomial of γ over \mathbb{Q} ? (Just state it - no need for proof.)

$$
x^{3}-2 \in \mathbb{Q}[x]
$$

(b) What is the minimal polynomial of ω over $\mathbb{Q}(\gamma)$? (Again, don't prove it.)

$$
x^{2}+x+1 \in \mathbb{Q}(\gamma)[x]
$$

(c) Tell me a basis for the vector space $\mathbb{Q}(\gamma, \omega)$ over \mathbb{Q}. [Hint: Tower Law.]

Proof. Since $1, \gamma, \gamma^{2}$ is a basis for $\mathbb{Q}(\gamma)$ over \mathbb{Q}, and $1, \omega$ is a basis for $\mathbb{Q}(\gamma, \omega)$ over $\mathbb{Q}(\gamma)$, the Tower Law says that $1, \gamma, \gamma^{2}, \omega, \omega \gamma, \omega \gamma^{2}$ is a basis for $\mathbb{Q}(\gamma, \omega)$ over \mathbb{Q}.
(d) The number $\gamma+\omega \in \mathbb{C}$ is a root of the polynomial

$$
x^{6}+3 x^{5}+6 x^{4}+3 x^{3}+9 x+9 \in \mathbb{Q}[x] .
$$

Furthermore, this polynomial is irreducible over \mathbb{Q}. (Just believe me.) Use this information to prove that $\mathbb{Q}(\gamma, \omega)=\mathbb{Q}(\gamma+\omega)$.
Proof. Since $\gamma+\omega \in \mathbb{Q}(\gamma, \omega)$ we have $\mathbb{Q}(\gamma+\omega) \subseteq \mathbb{Q}(\gamma+\omega)$, and the Tower Law says that

$$
[\mathbb{Q}(\gamma, \omega): \mathbb{Q}]=[\mathbb{Q}(\gamma, \omega): \mathbb{Q}(\gamma+\omega)] \cdot[\mathbb{Q}(\gamma+\omega): \mathbb{Q}] .
$$

From part (c), we know that $[\mathbb{Q}(\gamma, \omega): \mathbb{Q}]=6$ since $\mathbb{Q}(\gamma, \omega)$ has a basis of size 6 over \mathbb{Q}. We also know that $f(x)=x^{6}+3 x^{5}+6 x^{4}+3 x^{3}+9 x+9$ is divisible by the minimal polynomial of $\gamma+\omega$ over \mathbb{Q}. Since $f(x)$ is irreducible and monic, this implies that $f(x)$ is the minimal polynomial of $\gamma+\omega$ over \mathbb{Q}, and hence $[\mathbb{Q}(\gamma+\omega): \mathbb{Q}]=\operatorname{deg}(f)=$ 6. We conclude that $[\mathbb{Q}(\gamma, \omega): \mathbb{Q}(\gamma+\omega)]=1$, hence $\mathbb{Q}(\gamma, \omega)=\mathbb{Q}(\gamma+\omega)$.

