There are 4 problems and 4 pages. This is a closed book test. Any student caught cheating will receive a score of zero.

1. Let R be an integral domain and consider $a, b, c, p \in R$.
(a) [1 point] If $a \neq 0$, prove that $a b=a c$ implies $b=c$.

Proof. Note that $a b=a c \Rightarrow a b-a c=0 \Rightarrow a(b-c)=0$. Since $a \neq 0$ this implies that $b-c=0$, or $b=c$.
(b) [2 points] Prove that if $(a)=(b)$, then a and b are associates.

Proof. Suppose that $(a)=(b)$. This implies that a divides b (say $a u=b$) and that b divides a (say $a=b v$). Putting these together gives $a=b v=a u v$. Then applying Part (a) gives $1=u v$. Hence u, v are units and a, b are associates.
(c) [2 points] Prove that if p is prime, then p is also irreducible.

Proof. Suppose that p is prime and that $p=a b$. We want to show that a or b is a unit. Since $p \mid a b$ we we have (without loss of generality) that $p \mid a$, say $p k=a$. Substituting this into $p=a b$ gives $p=p k b$, and then applying Part (a) gives $1=k b$. Hence b is a unit.
2. Let R be an integral domain.
(a) [2 points] What does it mean to say that R is Euclidean? (Give the definition.)

We say that an integral domain R is Euclidean if there exists a function N from nonzero elements of R to positive integers such that: for all $a, b \in R$ with $b \neq 0$ there exist $q, r \in R$ with

- $a=q b+r$,
- $N(r)<N(b)$ or $r=0$.
(b) [3 points] If R is Euclidean, prove that R is a Principal Ideal Domain (PID).

Proof. Let R be Euclidean and consider an ideal $I \subseteq R$. The zero ideal is principal, so suppose that $I \neq(0)$. Then by well-ordering there exists nonzero $a \in I$ with $N(a) \leq N(b)$ for all $b \in I$. Since I is an ideal we have $(a) \subseteq I$. Now consider any $b \in I$ and divide by (nonzero) a to get $b=q a+r$ with $N(r)<N(a)$ or $r=0$. Since $r=b-q a \in I$, the condition $N(r)<N(a)$ would violate the minimality of a, hence $r=0$. This implies that $b=q a \in(a)$. Since this true for all $b \in I$ we get $I \subseteq(a)$, hence $I=(a)$ is principal.
3. (a) [2 points] Let R be a ring and consider an increasing chain of ideals $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots \subseteq R$. Prove that the infinite union $J=\cup_{n=1}^{\infty} I_{n}$ is also an ideal.
Proof. Let $u, v \in J$ and $a \in R$. By definition there exist n, m such that $u \in I_{n}$ and $v \in I_{m}$. Since I_{n} is an ideal we have $a u, u a \in I_{n} \subseteq J$. Now let $N=\max \{n, m\}$ so that $u, v \in I_{N}$. Finally since I_{N} is an ideal we have $u+v \in I_{N} \subseteq J$.
(b) [$\mathbf{3}$ points] We say that a ring R is Noetherian if there does not exist an infinite strictlyincreasing chain of ideals $I_{1}<I_{2}<I_{3}<\cdots \subseteq R$. Prove that a PID is Noetherian.
Proof. Let R be a PID and suppose that R is not Noetherian; i.e. there exists an infinite chain of ideals $I_{1}<I_{2}<I_{3}<\cdots \subseteq R$. By Part (a) the union $J=\cup_{n=1}^{\infty} I_{n}$ and ideal and since R is a PID this gives $J=(d)$ for some $d \in R$. Since $d \in J$ there exists N such that $d \in I_{N}$. But then $J=(d) \subseteq I_{N}<I_{N+1} \subseteq J$ is a contradiction. Hence R is Noetherian.

Extra Problem. [3 points] We say that a ring R is Artinian if there does not exist an infinite strictly-decreasing chain of ideals $R=I_{0}>I_{1}>I_{2}>\cdots \supseteq(0)$. Prove that an Artinian integral domain is a field. [Hint: Consider $0 \neq a \in R$ and construct a chain of ideals.]
Proof. Suppose that R is an Artinian integral domain and let $0 \neq a \in R$. Consider the descending chain of ideals $(a) \supseteq\left(a^{2}\right) \supseteq\left(a^{3}\right) \supseteq \cdots \supseteq(0)$. Since R is Artinian there exists n such that $\left(a^{n}\right)=\left(a^{n+1}\right)$ and then since $a^{n} \in\left(a^{n}\right)=\left(a^{n+1}\right)$, there exists $b \in R$ such that $a^{n}=a^{n+1} b$. Since R is a domain we know that $a \neq 0 \Rightarrow a^{n} \neq 0$, hence we can cancel a^{n} from $a^{n}=a^{n+1} b$ to get $1=a b$. We conclude that every nonzero element of R is invertible.

