Math 561/661 Fall 2023
Homework 3 Drew Armstrong

1. Working with Lattice Axioms. Let (P, <, A, V) be a lattice. For all a,b € P prove that

a<b <= a=aAb.

By definition, the element a A b satisfies (and is uniquely determined by) three properties:

e aNb<a,

e aNb< b,

eifc<gandc<bthenc<aAb.
First suppose that a = a A b. Then since a A b < b we have a < b. Conversely, suppose that
a < b. In this case we wish to show that a = a Ab. If we can show that a < aAband aAb<a
then we will be done by using the anti-symmetry axiom of “<”. And we already know that
a A b < a from the definition of “A”.

It only remains to show that a < a A b. Since we have a < a (by definition) and a < b (by
assumption) we see that a is a lower bound of a and b, hence it follows from the “greatest
lower bound” axiom that a < a A b. |

2. Divisibility is a Partial Order. Consider the set N = {0,1,2,...} together with the
relation of divisibility:
alb <= there exists some k € Z such that ak = b.
(a) For all a € N prove that ala.
(b) For all a,b € N prove that a|b and bla imply a = b. [Hint: For any integers c¢,d € Z

you can assume that e¢d = 0 implies ¢ =0 or d = 0.]
(¢) For all a,b,c € N prove that a|b and b|c imply alc.

(a): For all @ € N we have a -1 = a and hence ala.

(b): Suppose that a,b € N satisfy a|b and b|a. In other words, suppose we have ak = b and
bl = a for some k,¢ € Z. If one of a or b is zero then the other must be as well, hence
a=0=10. So let us assume that a # 0 and b # 0. Then we have

a=0bl

a = akl
a(l—k0) =0
1—kl=0
1=kt

Step * follows from the fact that a # 0 and the cancellation property of the integersE] This
last equation has only two solutions: k = ¢ =1 or k = £ = —1. The solution k = ¢ = —1
is impossible because a and b are both positive, hence ¥ = ¢ = 1 and we conclude that
a=bl=0b-1=0.

1Technically, the integers satisfy the property that ¢ # 0 and d # 0 implies cd # 0. A general commutative
ring satisfying this condition is called an integral domain (i.e., a place in which to do arithmetic that is similar
to the integers).



(c): Suppose that a, b, ¢ € N satisfy a|b and b|c. This means that there exist k, ¢ € Z satisfying
kb = c and fa = b. It follows that (kf)a = ¢ and hence a|c.

3. The Group of Units Mod n. Counsider the ring (Z/nZ,+,-,0,1). We say that u € Z/nZ
is a unit if there exist some x € Z/nZ such that uz = 1 mod n. We denote the multiplicative
group of units by ((Z/nZ)*,-,1).
(a) Prove that (Z/nZ)* = {a € Z/nZ : gcd(a,n) = 1}. [Hint: We proved in class that
aZ + nZ = ged(a,n)Z for all a,n € Z. In particular, this implies that there exist
x,y € Z such that ax + ny = ged(a,n).]
(b) Write down the full group tables of (Z/10Z)* and (Z/12Z)*. Each of these groups has
size 4. Prove that they are not isomorphic.

(a): If a € Z/nZ is a unit then we have ax = 1 mod n for some integer = € Z. By definition
this means that 1 — axz = ny for some y € Z, and hence ax +ny = 1. I claim that this implies
ged(a,n) = 1. Indeed, let d = ged(a,n). Since d is a common divisor of a and n we have
a = da’ and n = dn’ for some a/,n’ € Z, and hence

1 =ar+ny=ddx+dn'y =d(ad'z +n'y),
It follows that d = 1/
Conversely, suppose that ged(a,n) = 1. We proved in class that aZ + nZ = ged(a,b)Z, so in

this case we have aZ +nZ = 7Z. Since 1 € aZ + nZ we have 1 = ax + ny for some z,y € Z. It
follows that n|(1 — ax) and hence az = 1 mod n. In other words, a is a unit of Z/nZ.

[Remark: Our proof from class that aZ + nZ = ged(a,n)Z was indirect. The Euclidean
algorithm can be used to compute specific integers x,y € Z satisfying ax + ny = ged(a,n).]

—

(b): Here are the group tables of (Z/10Z)* and (Z/12Z)*:

-\1379 -\15711
111 3 7 9 111 5 7 11
3139 1 7 515 1 11 7
717 1 9 3 717 11 1 5
919 7 3 1 1111 7 5 1

The group (Z/10Z)* has 2 elements of order, while (Z/12Z)* has 4 elements of order two;
hence they are not isomorphic. To be more specific, (Z/10Z)* is cyclic, hence is isomorphic
to Z/4Z. The only other group of size 4 is the direct product Z/27Z x Z/2Z, hence (Z/127)*
must be isomorphic to this.

4. Order of a Power. Let (G, *,¢) be a group and let g € G be an element of order n > 1.

(a) For any integer k € Z, let d = ged(k,n). Show that (g¥) = (g%). [Hint: It suffices to
show that ¢* is a power of ¢% and that ¢ is a power of g*. For the second statement
you should use Bézout’s identity: kZ + nZ = dZ.]

(b) For any positive divisor d|n show that g has order n/d. [Hint: Let m = n/d. You
need to show that (g¢)™ = ¢ and that the elements ¢, (g%)!, ..., (¢%)™ ! are distinct.]

(c) Combine (a) and (b) to show that for any k € Z the element g* has order n/ ged(n, k).

2In general, if alb and b # 0 then |a| < [b|. Proof: Suppose that b = ak. Since b # 0 we have a # 0 and
k # 0, so that |a|] > 1 and |k| > 1, because these are whole numbers. Multiply both sides of the inequality
1 < |k| by |a| to get |a|] < |a||k| = |ak| = |b|. This proof will look slightly different depending on what axiom
system you are using for the integers.



(a): Let g € G be an element of a group, with #(g) = n, and let d = ged(k,n). In this case
we will prove that (g%) = (g%).

In order to prove that (gF) C (g¢) it suffices to show that g* € (¢?). Note that d = ged(k,n)
is a divisor of k, hence k = dd’ for some d’ € Z. Then we have

g" = g™ = (g")" € (¢%).
Conversely, in order to prove that (g¢) C (g*), it suffices to show that g¢ € (g*). For this we
use Bézout’s identity to write d = kx 4+ ny for some z,y € Z. Then we have

gt =g" T = (M) (") = (gM)7 ke = (6M)" € (g).
(b): For any positive divisor d|n, let n = dm. Then we have

(" =g"=e¢

If we can show that the elements ¢, g%, (%)%, ..., (g9)™~! are distinct then it will follow that

#(g?) = m = n/d. To show this, we assume for contradiction that (¢%)* = (g¢)¢ for some
0 < k < £ < m. Multiplying both sides by (g%)~* gives ¢g?¢~%) = ¢, where 1 < ¢ — k < m.
Multiplying this inequality by d gives 1 < d < d(¢{ — k) < dm = n. But we showed on the
previous homework that if #(g) = n then n is the smallest positive integer satisfying ¢" = e.
Hence we have a contradiction.

(c): Let #(g) = n and let d = ged(k,n), where k is any integer. From part (a) we have
(g*) = (g%). Then from part (b) we have

#(g") = #(¢") = n/d = n/ ged(k,n).

5. The Euler-Fermat-Lagrange Theorem. Let (G, -, 1) be an abelian group and let a € G
be any element. Define the function 7, : G — G by 7,(¢g) := ag.

(a) Prove that 7, : G — G is a bijection.

(b) If the group G is finite, prove that a#“ = 1. [Hint: Suppose that #G = n and list
the elements as G = {g1,92,- .., gn}. Explain why g192--- gn = 7a(91)7a(g2) - - Ta(gn)-
Rearrange the elements and then cancel.]

(c) If p is prime and a 1 p, show that the result from part (b) implies

" '=1modp.
[Hint: Let G = (Z/pZ)*. See Problem 3.]

(a): For any a € G we define the “translation function” 7, : G — G by 74(g) := ag. 1
claim that this function is invertible, with inverse 7,-1. Indeed, for any ¢ € G we have
T.-1(7a(9)) = a~tag = g and 74(7,-1(g)) = aa~'g = g, which shows that 7,07,-1 and 7,-1 07,
are the identity function.

(b): Let #G = n and denote the elements of G as g1, 92, ..., gn. For any a € G, we know from
part (a) that the elements agi,ago, ..., ag, are distinct, hence this is just a rearrangement of
the group elements. Let h = g1gs - - - g, be the product of all the group elements. Then we
also have

h = (ag1)(agz) -~ (agn) = a"g192 - gn = a"h.
Finally, multiplying both sides by the inverse h™! gives a” = 1 as desired.

(c): There is not much to “do” here. From Problem 3 we know that #(Z/pZ)* =p —1. If
G = (Z/pZ)* then part (b) tells us that every element a € (Z/pZ)* satisfies “a?P~! = 17. Now



we translate these abstract statements into the language of integers: Given any integer a € Z
such that a € (Z/pZ)*, i.e., such that gcd(a,p) = 1, i.e., such that p { a, we have “a?P~! = 17
in the group (Z/pZ)*, i.e., a?~* = 1 mod p.

[Remark: Mathematics is too big to be covered by a consistent notation. Sometimes we just
have to jump from one notation to another and hope that we don’t fall.]

6. Image and Preimage. Let ¢ : (G, x,e¢) — (H,e,c1) be a group homomorphism. For
any subset S C G we define the image set p[S] C H by
©[S] :={h € H : there exists g € S such that ¢(g) = h}
and for any subset 7' C H we define the preimage set ¢~ '[T] C G by
e ' T):={9€G:p(g) €T}

Remark: We do not assume that the inverse function ¢! : H — G exists. It exists if and
only if for each element h € H the preimage set o~ 1[{h}] consists of exactly one element.

(a) For any subsets S C G and T' C G, prove that
SCop [Tl < ¢[S]CT.

(b) If S C G is a subgroup, prove that ¢[S] C H is a subgroup.
(c) If T C H is a subgroup, prove that ¢~ ![T] C G is a subgroup.

(a): This part is just about sets and functions. For any subsets S C G and T C H we have
S C M T] <= “every element s € S satisfies s € ¢ [T
<= “every element s € S satisfies ¢(s) € T”
<= “if h € H has the form h = ¢(s) for some s € S then h € T”
<= “every element h € p[S] satisfies h € T”
— p[S] CT.

(b): Let ¢ : (G, *,e¢) — (H,®,cx) be a group homomorphism. Let S C G be a subgroup and
consider the image set ¢[S] C H. For any two elements a, b € ¢[S] we can write a = p(x) and
b= p(y) for some x,y € S. By properties of homomorphism we have

plaxy™) =px)ep(y) ™ =aeb™

But since S is a subgroup we know that zxy~! € S and hence a e b~! € [S]. We have shown
that ¢[S] is a subgroup of H.

(c): Let ¢ : (G,*,eq) — (H,®,ep) be a group homomorphism. Let ' C H be a subgroup and
consider the preimage set ¢~ ![T] C G. For any two elements a,b € ¢~ ![T] we have ¢(a) € T
and ¢(b) € T. Since T is a subgroup, this implies that

plaxd™!) =pla)ep(b) ' €T,
and it follows that a * b=! € ¢~1[T]. We have shown that ¢ ~![T] is a subgroup of G.



