
Math 561/661 Fall 2023
Homework 3 Drew Armstrong

1. Working with Lattice Axioms. Let (P,≤,∧,∨) be a lattice. For all a, b ∈ P prove that

a ≤ b ⇐⇒ a = a ∧ b.

By definition, the element a ∧ b satisfies (and is uniquely determined by) three properties:

• a ∧ b ≤ a,
• a ∧ b ≤ b,
• if c ≤ a and c ≤ b then c ≤ a ∧ b.

First suppose that a = a ∧ b. Then since a ∧ b ≤ b we have a ≤ b. Conversely, suppose that
a ≤ b. In this case we wish to show that a = a∧ b. If we can show that a ≤ a∧ b and a∧ b ≤ a
then we will be done by using the anti-symmetry axiom of “≤”. And we already know that
a ∧ b ≤ a from the definition of “∧”.

It only remains to show that a ≤ a ∧ b. Since we have a ≤ a (by definition) and a ≤ b (by
assumption) we see that a is a lower bound of a and b, hence it follows from the “greatest
lower bound” axiom that a ≤ a ∧ b. �

2. Divisibility is a Partial Order. Consider the set N = {0, 1, 2, . . .} together with the
relation of divisibility:

a|b ⇐⇒ there exists some k ∈ Z such that ak = b.

(a) For all a ∈ N prove that a|a.
(b) For all a, b ∈ N prove that a|b and b|a imply a = b. [Hint: For any integers c, d ∈ Z

you can assume that cd = 0 implies c = 0 or d = 0.]
(c) For all a, b, c ∈ N prove that a|b and b|c imply a|c.

(a): For all a ∈ N we have a · 1 = a and hence a|a.

(b): Suppose that a, b ∈ N satisfy a|b and b|a. In other words, suppose we have ak = b and
b` = a for some k, ` ∈ Z. If one of a or b is zero then the other must be as well, hence
a = 0 = b. So let us assume that a 6= 0 and b 6= 0. Then we have

a = b`

a = ak`

a(1− k`) = 0

1− k` ∗= 0

1 = k`.

Step ∗ follows from the fact that a 6= 0 and the cancellation property of the integers.1 This
last equation has only two solutions: k = ` = 1 or k = ` = −1. The solution k = ` = −1
is impossible because a and b are both positive, hence k = ` = 1 and we conclude that
a = b` = b · 1 = b.

1Technically, the integers satisfy the property that c 6= 0 and d 6= 0 implies cd 6= 0. A general commutative
ring satisfying this condition is called an integral domain (i.e., a place in which to do arithmetic that is similar
to the integers).



(c): Suppose that a, b, c ∈ N satisfy a|b and b|c. This means that there exist k, ` ∈ Z satisfying
kb = c and `a = b. It follows that (k`)a = c and hence a|c.

3. The Group of Units Mod n. Consider the ring (Z/nZ,+, ·, 0, 1). We say that u ∈ Z/nZ
is a unit if there exist some x ∈ Z/nZ such that ux ≡ 1 mod n. We denote the multiplicative
group of units by ((Z/nZ)×, ·, 1).

(a) Prove that (Z/nZ)× = {a ∈ Z/nZ : gcd(a, n) = 1}. [Hint: We proved in class that
aZ + nZ = gcd(a, n)Z for all a, n ∈ Z. In particular, this implies that there exist
x, y ∈ Z such that ax+ ny = gcd(a, n).]

(b) Write down the full group tables of (Z/10Z)× and (Z/12Z)×. Each of these groups has
size 4. Prove that they are not isomorphic.

(a): If a ∈ Z/nZ is a unit then we have ax ≡ 1 mod n for some integer x ∈ Z. By definition
this means that 1− ax = ny for some y ∈ Z, and hence ax+ny = 1. I claim that this implies
gcd(a, n) = 1. Indeed, let d = gcd(a, n). Since d is a common divisor of a and n we have
a = da′ and n = dn′ for some a′, n′ ∈ Z, and hence

1 = ax+ ny = da′x+ dn′y = d(a′x+ n′y),

It follows that d = 1.2

Conversely, suppose that gcd(a, n) = 1. We proved in class that aZ + nZ = gcd(a, b)Z, so in
this case we have aZ + nZ = Z. Since 1 ∈ aZ + nZ we have 1 = ax+ ny for some x, y ∈ Z. It
follows that n|(1− ax) and hence ax ≡ 1 mod n. In other words, a is a unit of Z/nZ.

[Remark: Our proof from class that aZ + nZ = gcd(a, n)Z was indirect. The Euclidean
algorithm can be used to compute specific integers x, y ∈ Z satisfying ax+ ny = gcd(a, n).]

(b): Here are the group tables of (Z/10Z)× and (Z/12Z)×:

· 1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

· 1 5 7 11

1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

The group (Z/10Z)× has 2 elements of order, while (Z/12Z)× has 4 elements of order two;
hence they are not isomorphic. To be more specific, (Z/10Z)× is cyclic, hence is isomorphic
to Z/4Z. The only other group of size 4 is the direct product Z/2Z× Z/2Z, hence (Z/12Z)×

must be isomorphic to this.

4. Order of a Power. Let (G, ∗, ε) be a group and let g ∈ G be an element of order n ≥ 1.

(a) For any integer k ∈ Z, let d = gcd(k, n). Show that 〈gk〉 = 〈gd〉. [Hint: It suffices to
show that gk is a power of gd and that gd is a power of gk. For the second statement
you should use Bézout’s identity: kZ + nZ = dZ.]

(b) For any positive divisor d|n show that gd has order n/d. [Hint: Let m = n/d. You
need to show that (gd)m = ε and that the elements ε, (gd)1, . . . , (gd)m−1 are distinct.]

(c) Combine (a) and (b) to show that for any k ∈ Z the element gk has order n/ gcd(n, k).

2In general, if a|b and b 6= 0 then |a| ≤ |b|. Proof: Suppose that b = ak. Since b 6= 0 we have a 6= 0 and
k 6= 0, so that |a| ≥ 1 and |k| ≥ 1, because these are whole numbers. Multiply both sides of the inequality
1 ≤ |k| by |a| to get |a| ≤ |a||k| = |ak| = |b|. This proof will look slightly different depending on what axiom
system you are using for the integers.



(a): Let g ∈ G be an element of a group, with #〈g〉 = n, and let d = gcd(k, n). In this case
we will prove that 〈gk〉 = 〈gd〉.

In order to prove that 〈gk〉 ⊆ 〈gd〉 it suffices to show that gk ∈ 〈gd〉. Note that d = gcd(k, n)
is a divisor of k, hence k = dd′ for some d′ ∈ Z. Then we have

gk = gdd
′

= (gd)d
′ ∈ 〈gd〉.

Conversely, in order to prove that 〈gd〉 ⊆ 〈gk〉, it suffices to show that gd ∈ 〈gk〉. For this we
use Bézout’s identity to write d = kx+ ny for some x, y ∈ Z. Then we have

gd = gkx+ny = (gk)x ∗ (gn)y = (gk)x ∗ εy = (gk)x ∈ 〈gk〉.

(b): For any positive divisor d|n, let n = dm. Then we have

(gd)m = gn = ε.

If we can show that the elements ε, gd, (gd)2, . . . , (gd)m−1 are distinct then it will follow that
#〈gd〉 = m = n/d. To show this, we assume for contradiction that (gd)k = (gd)` for some

0 ≤ k < ` < m. Multiplying both sides by (gd)−k gives gd(`−k) = ε, where 1 ≤ ` − k < m.
Multiplying this inequality by d gives 1 ≤ d ≤ d(` − k) < dm = n. But we showed on the
previous homework that if #〈g〉 = n then n is the smallest positive integer satisfying gn = ε.
Hence we have a contradiction.

(c): Let #〈g〉 = n and let d = gcd(k, n), where k is any integer. From part (a) we have
〈gk〉 = 〈gd〉. Then from part (b) we have

#〈gk〉 = #〈gd〉 = n/d = n/ gcd(k, n).

5. The Euler-Fermat-Lagrange Theorem. Let (G, ·, 1) be an abelian group and let a ∈ G
be any element. Define the function τa : G→ G by τa(g) := ag.

(a) Prove that τa : G→ G is a bijection.
(b) If the group G is finite, prove that a#G = 1. [Hint: Suppose that #G = n and list

the elements as G = {g1, g2, . . . , gn}. Explain why g1g2 · · · gn = τa(g1)τa(g2) · · · τa(gn).
Rearrange the elements and then cancel.]

(c) If p is prime and a - p, show that the result from part (b) implies

ap−1 ≡ 1 mod p .

[Hint: Let G = (Z/pZ)×. See Problem 3.]

(a): For any a ∈ G we define the “translation function” τa : G → G by τa(g) := ag. I
claim that this function is invertible, with inverse τa−1 . Indeed, for any g ∈ G we have
τa−1(τa(g)) = a−1ag = g and τa(τa−1(g)) = aa−1g = g, which shows that τa ◦τa−1 and τa−1 ◦τa
are the identity function.

(b): Let #G = n and denote the elements of G as g1, g2, . . . , gn. For any a ∈ G, we know from
part (a) that the elements ag1, ag2, . . . , agn are distinct, hence this is just a rearrangement of
the group elements. Let h = g1g2 · · · gn be the product of all the group elements. Then we
also have

h = (ag1)(ag2) · · · (agn) = ang1g2 · · · gn = anh.

Finally, multiplying both sides by the inverse h−1 gives an = 1 as desired.

(c): There is not much to “do” here. From Problem 3 we know that #(Z/pZ)× = p − 1. If
G = (Z/pZ)× then part (b) tells us that every element a ∈ (Z/pZ)× satisfies “ap−1 = 1”. Now



we translate these abstract statements into the language of integers: Given any integer a ∈ Z
such that a ∈ (Z/pZ)×, i.e., such that gcd(a, p) = 1, i.e., such that p - a, we have “ap−1 = 1”
in the group (Z/pZ)×, i.e., ap−1 ≡ 1 mod p.

[Remark: Mathematics is too big to be covered by a consistent notation. Sometimes we just
have to jump from one notation to another and hope that we don’t fall.]

6. Image and Preimage. Let ϕ : (G, ∗, εG) → (H, •, εH) be a group homomorphism. For
any subset S ⊆ G we define the image set ϕ[S] ⊆ H by

ϕ[S] := {h ∈ H : there exists g ∈ S such that ϕ(g) = h}
and for any subset T ⊆ H we define the preimage set ϕ−1[T ] ⊆ G by

ϕ−1[T ] := {g ∈ G : ϕ(g) ∈ T}.
Remark: We do not assume that the inverse function ϕ−1 : H → G exists. It exists if and
only if for each element h ∈ H the preimage set ϕ−1[{h}] consists of exactly one element.

(a) For any subsets S ⊆ G and T ⊆ G, prove that

S ⊆ ϕ−1[T ] ⇐⇒ ϕ[S] ⊆ T.
(b) If S ⊆ G is a subgroup, prove that ϕ[S] ⊆ H is a subgroup.
(c) If T ⊆ H is a subgroup, prove that ϕ−1[T ] ⊆ G is a subgroup.

(a): This part is just about sets and functions. For any subsets S ⊆ G and T ⊆ H we have

S ⊆ ϕ−1[T ]⇐⇒ “every element s ∈ S satisfies s ∈ ϕ−1[T ]”

⇐⇒ “every element s ∈ S satisfies ϕ(s) ∈ T”

⇐⇒ “if h ∈ H has the form h = ϕ(s) for some s ∈ S then h ∈ T”

⇐⇒ “every element h ∈ ϕ[S] satisfies h ∈ T”

⇐⇒ ϕ[S] ⊆ T.

(b): Let ϕ : (G, ∗, εG)→ (H, •, εH) be a group homomorphism. Let S ⊆ G be a subgroup and
consider the image set ϕ[S] ⊆ H. For any two elements a, b ∈ ϕ[S] we can write a = ϕ(x) and
b = ϕ(y) for some x, y ∈ S. By properties of homomorphism we have

ϕ(x ∗ y−1) = ϕ(x) • ϕ(y)−1 = a • b−1.
But since S is a subgroup we know that x ∗ y−1 ∈ S and hence a • b−1 ∈ ϕ[S]. We have shown
that ϕ[S] is a subgroup of H.

(c): Let ϕ : (G, ∗, εG)→ (H, •, εH) be a group homomorphism. Let T ⊆ H be a subgroup and
consider the preimage set ϕ−1[T ] ⊆ G. For any two elements a, b ∈ ϕ−1[T ] we have ϕ(a) ∈ T
and ϕ(b) ∈ T . Since T is a subgroup, this implies that

ϕ(a ∗ b−1) = ϕ(a) • ϕ(b)−1 ∈ T,
and it follows that a ∗ b−1 ∈ ϕ−1[T ]. We have shown that ϕ−1[T ] is a subgroup of G.


