1. One Step Subgroup Test. Let $(G, *, \varepsilon)$ be a group and let $H \subseteq G$ be a subset. Consider the following four properties:

- (S1) $\varepsilon \in H$,
- (S2) For all $a, b \in H$ we have $a * b \in H$,
- (S3) For all $a \in H$ we have $a^{-1} \in H$,
- (S4) For all $a, b \in H$ we have $a * b^{-1} \in H$.

Prove that (S4) holds if and only if all three of (S1), (S2), (S3) hold.

2. Homomorphism and Isomorphism. Consider two groups $(G, *, \varepsilon_G)$ and $(H, \bullet, \varepsilon_H)$. A function $\varphi : G \to H$ is called a *homomorphism* if it satisfies the following condition:

$$\varphi(a * b) = \varphi(a) \bullet \varphi(b) \quad \text{for all } a, b \in G.$$

- (a) If $\varphi: G \to H$ is a homomorphism, prove that $\varphi(\varepsilon_G) = \varepsilon_H$.
- (b) If $\varphi: G \to H$ is a homomorphism, prove that $\varphi(a^{-1}) = \varphi(a)^{-1}$ for all $a \in G$.
- (c) Let $\varphi: G \to H$ be a homomorphism and suppose the inverse function φ^{-1} exists. Prove that the function $\varphi^{-1}: H \to G$ is also a homomorphism. It follows that invertible homomorphisms are the same as isomorphisms. [Hint: Given $a, b \in H$, apply the function φ to the group element $\varphi^{-1}(a) * \varphi^{-1}(b) \in G$.]
- 3. Powers of a Cycle. Consider the "standard 12-cycle" in cycle notation:

 $c := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) \in S_{12}.$

Compute the first twelve powers $c, c^2, c^3, \ldots, c^{12}$ and express each of them in cycle notation. Try to guess what the k-th power of an n-cycle looks like.

4. Order of an Element. Let $(G, *, \varepsilon)$ be a group and let $g \in G$ be any element. Then for all integers $n \in \mathbb{Z}$ we define the exponential notation

$$g^{n} := \begin{cases} \underbrace{\substack{n \text{ times}}}{g \ast g \ast \cdots \ast g} & \text{ if } n > 0, \\ \varepsilon & \text{ if } n = 0, \\ \underbrace{g^{-1} \ast g^{-1} \ast \cdots \ast g^{-1}}_{-n \text{ times}} & \text{ if } n < 0. \end{cases}$$

One can prove by induction that this notation satisfies $g^m * g^n = g^{m+n}$ for all $m, n \in \mathbb{Z}$. Equivalently, the function from $(\mathbb{Z}, +, 0)$ to $(G, *, \varepsilon)$ defined by $n \mapsto g^n$ is a group homomorphism.

(a) Let $\langle g \rangle \subseteq G$ be the smallest subgroup of G that contains the element g. Prove that

$$\langle g \rangle = \{ g^n : n \in \mathbb{Z} \}.$$

[Hint: Show that the set on the right is a subgroup of G.]

- (b) If $\langle g \rangle$ is a finite set, prove that there exists some $n \geq 1$ such that $g^n = \varepsilon$.
- (c) Let $\langle g \rangle$ be a finite set and let $m \geq 1$ be the smallest positive integer satisfying $g^m = \varepsilon$. In this case, prove that $\langle g \rangle$ has exactly *m* elements:

$$\langle g \rangle = \{\varepsilon, g, g^2, \dots, g^{m-1}\}$$

This *m* is called the *order* of the element $g \in G$. If the set $\langle g \rangle$ is infinite then we will say that *g* has *infinite order*. [Hint: For each integer $k \in \mathbb{Z}$ there exist **unique** integers $q, r \in \mathbb{Z}$ satisfying k = qm + r and $0 \leq r < m$.]

5. Join of Two Subgroups. Let G be a group and let $H, K \subseteq G$ be subgroups. Recall that the subgroup generated by the union $H \cup K$ is called the *join*:

$$H \lor K := \langle H \cup K \rangle$$

:= the intersection of all subgroups that contain $H \cup K$.

(a) If (G, +, 0) is abelian, we define the sum of H and K as follows:

$$H + K := \{h + k : h \in H, k \in K\}.$$

Prove that this is a subgroup.

- (b) If (G, +, 0) is abelian, use part (a) to prove that $H \lor K = H + K$.
- (c) If $(G, *, \varepsilon)$ is non-abelian, show that the following set is **not** necessarily a subgroup, and hence it does not coincide with the join:

$$H * K := \{h * k : h \in H, k \in K\}.$$

[Hint: The smallest non-abelian group is $S_{3.}$]

6. Two Groups with Eight Elements. There are two different non-abelian groups with eight elements, called the *dihedral group* D_8 and the *quaternion group* Q_8 . We will use multiplicative notation with identity element called "1".

(a) The dihedral group has elements $D_8 = \{1, r, r^2, r^3, f, rf, r^2f, r^3f\}$ subject to the relations

$$r^4 = f^2 = rfrf = 1.$$

Write out the full 8×8 group table.

(b) The quaternion group has elements $Q_8 = \{1, i, j, k, e, ei, ej, ek\}$ subject to the relations $i^2 = j^2 = k^2 = ijk = e, e^2 = 1, \text{ and } ae = ea$ for all $a \in Q_8$.

Write out the full 8×8 group table. [If you want you can write e as "-1" and write the elements ei, ej, ek as -i, -j, -k, respectively.]

(c) Prove that D_8 and Q_8 are **not isomorphic**. [Hint: Isomorphic groups have the same number of elements of each order. Count the elements of order 2.]