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1 Complex Numbers

1.1 Cardano’s Formula

One could say that algebra began with the study of quadratic equations. Given any numbers
a, b, c we want to find all numbers x such that

ax2 ` bx` c “ 0.

If a “ 0 then there is nothing interesting to do, so let us assume that a ‰ 0. First we divide
both sides by a to obtain

x2 `
b

a
x`

c

a
“ 0

x2 `
b

a
x “ ´

c

a
.

Now there is a famous trick called “completing the square.” We add the the quantity pb{2aq2

to both sides and observe that the left side factors:

x2 `
b

a
x “ ´

c

a

x2 `
b

a
x`

ˆ

b

2a

˙2

“ ´
c

a
`

ˆ

b

2a

˙2

ˆ

x`
b

2a

˙ˆ

x`
b

2a

˙

“ ´
c

a
`

b2

4a2

ˆ

x`
b

2a

˙2

“
b2 ´ 4ac

4a2
.

Finally, we can take the square root of the left side and solve for x:
ˆ

x`
b

2a

˙2

“
b2 ´ 4ac

4a2

x`
b

2a
“
˘
?
b2 ´ 4ac

2a

x “ ´
b

2a
`
˘
?
b2 ´ 4ac

2a

“
´b˘

?
b2 ´ 4ac

2a
.

I’m sure that you already knew already this. But let me point out a subtlety that you may
not have thought about. If b2 ´ 4ac ‰ 0 then the square root symbol

?
b2 ´ 4ac can refer to

two different numbers. When b2 ´ 4ac ą 0 then we usually assume that
?
b2 ´ 4ac refers to

the positive real square root. However, if b2´4ac is negative or non-real then it is not so clear
what the symbol

?
b2 ´ 4ac should refer to. For example, we often write i “

?
´1 to refer to

“the” square root of ´1, but the number ´1 actually has two square roots and there is no
good way to distinguish between them. So we should really say:
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Let i denote an arbitrary symbol satisfying i2 “ ´1. Then the equation x2 “ 1
has exactly two solutions: i and ´i, which are the two square roots of ´1.

Later we will prove that any nonzero number of the form a ` b
?
´1 has exactly two square

roots, which are negatives of each other. With this in mind, here is a modern statement of
the quadratic formula.

Modern Version of the Quadratic Formula

Let a, b, c be any numbers and let ∆ “ b2´4ac denote the “discriminant” of the equation
ax2 ` bx` c “ 0. By completing the square we showed above that any solution has the
form x “ p´b ` δq{2a, where δ is some number satisfying δ2 “ ∆. Conversely, one can
check that any x of this form is a solution. Thus we have one solution x for each square
root of ∆. If ∆ “ 0 then δ “ 0 is the only square root. Otherwise, if δ is an arbitrary
square root of ∆ then ∆ has exactly two square roots: δ and ´δ. And the quadratic
equation has exactly two solutions:

x “
´b` δ

2a
or x “

´b` p´δq

2a
.

The quadratic formula was known to ancient civilizations. The next progress only came in
the 1500s, when several Italian mathematicians discovered algorithms for the solution of cubic
and quartic equations. These formulas were first published by Gerolamo Cardano in the Ars
Magna (1545). For now I will just state the formula without proof.

Cardano’s Formula (1545)

Let a, b, c, d be any numbers with a ‰ 0 and consider the cubic equation

ax3 ` bx2 ` cx` d “ 0.

To solve this we first divide both sides by a and then we substitute x “ y ´ b{p3aq to
obtain the so-called “depressed form” of the equation:

y3 ` 3py ` 2q “ 0,

where1

p “
3ac´ b2

9a2
and q “

27a2d´ 9abc` 2b3

54a3
.

Then Cardano’s formula says that

y “
3

b

´q `
a

q2 ` p3 `
3

b

´q ´
a

q2 ` p3.
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We could expand all of this to write a formula for x in terms of a, b, c, d, but that would
look horrible.

This formula is quite difficult to interpret. In Cardano’s time only real numbers were accepted,
which led to two immediate problems:

(1) Sometimes there is an obvious solution but the formula does not see it.

(2) Sometimes there are 3 solutions but the formula only sees one of them.

These problems were eventually solved by the introduction of “complex numbers” of the form
a` b

?
´1. The first hint of this idea was observed by Bombelli.

Bombelli’s Example (1572)

Consider the following cubic equation:

x3 ´ 15x´ 4 “ 0.

One can easily check that x “ 4. On the other hand, by applying Cardano’s formula
with p “ ´5 and q “ ´2 we obtain

x “
3

b

´p´2q `
a

p´2q2 ` p´5q3 `
3

b

´p´2q ´
a

p´2q2 ` p´5q3

“
3

b

2`
?
´121`

3

b

2´
?
´121.

Cardano would say here that the formula gives no solution because square roots of nega-
tive numbers do not exist. Bombelli’s idea was to just pretend that the expression

?
´1

is a number with the property p
?
´1q2 “ ´1 and to perform computations as usual.

After some trial and error he observed that2

p2`
?
´1q2 “ p2`

?
´1qp2`

?
´1q

“ p2`
?
´1qp4` 4

?
´1` p

?
´1q2q

“ p2`
?
´1qp4` 4

?
´1´ 1q

“ p2`
?
´1qp3` 4

?
´1q

“ 6` 11
?
´1` 4p

?
´1q2q

“ 6` 11
?
´1´ 4

“ 2` 11
?
´1

“ 2`
?

121
?
´1

“ 2`
?
´121.

1These complicated expressions are one of the reasons why the cubic equation is not studied in high school.
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And a similar computation shows that p2 ´
?
´1q3 “ 2 ´

?
´121. Therefore Bombelli

concluded that Cardano’s formula really does give the correct answer:

x “
3

b

2`
?
´121`

3

b

2´
?
´121

“ p2`��
�?
´1q ` p2´��

�?
´1q

“ 4.

In other words: The “real” solution 4 is obtained from Cardano’s formula as a sum of
two “imaginary” numbers.

In the next section I will give the modern interpretation of these computations.

1.2 Complex Numbers as a Ring

Bombelli observed that some issues with Cardano’s formula can be resolved by pretending
that the “imaginary” square roots of negative numbers actually exist. These ideas were slow
to catch on, and were regarded by some as useless speculation well into the 1700s. The modern
formulation is essentially the same as Bombelli’s, just stated with more confidence. Let i be
an abstract symbol. Then a complex number is an abstract symbol of the form a` bi, where
a and b are real numbers. The set of real numbers is denoted by R and the set of complex
numbers is denoted by

C “ ta` bi : a, b P Ru.
Let me emphasize that “a ` bi” is only an abstract expression; the plus sign does not at
first have anything to do with addition of real numbers because the symbol bi is not a real
number. In order to make sense of this we will define addition and multiplication of the
symbols “a` bi” by the following formulas:3

pa` biq ` pc` diq :“ pa` cq ` pb` dqi,

pa` biqpc` diq :“ pac´ bdq ` pad` bcqi.

Perhaps it is not surprising that these operations turn out to behave just like the addition
and multiplication of real numbers. In abstract algebra we capture this behavior with the
following definition.

Definition of Rings

A ring is a set R together with two special elements 0, 1 P R (called zero and one) and two
binary operations `, ¨ : R ˆ R Ñ R (called addition and multiplication), which satisfy
the following eight axioms:

(A1) @a, b P R, a` b “ b` a (commutative addition)

2In the last step we have used the “formula”
?
ab “

?
a
?
b, which of course is not really a formula because

it depends on the specific choices of the square roots.
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(A2) @a, b, c P R, a` pb` cq “ pa` bq ` c (associative addition)

(A3) @a P R, a` 0 “ a (additive identity)

(A4) @a P R, Db P R, a` b “ 0 (additive inversion)

(M1) @a, b P R, ab “ ba (commutative multiplication)

(M2) @a, b, c P R, apbcq “ pabqc (associative multiplication)

(M3) @a P R, a1 “ a (multiplicative identity)

(D) @a, b, c P R, apb` cq “ ab` ac (distribution)

If we delete axiom (M1) then we obtain a structure called a non-commutative ring. In
this course all rings will be commutative unless otherwise stated.

We can also define subtraction in a ring. Given any element a P R, axiom (A4) tells us
that there exists at least one element b P R with the property a` b “ 0. In fact, there is
exactly one such element. Indeed, if a` b “ 0 and a` b1 “ 0 then by combining axioms
(A1), (A2), (A3) we obtain

b “ b` 0 “ b` pa` b1q “ pb` aq ` b1 “ 0` b1 “ c.

Since this element is unique we will denote it by the symbol “´a”, and for any two
elements a, b P R we will define the symbol

“a´ b” :“ a` p´bq.

In other words, a ring is a “number system” in which any two numbers can be added, sub-
tracted and multiplied, and in which all of the usuals laws of arithmetic hold. One can check
that the set of complex numbers C forms a ring with the operations defined above, and with
the special elements 0 :“ 0`0i and 1 :“ 1`0i.4 This is the ultimate justification for referring
to the symbols “a` bi” as “numbers”. Here are the four most commonly discussed rings:

name symbol casual description

integers Z t. . . ,´2,´1, 0, 1, 2, . . .u
rational numbers Q ta{b : a, b P Z, b ‰ 0u

real numbers R tlimits of sequences of rational numbersu

complex numbers C ta` b
?
´1 : a, b P Ru

We can think of these as a nested sequence of “subrings”

Z Ď Q Ď R Ď C
3The symbol :“ means “is defined as”. It was adopted by mathematicians from the Pascal programming

language.
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by identifying each fraction of the form a{1 with the integer a and by identifying the complex
number of the form a` 0i with the real number a. But let me observe that the rings Q,R,C
have an important extra property that Z does not have.

Definition of Fields

Let pF,`, ¨, 0, 1q be a ring. We say that F is a field if it satisfies one further axiom:

(M4) @a P Fzt0u, Db P F, ab “ 1.

In words: For any nonzero element a P F there exists at least one element b P F with
the property ab “ 1. In fact, there is exactly one such element. Indeed, if ab “ 1 and
ab1 “ 1 then by combining axioms (M1), (M2), (M3) we obtain

b “ b1 “ bpab1q “ pbaqb1 “ 1b1 “ b1.

Since this element is unique we can give it the special name “a´1”, or “1{a”. Then for
any two elements a, b P F with b ‰ 0 we will define the notation

“a{b” “ ab´1.

You are familiar with the fact that rational numbers Q and the real numbers R are fields.
Let me quickly observe that the ring of integers Z is not a field. For example, suppose for
contradiction that there exists an integer b P Z satisfying 2b “ 1. The integer b must be
positive, which implies that b ě 1 because there are no integers between 0 and 1. But then
multiplying both sides by 2 gives a contradiction:

b ě 1

2b ě 2

1 ě 2.

1.3 Complex Numbers as a Vector Space

So Z is a ring that is not a field and Q,R are fields. In this section we will show that C is also
a field, which is surprisingly difficult. Before proving this in the next section we need to say
more about the relationship between R and C. Recall that we view each real number a as a
complex number by setting a “ a ` 0i. With this convention, the abstract symbol “a ` bi”
acquires a direct algebraic meaning:

“a` bi” “ pa` 0iq ` pb` 0iqp0` 0iq.

Of course this was the point all along. In order to formalize the relationship between R and
C I will present another of the key concepts from twentieth century abstract algebra.

4The proof is extremely boring.
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Definition of Vector Spaces and Dimension

A vector space consists of a set V (of vectors), a field F (of scalars), an operation ` :
V ˆ V Ñ V (called vector addition), and an operation ¨ : F ˆ V Ñ V (called scalar
multiplication), which satisfy the following eight axioms:

(V1) @u,v P V , u` v “ v ` u (commutative addition)

(V2) @u,v,w P V , u` pv `wq “ pu` vq `w (associative addition)

(V3) D0 P V,@u P V , u` 0 “ u (zero vector)

(V4) @u P V , Dv P V , u` v “ 0 (additive inversion)

(V5) @u P V , 1u “ u (unit scalar)

(V6) @a, b P F, u P V , apbuq “ pabqu (associative multiplication)

(V7) @a, b P F, u P V , pa` bqu “ au` bu (distribution)

(V8) @a P F, u,v P V , apu` vq “ au` av (distribution)

We can also define subtraction of vectors. Given any v P V , axiom (V4) tells us that
there exists at least one element u P V satisfying u`v “ 0. In fact, there is exactly one
such element. Indeed, if v ` u “ 0 and v ` u1 “ 0 then axioms (V1), (V2), (V3) imply
that

u “ u` 0 “ u` pv ` u1q “ pu` vq ` u1 “ 0` u1 “ u1.

We will call this unique element “´v” and use it to define subtraction:

“u´ v” :“ u` p´vq.

We say that a vector space V over F is n-dimensional if there exists a set of n vectors
u1, . . . ,un P V with the property that every vector v P V has a unique expression of
the form

v “ a1u1 ` a2u2 ` ¨ ¨ ¨ ` anun with a1, . . . , an P F.

In this case we say that u1, . . . ,un is a basis for V over F.

Remark: The definition of vector space does not include a way to multiply two vectors. Later
we will discuss the definition of “inner product space”, which includes a way to multiply two
vectors to obtain a scalar. (Example: The dot product.) It is almost never possible to multiply
two vectors to obtain another vector but we will see that the complex numbers are a special
case.

The abstract definition of vector space is inspired by the following familiar example.
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Prototype of a Vector Space: Cartesian Coordinates

Let Rn denote the set of ordered n-tuples of real numbers:

Rn :“ tx “ px1, . . . , xnq : xi P R for all iu.

It is easy (and boring) to check that the following operations make the set Rn in to a
vector space over the field of scalars R:

px1, . . . , xnq ` py1, . . . , ynq :“ px1 ` y1, . . . , x2 ` y2q

a ¨ px1, . . . , xnq :“ pax1, . . . , axnq.

As you know, we can view the vector x as a point in n-dimensional space. We can also
view it as a directed line segment whose head is at the point x and whose tail is at
the “origin” 0 “ p0, . . . , 0q. Then the addition of vectors can be viewed as the familiar
“head-to-tail” addition of directed line segments. This idea goes back at least to Isaac
Newton, who used it to describe forces acting on rigid bodies.

It is not surprising that the vector space Rn is n-dimensional. To prove this, we can
observe that the set of n vectors

e1 “ p1, 0, 0, . . . , 0, 0q

e2 “ p0, 1, 0, . . . , 0, 0q

...

en “ p0, 0, 0, . . . , 0, 1q

is a basis of Rn, called the standard basis. Indeed, for vector x “ px1, . . . , xnq we have

x “ x1e1 ` x2e2 ` ¨ ¨ ¨ ` xnen,

and by definition these “coordinates” x1, . . . , xn are unique.

So what? The point of this section is that the complex numbers C naturally form a two-
dimensional vector space over the field of real numbers R.

C is a Two-Dimensional Vector Space over R

We can view C as a vector space over R where 0 “ 0 ` 0i is the “zero vector” and
where “vector addition” and “scalar multiplication” are given by the usual addition and
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multiplication of numbers:

pa` biq ` pc` diq “ pa` cq ` pb` dqi

apb` ciq “ pabq ` pacqi.

It is easy and boring to check that the eight vector space axioms hold in this situation.
To see that this vector space is two-dimensional I claim that the set of two elements
1, i P C is a basis. Indeed, any complex number can be expressed in the form a1` bi for
some a, b P R, and we only need to check that this representation is unique. For this
purpose, suppose that we have a` bi “ c`di with a, b, c, d P R. Our goal is to show that
a “ c and b “ d. So let us suppose for contradiction that b ‰ d. Then we have

a` bi “ c` di

0` pb´ dqi “ pc´ aq ` 0i

0` 1i “

ˆ

c´ a

b´ d

˙

` 0i,

which implies that i is a real number. But i is not real because any real number a P R
satisfies a2 ě 0, but i2 “ ´1 ă 0. This contradiction implies that b “ d, hence also

a` bi “ c` di

a`��bi “ c`��bi

a “ c.

In summary, we have

a` bi “ c` di ðñ a “ c and b “ d.

You might have noticed here that the vector space C “ ta` bi : a, b P Ru is basically just the
vector space R2 “ tpa, bq : a, b P Ru in disguise. In technical jargon we will say that C and R2

are isomorphic as vector spaces. This just means that we have a one-to-one correspondence
that preserves all of the vector space operations. In this case the one-to-one correspondence
is particularly obvious:

C Ø R2

a` bi Ø pa, bq.

The word “isomorphism” literally means “same structure”. We use it in mathematics when two
different mathematical structures are “essentially the same”; that is, when there is a one-to-one
correspondence between their elements that preserves all of the relevant structure/operations.
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1.4 Complex Numbers as a Field

By using scalar multiplication we can “divide” any complex number a`bi P C by any nonzero
real number c P R:

a` bi

c
“

ˆ

1

c

˙

pa` biq “
´a

c

¯

`

ˆ

b

c

˙

i.

The question is whether we can also divide by complex numbers:

a` bi

c` di
“ psome real number?q ` psome real number?q i.

This can be quite difficult unless you know a clever trick called “rationalizing the denomina-
tor”. The idea is to multiply both the numerator and denominator of the hypothetical fraction
“pa` biq{pc` diq” by the “complex conjugate” of the denominator:

a` bi

c` di
“
a` bi

c` di
¨
c´ di

c´ di

“
pa` biqpc´ diq

pc` diqpc´ diq

“
pac` bdq ` pbc´ adqi

c2 ` d2

“

ˆ

ac` bd

c2 ` d2

˙

`

ˆ

bc´ ad

c2 ` d2

˙

i.

For this to work we require that c2 ` d2 ‰ 0, which will be true if c` di ‰ 0` 0i. Indeed, if
c ` di ‰ 0 ` 0i then we must have c ‰ 0 or d ‰ 0, in which case c2 ` d2 ą 0. Thus we can
divide by any nonzero complex number.

This trick of rationalizing the denominator is so useful that we turn it into a general concept.

Complex Conjugation and Absolute Value

For any complex number α “ a`bi P C we define its complex conjugate α˚ P C as follows:

pa` biq˚ :“ a´ bi.

Then we define the absolute value |α| P R as the non-negative real square root of a2`b2 P
R and we observe that

αα˚ “ pa` biqpa´ biq “ pa2 ` b2q ` 0i “ a2 ` b2 “ |α|2.

For all complex numbers α, β P C, I claim that the following properties hold:

• α “ 0 if and only if |α| “ 0.

• α “ α˚ if and only if α P R,

• pα` βq˚ “ α˚ ` β˚,
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• pαβq˚ “ α˚β˚,

• |αβ| “ |α||β|.

You will prove all of these assertions on the homework. The final property (the multiplica-
tivity of the absolute value) is probably the deepest fact about the complex numbers. It
was first glimpsed by Diophantus of Alexandria (3rd century), who used the “two-square
identity”

pa2 ` b2qpc2 ` d2q “ pac´ bdq2 ` pad` bcq2

to study “Pythagorean triples of whole numbers”, such as 32`42 “ 52 and 52`122 “ 132.

We can use the ideas of conjugation and absolute value to give a slicker proof that C is a field.

Multiplicative Inverses in C

For any nonzero complex number α P C we have |α| ‰ 0. It follows that

αα˚ “ |α|2

αpα˚{|α|2q “ 1,

so the multiplicative inverse of α has the explicit formula

α´1 “
α˚

|α|2
.

On the homework you will use the same ideas to show that the following set is a field:

Qp
?

2q :“ ta` b
?

2 : a, b P Qu.

Later we will incorporate all of this into a general theory of “quadratic field extensions”.

1.5 Complex Numbers as Linear Functions

The complex numbers are a central object in mathematics, which means that they can be
viewed from many different angles. So far we have viewed C as a ring (specifically, a field)
and as a two-dimensional vector space over R. Recall that we have a bijection

C Ø R2

a` bi Ø pa, bq

that preserves the operations of vector addition and scalar multiplication. To be specific, the
addition of vectors corresponds to addition of complex numbers and the scalar multiplication
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of vectors by real numbers corresponds to the usual multiplication of complex numbers by real
numbers.

However, there is also a natural way to multiply any two complex numbers. What does this
correspond to in R2? In general there is no sensible way to multiply two vectors in a vector
space to obtain another vector, so this case must be very special. The key to understanding
it is to express complex numbers in “polar form”.

Polar Form of Complex Numbers

Based on the isomorphism C – R2 we can view the complex number a` bi as the point
pa, bq in the Cartesian plane. But we can also express points of R2 in polar coordinates.
That is, for any pair of real numbers pa, bq, not both zero, there exist a unique pair of
real numbers r and θ satisfying

a “ r cos θ, b “ r sin θ, r ą 0 and θ P r0, 2πq.

In other words, for any nonzero complex number a` bi, there exist unique real numbers
r ą 0 and θ P r0, 2πq such that

a` bi “ pr cos θq ` pr sin θqi “ rpcos θ ` i sin θq.

In geometric terms, r “ |α| “ `
?
a2 ` b2 is the length of the vector pa, bq and and we

view θ as the angle of the vector pa, bq, measured counterclockwise from the “real axis”:
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Using these ideas, we have the following geometric interpretation of complex multiplication.

Geometric Interpretation of Complex Multiplication

Let α, β P C be nonzero complex numbers, thought of as vectors in the Cartesian plane
R2. Suppose that α, β have lengths r, s ą 0 and angles θ, λ P r0, 2πq, so that

α “ rpcos θ ` i sin θq,

β “ spcosλ` i sinλq.

Then I claim that the complex number αβ has length rs and angle θ`λ (up to a suitable
multiple of 2π). In other words:

the lengths multiply and the angles add.

Here is a quick and dirty proof, using the “angle sum identities” from trigonometry:

αβ “ rpcos θ ` i sin θq ¨ spcosλ` i sinλq

“ prsqpcos θ ` i sin θqpcosλ` i sinλq

“ prsqrpcos θ cosλ´ sin θ sinλq ` ipcos θ sinλ` sin θ cosλqs

“ prsqrcospθ ` λq ` i sinpθ ` λqs.

But this proof is not good because it seems like a coincidence. The true meaning of the
theorem is revealed when we view complex numbers as “linear functions”.

Linear Functions and Matrices

Consider the vector space Rn over the field R. We say that a function L : Rn Ñ Rn is
R-linear if it preserves vector addition and scalar multiplication by R. That is, for all
u,v P Rn and a P R we must have

• Lpu` vq “ Lpuq ` Lpvq (preserves addition)

• Lpauq “ aLpuq (preserves scalar multiplication)

Equivalently, we can combine these by saying that L preserves “linear combinations”:5

Lpau` bvq “ aLpuq ` bLpvq.

I claim that there is a one-to-one correspondence between linear functions from Rn Ñ Rn
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and nˆ n matrices with entries from R:
"

linear functions
from Rn to Rn

*

ÐÑ

"

nˆ n matrices with
entries from R

*

.

In order to find such a correspondence, we will identify each vector u “ pu1, . . . , unq P Rn
with the corresponding nˆ 1 column vector:

rus “

¨

˚

˚

˚

˝

u1

u2

...
un

˛

‹

‹

‹

‚

.

Then the standard basis vectors are written as follows:

re1s “

¨

˚

˚

˚

˝

1
0
...
0

˛

‹

‹

‹

‚

, re2s “

¨

˚

˚

˚

˝

0
1
...
0

˛

‹

‹

‹

‚

, . . . , rens “

¨

˚

˚

˚

˝

0
0
...
1

˛

‹

‹

‹

‚

.

And the column rus has a unique expression as a linear combination of basis vectors:

rus “

¨

˚

˚

˚

˝

u1

u2

...
un

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

u1

0
...
0

˛

‹

‹

‹

‚

`

¨

˚

˚

˚

˝

0
u2

...
0

˛

‹

‹

‹

‚

` ¨ ¨ ¨ `

¨

˚

˚

˚

˝

0
0
...
un

˛

‹

‹

‹

‚

“ u1re1s ` u2re2s ` ¨ ¨ ¨ ` unrens.

Now for any linear function L : Rn Ñ Rn we define the n ˆ n matrix rLs P Rnˆn whose
ith column is the vector Lpeiq P Rn:

rLs :“

¨

˝

| | |

rLpe1qs rLpe2qs ¨ ¨ ¨ rLpenqs
| | |

˛

‚.

I claim that the assignment L ÞÑ rLs is a one-to-one correspondence. To prove this we
will first show that the assignment is one-to-one. So let L,M P Rn Ñ Rn be two linear
functions with the same matrix: rLs “ rM s. By definition this means that Lpeiq “Mpeiq
for all i, because the two matrices have the same column vectors. For all vectors u P Rn
it follows from the linearity of L and M that

Lpuq “ Lpu1e1 ` u2e2 ` ¨ ¨ ¨ ` unenq

“ u1Lpe1q ` u2Lpe2q ` ¨ ¨ ¨ ` unLpenq

“ u1Mpe1q ` u2Mpe2q ` ¨ ¨ ¨ ` unMpenq

“Mpu1e1 ` u2e2 ` ¨ ¨ ¨ ` unenq

15



“Mpuq,

hence L “ M as functions. Finally, we will show that the assignment is onto. So let Φ
be any nˆn matrix. We need to show that there exists some (necessarily unique) linear
function LΦ : Rn Ñ Rn with the property Φ “ rLΦs. If Φi is the ith column vector of
the matrix Φ then I claim that the following definition works:

LΦpuq :“ u1Φ1 ` u2Φ2 ` ¨ ¨ ¨ ` unΦn.

Indeed, it is easy to check that this function is linear. And the matrices rLΦs and Φ have
the same column vectors because

Lpeiq “ 0Φ1 ` ¨ ¨ ¨ ` 0Φi´1 ` 1Φi ` 0Φi`1 ` ¨ ¨ ¨ ` 0Φn “ Φi.

In summary, the following pair of assignments are inverses:

tlinear functions Rn Ñ Rnu ÐÑ tnˆ n matricesu
L ÞÑ rLs
LΦ Ðß Φ.

More generally, this entire line of reasoning gives a bijection between linear functions
from Rn Ñ Rm and mˆ n matrices, i.e., matrices with m rows and n columns.

That was quite abstract, so let’s examine a few examples.

• The Identity Matrix. The identity function I : Rn Ñ Rn defined by Ipuq “ u is
obviously linear. The corresponding matrix is called the identity matrix:

rIs “

¨

˝

| | |

rIpe1qs rIpe2qs ¨ ¨ ¨ rIpenqs
| | |

˛

‚

“

¨

˝

| | |

re1s re2s ¨ ¨ ¨ rens
| | |

˛

‚

“

¨

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0
0 1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1

˛

‹

‹

‹

‚

.

• Scalar Matrices. For any scalar r P R the function Sr : Rn Ñ Rn defined by Srpuq “ ru

5Geometrically, a linear function must send the origin to itself and send parallelograms to parallelograms.
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is linear. The corresponding matrix is

rSrs “

¨

˝

| | |

rSrpe1qs rSrpe2qs ¨ ¨ ¨ rSrpenqs
| | |

˛

‚

“

¨

˝

| | |

rre1s rre2s ¨ ¨ ¨ rrens
| | |

˛

‚

“

¨

˚

˚

˚

˝

r 0 ¨ ¨ ¨ 0
0 r ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ r

˛

‹

‹

‹

‚

.

Note that this includes the identity matrix as a specific example when r “ 1.

• Rotation Matrices. Let Rθ : R2 Ñ R2 denote the function that rotates every vector by
angle θ, counterclockwise around the origin. It is easy to see that this function preserves
vector addition and scalar multiplication, hence it is linear.

What is the corresponding 2 ˆ 2 matrix? The following diagram illustrates how the
function Rθ acts on the standard basis vectors e1 “ p1, 0q and e2 “ p0, 1q:

It follows that the matrix of the rotation function Rθ is

rRθs “

¨

˝

| |

rRθpe1qs rRθpe2qs

| |

˛

‚“

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

.

Note that “rotation by zero” is the identity function, hence rR0s is the identity matrix.
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Whenever there is a one-to-one correspondence between two different kinds of structures, for
example between linear functions and matrices, it is important to ask how natural operations
behave under this correspondence. I assume that you are familiar with the definition of matrix
multiplication, but you may not be aware of the reason behind it.

Matrix Multiplication “ Composition of Linear Functions

Recall from previous theorem that any two nˆn matrices can be represented as rLs and
rM s, where L,M : Rn Ñ Rn are linear functions. But linear functions can be composed,
and it is easy to check that the composite function L ˝M : Rn Ñ Rn is also linear, hence
it corresponds to another n ˆ n matrix rL ˝M s. By definition we say that this is the
matrix product of rLs and rM s and we write

rLsrM s :“ rL ˝M s.

More generally, if L : Rm Ñ R` and M : Rn Ñ Rm are linear functions then the matrices
rLs and rM s are defined, with shapes `ˆm and mˆn, respectively. Since M maps into
Rm and L maps from Rm the composite function L ˝M : Rn Ñ R` exists, and we can
define the matrix rLsrM s : rL ˝M s, which has shape ` ˆ n. Let us investigate how to
compute the matrix entries of rLsrM s from the matrix entries of rLs and rM s.

This is an extremely fruitful concept and there are many ways to describe it. I will use
a standard notation from linear algebra. Let A “ paijq and B “ pbijq be matrices where
aij , bij are the entries of A,B in the ith row and jth column. Suppose that A has shape
`ˆm and B has shape mˆ n. Then the matrix AB is defined with shape `ˆ n and its
i, j entry is given as follows:

pi, j entry of ABq “
m
ÿ

k“1

aikbkj .

In various circumstances it is also useful to express this definition in terms of multiplica-
tions with row and column vectors:

pi, j entry of ABq “ pith row of Aqpjth column of Bq

pith row of ABq “ pith row of AqB

pjth column of ABq “ Apjth column of Bq

AB “
m
ÿ

k“1

pkth column of Aqpkth row of Bq.

This notation takes some getting used to but you should make the effort because it is
very important in all areas of mathematics.
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The proof is not very interesting, but here is it.

Proof. Write rLs “ A “ paijq and rM s “ B “ pbijq, where L : Rm Ñ R` and M : Rn Ñ Rm
are linear, so that A has shape ` ˆ m and B has shape m ˆ n. By definition we have
AB “ rL ˝M s, so that6

pjth column of ABq “ pjth column of rL ˝M sq

“ rpL ˝Mqpejqs

“ rLpMpejqqs

“ rLpjth column of Mqs

“

»

—

–

L

¨

˚

˝

b1j
...
bmj

˛

‹

‚

fi

ffi

fl

“ rLpb1je1 ` b2je2 ` ¨ ¨ ¨ ` bmjemqs

“ b1jrLpe1qs ` b2jrLpe2qs ` ¨ ¨ ¨ ` bmjrLpemqs

“

m
ÿ

k“1

bkjpkth column of rLsq.

“

m
ÿ

k“1

bkj

¨

˚

˝

a1k
...
a`k

˛

‹

‚

“

¨

˚

˝

řm
k“1 a1kbkj

...
řm
k“1 a`kbkj

˛

‹

‚

.

Since the i, j entry of AB is just the ith entry of the jth column we obtain the desired formula.
˝

As an interesting example, let me present the “correct” proof of the angle sum trigonometric
identities.

Correct Proof of the Angle Sum Trigonometric Identities

Let Rθ : R2 Ñ R2 denote the (linear) function that rotates each vector counterclockwise
around the origin by angle θ. It is geometrically obvious that for all angles α, β we have

Rα ˝Rβ “ Rα`β
protate by β then rotate by αq “ protate once by α` βq.

6Forgive me for using the notation ei to denote the basis vectors in both Rm and Rn even though these
vectors have different numbers of entries.
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On the other hand, we showed that the rotation function Rθ corresponds to the matrix

rRθs “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

.

By combining these observations with the definition of matrix multiplication we obtain

ˆ

cospα` βq ´ sinpα` βq
sinpα` βq cospα` βq

˙

“ rRα`βs

“ rRα ˝Rβs

“ rRαsrRβs

“

ˆ

cosα ´ sinα
sinα cosα

˙ˆ

cosβ ´ sinβ
sinβ cosβ

˙

“

ˆ

cosα cosβ ´ sinα sinβ ´ cosα sinβ ´ sinα cosβ
sinα cosβ ` cosα sinβ ´ sinα sinβ ` cosα cosβ

˙

.

And comparing matrix entries gives

"

cospα` βq “ cosα cosβ ´ sinα sinβ,
sinpα` βq “ sinα cosβ ` cosα sinβ.

There is no need to ever memorize these formulas. You only need to memorize the form
of rotation matrix rRθs and use the obvious fact that Rα`β “ Rα ˝Rβ.

Finally, we obtain the main theorem of this section.

Complex Numbers as Linear Functions

For each complex number α P C we consider the function Lα : CÑ C defined by:

Lαpβq :“ αβ.

This function is called “multiply by α”. If we view C “ R2 as a vector space then the
function Lα is R-linear since for all b, c P R and β, γ P C we have

Lαpbβ ` cγq “ αpbβ ` cγq “ bpαβq ` cpαγq “ bLαpβq ` cLαpγq.

Therefore it corresponds to a 2 ˆ 2 matrix with real entries. To find this matrix, let
α “ a`bi and consider the standard basis vectors 1`0i and 0`1i. Since Lαp1`0iq “ a`bi

20



and Lαp0` 1iq “ ´b` ai it follows that

rLαs “

ˆ

a ´b
b a

˙

.

But more is true. We observe that multiplication of complex numbers corresponds to
composition of linear functions. In other words, for any α, β P C we have Lαβ “ Lα ˝Lβ:

Lαβpγq “ pαβqpγq “ αpβγq “ αLβpγq “ LαpLβpγqq “ pLα ˝ Lβqpγq.

Then by definition of matrix multiplication we have rLαβs “ rLα ˝Lβs “ rLαsrLβs and it
follows that multiplication of complex numbers can be viewed as matrix multiplication:

pa` biqpc` diq “ pac´ bdq ` pad` bcqi
ˆ

a ´b
b a

˙ˆ

c ´d
d c

˙

“

ˆ

ac´ bd ´pad` bcq
ad` bc ac´ bd

˙

.

Finally, we observe that real numbers correspond to scalar matrices and complex numbers
of length 1 correspond to rotation matrices:

rLr`0is “

ˆ

r 0
0 r

˙

and rLcos θ`i sin θs “

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

.

It follows that complex numbers can be viewed as the set of (linear) functions R2 Ñ R2

that can be obtained by scaling and rotation.

This modern point of view was put forward by Hamilton in order to give a “real meaning” to
the “imaginary numbers”. Under this scheme we see that

?
´1 “ protate by 90˝q.

That’s not imaginary at all.7

1.6 Euler’s Formula and Roots of Unity

At the beginning of this chapter I mentioned the fact that the “square root function” x ÞÑ
?
x

is not really a function. If x is real and positive then we could take
?
x to be the unique real

positive square root of x. But if x is a negative real number or a complex number then the
symbol

?
x represents two different complex numbers, and there is no good reason to prefer

7We have shown that C is a ring, a field, a real vector space, and a collection of 2 ˆ 2 matrices with real
entries. In very modern terms we could summarize this by saying that C is a two-dimensional commutative
real division algebra with a two-dimensional faithful representation (and I could probably add more adjectives).
Never mind. The point is that the complex numbers have a lot of interesting structure, which motivates all of
the structures that we will discuss in this course.
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one over the other. Because of this non-uniqueness we must be careful when interpreting
formulas such as ?

ab “
?
a
?
b.

For example, if a “ b “ ´1 then this formula seems to imply that

i2 “
?
´1
?
´1 “

a

p´1qp´1q “
?

1 “ 1,

which is false. This caused significant confusion in the early days of complex numbers.

More generally, if α P C is a nonzero complex number then the expression n
?
α or α1{n rep-

resents n distinct complex numbers. This was slowly clarified during the 1700s and it finally
became transparent in the 1800s with the geometric interpretation of complex numbers. The
first step was made by de Moivre in 1707.

De Moivre’s Formula (1707)

For any angle θ and for any integer n ě 0 we have

pcos θ ` i sin θqn “ cospnθq ` i sinpnθq.

This is not difficult to prove once it is observed.8 The hard part is to observe it in the first
place. In fact, de Moivre stated the theorem in a much more complicated way because he did
not use complex numbers. We’ll return to this below.

The modern proof is essentially just that “n successive rotations by angle θ” is the same as
“one single rotation by angle nθ”. This point of view was preceded by an interpretation using
the language of Calculus.

Euler’s Formula (1748)

For any complex number α P C Euler considered the following power series:

exppαq :“ 1` α`
α2

2
`
α3

6
` ¨ ¨ ¨ “

8
ÿ

k“0

αn

n!
.

It turns out that this power series always converges. Furthermore, for any complex
numbers α, β P C one can show that

exppαq exppβq “ exppα` βq.

The number e :“ expp1q « 2.71828 is today called Euler’s constant. For any integer

8For example, it can be proved by induction using the angle sum trigonometric formulas.
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n ě 1 we observe that

exppnq “ expp1` 1` ¨ ¨ ¨ ` 1q “ expp1qn “ en.

For this reason it is standard to use the notation

“eα” :“ exppαq,

even though it is far from clear how to take “e to the power of π”, for example. Using
this language, Euler made the discovery that for any real number θ we have

eiθ “ cos θ ` i sin θ.

which immediately gives a proof of de Moivre’s formula:

pcos θ ` iθqn “ peiθqn “ einθ “ cospnθq ` i sinpnθq.

Proof: I will assume, as Euler did, that the power series always converges. Rigorous treatment
of convergence only emerged in the 1800s. To prove the identity exppα` βq “ exppαq exppβq
we first recall the binomial theorem:

pα` βqm “
ÿ

k``“m

m!

k!`!
αkβ`.

If we multiply the power series for exppαq and exppβq then the binomial theorem gives the
desired simplification:

exppαq exppβq “

˜

ÿ

kě0

αk

k!

¸˜

ÿ

`ě0

β`

`!

¸

“
ÿ

mě0

˜

ÿ

k``“m

αk

k!

β`

`!

¸

“
ÿ

mě0

1

m!

˜

ÿ

k``“m

m!

k!`!
αkβ`

¸

“
ÿ

mě0

1

m!
pα` βqm

“ exppα` βq.

Finally, to prove Euler’s formula we use a direct computation:

exppiθq “ 1` iθ `
piθq2

2!
`
piθq3

3!
`
piθq4

4!
`
piθq5

5!
` ¨ ¨ ¨

“ 1` iθ `
´θ2

2!
`
´iθ3

3!
`
θ4

4!
`
iθ5

5!
` ¨ ¨ ¨
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“

ˆ

1´
θ2

2!
`
θ4

4!
´ ¨ ¨ ¨

˙

` i

ˆ

θ ´
θ3

3!
`
θ5

5!
´ ¨ ¨ ¨

˙

.

Euler immediately recognized these as the power series expansions of cos θ and sin θ, which
had been discovered by Newton. ˝

Apart from being interesting and useful, Euler’s formula allows us to simplify notation by
writing eiθ instead of cos θ ` i sin θ. We will do this from now on.

Roots of Unity

Fix an integer n ě 1 and consider the complex number ω “ e2πi{n. I claim that the
equation xn “ 1 has the complete solution

x “ 1, ω, ω2, . . . , ωn´1.

To see this we first observe that

pωqn “ pe2πi{nqn “ e2πi “ cosp2πq ` i sinp2πq “ 1.

Thus for any integer k we have

pωkqn “ pωnqk “ 1k “ 1.

To see that this is the complete solution we must show that the n numbers ωk with
k “ 0, 1, . . . , n ´ 1 are distinct. This follows from the fact that they represent distinct
points of the complex plane.9 Indeed, since the number eiθ corresponds to the point
pcos θ, sin θq in the Cartesian plane, we observe that eiα “ eiβ if and only if α ´ β is an
integer multiple of 2π. It follows from this that for all integers k, ` P Z we have ωk “ ω`

if and only if k ´ ` is a multiple of n.10

More generally, we can describe the nth roots of an arbitrary nonzero complex number
α P C as follows. We first write α “ reiθ in polar form, so that r ą 0. Let r1 ą 0 denote
the unique positive nth root of r and let α1 :“ r1eiθ{n. We observe that

pα1qn “ pr1eiθ{nqn “ pr1qnpeiθ{nqn “ reiθ “ α,

and we say that α1 is the principal nth root of α. Then I claim that the equation xn “ α
has the complete solution

x “ α1, α1ω, α1ω2, . . . , α1ωn´1.

Indeed, each of these is a solution because

pα1ωkqn “ pα1qnpωkqn “ α ¨ 1 “ α,
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and they are distinct because α1ωk “ α1ω` if and only if ωk “ ω`.

Geometrically, the nths roots of α form a regular n-gon in the complex plane, centered
at the origin.

Examples:

• n “ 2: Let ω “ e2πi{2 “ eπi “ ´1. Then the 2nd roots of 1 are

ω0 “ 1 and ω1 “ ´1.

If α1 is any square root of the nonzero complex number α, then the complete set of
square roots is

α1ω0 “ α1 and α1ω1 “ ´α1.

That was pretty boring.

• n “ 3: Let ω “ e2πi{3 “ cosp2π{3q ` i sinp2π{3q “ ´1{2` i
?

3{2 “ p´1` i
?

3q{2. Then
the 3rd roots of 1 are

ω0 “ 1,

ω1 “ p´1` i
?

3q{2,

ω2 “ e4πi{3 “ cosp4π{3q ` i sinp4π{3q “ ´1{2´ i
?

3{2 “ p´1´ i
?

3q{2.

Here is a picture:

9We also need to know that an equation of degree n can have no more than n roots. You will prove this
on the homework and we will discuss it more in the next section.

10This idea will reappear below when we discuss “modular arithmetic”.
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• n “ 4: Let ω “ e2πi{4 “ eπi{2 “ cospπ{2q ` i sinpπ{2q “ i. The 4th roots of unity are

ω0 “ e0 “ 1,

ω1 “ eπi{2 “ i,

ω2 “ eπi “ ´1,

ω3 “ e3πi{2 “ ´i.

Here is a picture:

More generally, let’s compute the 4th roots of α “ ´4. First we express α “ 4eπi in
polar form, so the principal 4th root is

α1 “
4
?

4 ¨ eπi{4 “
?

2rcospπ{4q ` i sinpπ{4qs “
?

2p1{
?

2` i
?

2q “ 1` i.

Then the complete set of 4th roots of ´4 is

α1ω0 “ 1α1 “ 1` i,

α1ω1 “ iα1 “ ´1` i,

α1ω2 “ ´1α1 “ ´1´ i,

α1ω3 “ ´iα1 “ 1´ i.

These form a square in the complex plane:
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As an application, we can use these roots to factor the polynomial x4 ` 4:

x4 ` 4 “ px´ p1` iqqpx´ p´1` iqqpx´ p´1´ iqqpx´ p1´ iqq.

In 1702, Gottfried Leibniz claimed that the polynomial x4`4 cannot be factored over the
real numbers. However, we can show that he was wrong by grouping the four complex
roots into “conjugate pairs”:

x4 ` 4 “ rpx´ p1` iqqpx´ p1´ iqqsrpx´ p´1` iqqpx´ p´1´ iqqs

“ px2 ´ 2x` 2qpx2 ` 2x` 2q.

• n “ 5: Let ω “ e2πi{5 “ cosp2π{5q ` i sinp2πi{5q. The 5th roots of unity are

ω0 “ 1,

ω1 “ e2πi{5 “ cosp2π{5q ` i sinp2π{5q,

ω2 “ e4πi{5 “ cosp4π{5q ` i sinp4π{5q,

ω3 “ e6πi{5 “ cosp6π{5q ` i sinp6π{5q,

ω4 “ e8πi{5 “ cosp8π{5q ` i sinp8π{5q,

which correspond to the vertices of a regular pentagon in the Cartesian plane:
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On the homework you will show that these numbers can also be expressed in terms of
integers and square roots. For example, you will show that

cos

ˆ

2π

5

˙

“
´1`

?
5

4
.

Is it always true that the roots of unity can be expressed in terms of integers and square roots?
As a preview of things to come, let me mention the main theorem in this subject.

Preview of the Gauss-Wantzel Theorem

Consider an integer n ě 1 and define the phi-function:11

φpnq :“ #tk P Z : 1 ď k ď n´ 1 and gcdpk, nq “ 1u.

This number is always even. Suppose that φpnq{2 “ m1m2 ¨ ¨ ¨mk for some integers
m1, . . . ,mk ě 2. Then I claim that the number cosp2π{nq can be expressed in terms
of integers and mith roots for the various i. If φpnq is a power of 2 then there exists a
formula for cosp2π{nq involving only integers and square roots.

For example, since 5 is prime, all of the numbers 1, 2, 3, 4 are coprime to 5 and hence
φp5q “ 4 “ 22. Since φp5q is a power of 2, the theorem guarantees that cosp2π{5q can be
expressed in terms of integers and square roots, as you will show on the homework.

The origin of the theorem is Gauss’ discovery (at the age of 19) that the number
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cosp2π{17q can be expressed in terms of integers and square roots:

cos

ˆ

2π

17

˙

“
´1`

?
17`

a

34´ 2
?

17`

b

17` 3
?

17´
a

34´ 2
?

17´ 2
a

34` 2
?

17

16

According to the theorem, we know that such a formula is possible because φp17q “ 16 “
24 is a power of 2. Gauss’ discovery was surprising because it implies that the regular
17-gon can be constructed with straightedge and compass, a construction that was not
known to the ancient Greeks.

In general, we will see that φpnq is a power of 2 if and only if n can be expressed as a
power of 2 times a product of distinct Fermat prime numbers of the form p “ 2m ` 1.
For example, p “ 17 “ 24 ` 1 is a Fermat prime. Fermat had conjectured that every
number of the form 2m ` 1 is prime, but this turned out to be quite wrong. Today the
only known Fermat primes are

3, 5, 17, 257, and 65537,

and it is an open question whether there exist any others.

2 Introduction to Polynomials

2.1 Rings of Polynomials

We have talked about polynomials in an intuitive way, but we have not been careful with our
definitions. Here is the modern, abstract, definition of polynomials.

Definition of Polynomials

Let F be a field and let “x” be an abstract symbol. By a polynomial in x over F we mean
a formal expression

fpxq “
ÿ

kě0

akx
k “ a0 ` a1x` a2x

2 ` ¨ ¨ ¨ ,

where the coefficients a0, a1, a2, . . . are elements of F and only finitely many of these
coefficients are nonzero. If an is the highest nonzero coefficient then we will say that fpxq
has degree n and we will write

degpfq “ degpfpxqq “ degpanx
n ` an´1x

n´1 ` ¨ ¨ ¨ ` a1x` a0q “ n.

11The notation gcdpk, nq represents the greatest common divisor of k and n. We will study this in detail in
the next section.

29



For example:

degpx2q “ 2,

degp7x3 ` 1q “ 3,

degp5q “ 0.

The polynomials of degree 0 are just the nonzero constants. (For the degree of the zero
constant, see below.) Let us denote the set of polynomials by

Frxs “ tpolynomials in x over Fu.

We can view this set as a ring by pretending that x is a number and performing arithmetic
as usual. To be precise, we define addition and multiplication of polynomials as follows:

˜

ÿ

kě0

akx
k

¸

`

˜

ÿ

kě0

bkx
k

¸

:“
ÿ

kě0

pak ` bkqx
k

˜

ÿ

kě0

akx
k

¸˜

ÿ

`ě0

bkx
k

¸

:“
ÿ

mě0

˜

ÿ

k``“m

akb`

¸

xm.

The additive and multiplicative identity elements are the zero and one polynomials:

0pxq :“ 0` 0x` 0x2 ` 0x3 ` ¨ ¨ ¨ ,

1pxq :“ 1` 0x` 0x2 ` 0x3 ` ¨ ¨ ¨ .

However, we usually don’t usually make distinction between the numbers 0, 1 and the
polynomials 0pxq, 1pxq. In fact, we can think of F as a subring of Frxs by identifying each
element a P F with the corresponding constant polynomial:

a “ a` 0x` 0x2 ` 0x3 ` ¨ ¨ ¨ .

An important and basic fact about polynomials is the additivity of degree:

degpfgq “ degpfq ` degpgq.

To prove this formula, suppose that degpfq “ m and degpgq “ n. By definition this
means that

fpxq “ amx
m ` am´1x

m´1 ` ¨ ¨ ¨ a1x` a0,

gpxq “ bnx
n ` bn´1x

n´1 ` ¨ ¨ ¨ b1x` b0,

where am ‰ 0 and bn ‰ 0. But then we have ambn ‰ 0 and

fpxqgpxq “ ambnx
m`n ` lower terms,
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so that degpfgq “ m` n “ degpfq ` degpgq. Strictly speaking, this formula only applies
to nonzero polynomials. In order to make the formula true in general it is convenient to
define the degree of the zero polynomial as follows:

degp0q :“ “´8”.

We don’t think of this as a number, but just a symbol with the properties ´8 ă a and
´8` a “ ´8 for all a P F.

Some Remarks:

• The ring Frxs is not a field. To see this it is enough to show that some nonzero element
has no multiplicative inverse. We will show that x P Frxs has no multiplicative inverse.
Let us suppose for contradiction that there exists a polynomial fpxq P Frxs satisfying
xfpxq “ 1. Then taking degrees gives

xfpxq “ 1

degpxq ` degpfq “ degp1q

1` degpfq “ 0

degpfq “ ´1,

which is a contradiction because there is no such thing as a polynomial of degree ´1. In
other words, we have shown that the expression 1{x is not a polynomial. We will call it
a rational expression. Later we will consider the field of rational expressions Fpxq, which
are basically fractions of polynomials.

• The set of polynomials Frxs can also be thought of as a vector space over F with scalar
multiplication

a

˜

ÿ

kě0

bkx
k

¸

“
ÿ

kě0

pabkqx
k.

By convention we say that two polynomials are equal if and only if they have the same
coefficients. This implies that the vector space Frxs is infinite dimensional with basis

1, x, x2, x3, . . . .

Of course, we are accustomed to thinking of polynomials as functions, not just formal
expressions. We will discuss the relationship between these points of view in the next
section.

2.2 Descartes’ Theorem

There is a deep analogy between the rings Z and Frxs, which is based on the following theo-
rem.12

12Later we will make this analogy more precise when we discuss the concept of a Euclidean domain.
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Division With Remainder

(1) For all integers a, b P Z with b ‰ 0 there exist unique integers q, r P Z (called the
quotient and remainder) satisfying

"

a “ bq ` r,
0 ď r ă |b|.

(2) Let F be a field. Then for all polynomials fpxq, gpxq P Frxs with gpxq ‰ 0pxq there
exist unique polynomials qpxq, rpxq P Frxs (called the quotient and remainder) satisfying

"

fpxq “ gpxqqpxq ` rpxq,
degprq ă degpgq.

Note: The condition degprq ă degpgq includes the possibility that the remainder is zero,
i.e., that degprq “ ´8.

The idea of the proof in both cases is to define an algorithm and to prove that this algorithm
gives the desired result. We will prove existence here and you will prove uniqueness on the
homework.

Proof for Integers: Let a, b P Z with b ‰ 0 and consider the set

S “ ta´ qb : q P Zu “ t. . . , a´ 2b, a´ b, a, a` b, a` 2b, . . .u Ď Z.

Let r be the smallest non-negative element of this set. By definition we know that a “ qb` r
for some integer q P Z and we also know that 0 ď r. It remains only to show that r ă |b|. So
let us assume for contradiction that r ě |b|. Since b ‰ 0 this implies that

0 ď r ´ |b| ă r.

On the other hand, we observe that r ´ |b| “ pa´ qbq ´ |b| “ a´ pq ˘ 1qb P S. Thus we have
found a non-negative element of S that is strictly smaller than r. Contradiction.

Proof for Polynomials Over a Field: Let F be a field and consider two polynomials
fpxq, gpxq P Frxs with gpxq ‰ 0pxq. Furthermore, consider the set

S “ tfpxq ´ qpxqgpxq : qpxq P Frxsu Ď Frxs.

Let rpxq be some element of S with minimal degree (allowing for the possibility that rpxq “
0pxq and hence degprq “ ´8). By definition we know that fpxq “ qpxqgpxq ` rpxq for
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some qpxq P Frxs and it remains only to show that degprq ă degpgq. So let us assume for
contradiction that degprq ě degpgq. To be specific, since gpxq ‰ 0pxq we may write

gpxq “ amx
n ` lower terms and rpxq “ bnx

n ` lower terms,

where am ‰ 0 and m ď n. Then since n´m ě 0 we may construct the following polynomial:13

hpxq :“ rpxq ´
bn
am

xn´mgpxq

“ pbnx
n ` lower termsq ´

bn
am

xn´m pamx
m ` lower termsq

“ pbn ´ bnqx
n ` lower terms.

Note that the coefficient of xn in hpxq is zero, and hence degphq ă n “ degprq. On the other
hand, we observe that hpxq is an element of S:

hpxq “ rpxq ´
bn
am

xn´mgpxq

“ pfpxq ´ qpxqgpxqq ´
bn
am

xn´mgpxq

“ fpxq ´

ˆ

qpxq `
bn
am

xn´m
˙

gpxq P S.

Thus hpxq is an element of S with strictly smaller degree than rpxq. Contradiction.

I assume you are familiar with long division of integers. Long division of polynomials is
actually easier because it doesn’t involve any “carrying”. For example, suppose that fpxq “
2x4 ´ 6x3 ` x ´ 1 and gpxq “ 2x2 ` 1. The algorithm tells us first to multiply gpxq by a
suitable “monomial” so that it has the same “leading term” as fpxq and then subtract this
from fpxq to “eliminate” this leading term. To be specific, we multiply gpxq by the monomial
x2 to obtain 2x4 ` x2 whose leading term matches fpxq. Then we repeat the process until it
is impossible to continue:14

x2 ´ 3x´ 1
2

2x2 ` 1
˘

2x4 ´ 6x3 ` x ´ 1
´ 2x4 ´ x2

´ 6x3 ´ x2 ` x
6x3 ` 3x

´ x2 ` 4x ´ 1
x2 ` 1

2

4x´ 1
2

13Here we use that fact that F is a field to divide by am.
14There are different ways to typeset this. I used a package to do it automatically, which I don’t like very

much, but is much easier than doing it manually.
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In the end we obtain a quotient qpxq “ x2´ 3x´ 1{2 and a remainder rpxq “ 4x´ 1{2, which
satisfy the desired properties:

"

p2x4 ´ 6x3 ` x´ 1q “ p2x2 ` 1qpx2 ´ 3x´ 1{2q ` p4x´ 1{2q,

degp4x´ 1{2q ă degp2x2 ` 1q.

Polynomial division with remainder was first used for theoretical purposes by René Descartes
(1631) in his Geometry. The following theorem is the foundational property of polynomials,
of similar importance to the Pythagorean theorem in geometry.

Descartes’ Factor Theorem (1631)

Consider a field F, a polynomial fpxq P Frxs and a constant a P F. Dividing fpxq by
x´ a gives

fpxq “ px´ aqqpxq ` rpxq

for some polynomials qpxq, rpxq P Frxs with degprq ă degpx ´ aq “ 1. The condition on
the degree implies that rpxq “ c for some constant c P F, either zero or nonzero. To
determine this constant we substitute x “ a:

fpaq “ pa´ aqqpaq ` c

fpaq “ 0qpaq ` c

fpaq “ c.

It follows from this that

fpaq “ 0 ðñ fpxq “ px´ aqqpxq for some polynomial qpxq.

In other words, the constant a P F is a root of fpxq if and only if the polynomial x ´ a
is a divisor of fpxq. We will use this to prove by induction that

a polynomial fpxq P Frxs of degree n ě 0 can have at most n roots in F.

Indeed, a polynomial of degree 0 is a nonzero constant, which has no roots. So let
degpfq “ n ě 1. If fpxq has no roots then we are happy because 0 ď n. Otherwise, fpxq
must have some root fpaq “ 0 with a P F. From the above remarks this implies that
fpxq “ px´ aqqpxq for some polynomial qpxq P Frxs, which must have degree n´ 1:

degpfq “ degppx´ aqqq

n “ degpx´ aq ` degpqq

n “ 1` degpqq.
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But if b ‰ a is any other root of fpxq then we must have

fpxq “ px´ aqqpxq

fpbq “ pb´ aqqpbq

0 “ pb´ aqqpbq

0 “ qpbq,

which implies that b is also a root of qpxq. Finally, since qpxq has degree n ´ 1 we may
assume by induction that qpxq has at most n´ 1 roots in F, which implies that fpxq has
at most 1` pn´ 1q “ n roots in F.

This theorem has the following useful consequence that we record for future reference.

Only the Zero Polynomial Can Have Infinitely Many Roots

If fpxq “ 0pxq is the zero polynomial then every element of the field F is a root of fpxq. If
the field has infinitely many elements then the zero polynomial has infinitely many roots.
On the other hand, any nonzero polynomial has a finite degree, so Descartes’ Theorem
implies that it has finitely many roots.

2.3 Polynomials: Functions or Formal Expressions?

In this class we have defined polynomials in terms of their coefficients and we have said that
two polynomials are equal when they have the same coefficients:

˜

ÿ

k

akx
k

¸

“

˜

ÿ

k

bkx
k

¸

ðñ ak “ bk for all k.

On the other hand, given any formal polynomial expression fpxq “
ř

k akx
k we can define a

function by “substitution” or “evaluation”:

f : F Ñ F
α ÞÑ

ř

k akα
k.

The question I want to raise now is whether two polynomials with the same evaluations must
have the same coefficients. In other words:

˜

ÿ

k

akα
k

¸

“

˜

ÿ

k

bkα
k

¸

for all α P F ?
ðñ ak “ bk for all k.

To show you that this is not a silly question I will you show you an example of two polynomials
with different coefficients that nevertheless define the same function. In order to do this I must
also show you an example of a field with only finitely many elements.
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The Field with Three Elements

Consider the set F3 “ t0, 1, 2u of three elements with the following algebraic operations:

` 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

¨ 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

These operations are called “arithmetic mod 3” and we will discuss the details later. For
now I only want to observe that the structure pF3,`, ¨, 0, 1q satisfies the axioms of a field,
therefore we may consider the ring of polynomials F3rxs with coefficients in F3.

Now let us consider the following two polynomials:

fpxq “ x` 0,

gpxq “ x3 ` 0x2 ` 0x` 0.

Clearly these polynomials do not have the same coefficients, but the following table shows
that they do have the same values:

α fpαq gpαq

0 0 03 “ 0

1 1 13 “ 1

2 2 23 “ 2

That’s not good. Luckily this problem does not occur when our field F has infinitely many
elements.

Polynomials Over an Infinite Field

Let F be an infinite field and let fpxq, gpxq P Frxs be formal polynomial expressions:

fpxq “
ÿ

k

akx
k and gpxq “

ÿ

k

bkx
k.

If f and g define the same function FÑ F then I claim that fpxq and gpxq have the same
coefficients. That is, if fpαq “ gpαq for all α P F then I claim that ak “ bk for all k.
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To prove this we define the polynomial expression

hpxq :“ fpxq ´ gpxq “
ÿ

k

pak ´ bkqx
k.

If we can show that hpxq is the zero polynomial (i.e., the polynomial with all zero co-
efficients) then we will conclude ak ´ bk “ 0 and hence ak “ bk for all k. But we have
assumed that fpαq “ gpαq for all α P F and hence

hpαq “ fpαq ´ gpαq “ 0 for all α P F.

In other words, every element of F is a root of hpxq. If the field F has infinitely many
elements then the remark in the previous section shows that hpxq is the zero polynomial,
as desired.

So, at least in the case of polynomials over Q, R and C, there is no distinction between formal
polynomial expressions and polynomial functions.

2.4 Concept of a Splitting Field

We now proceed to the subtleties of Descartes’ Theorem. If fpxq P Frxs and degpfq “ n ě 0
then we have proved that fpxq has at most n distinct roots in the field F. However, it is a
possibility that there exist less than n distinct roots, and there are two ways this can happen:

• The roots might exist in a larger field. For example, the polynomial x2 ` 1 P Rrxs has
no roots in R but it has two roots ˘i in C. And the polynomial x2 ´ 2 P Qrxs has no
roots in Q, but it has two roots ˘

?
2 in R.

• There might exist repeated roots. For example, the polynomial x3 ´ x2 ´ x ` 1 “
px´ 1q2px` 1q of degree three has only two distinct roots: `1 and ´1. But the root `1
occurs with multiplicity 2. So it is still the case that x3 ´ x2 ´ x ` 1 has three roots,
“counted with multiplicity”.

Concept of a Splitting Field

Consider a polynomial fpxq P Frxs of degree n ě 0 with coefficients in a field F and
let E Ě F be a larger field. We say that fpxq splits over E if there exists elements
r1, . . . , rn P E, not necessarily distinct, such that

fpxq “ px´ r1qpx´ r2q ¨ ¨ ¨ px´ rnq.

In other words, fpxq has n roots in E, counted with multiplicity. Later we will show that
such a field always exists, and in fact the minimal such field is unique up to isomorphism.
The minimal field over which fpxq splits is called the splitting field of fpxq P Frxs.
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Let me also mention that the factorization of fpxq into polynomials of degree 1, when it
exists, is necessarily unique.15 Indeed, suppose that we have

px´ r1qpx´ r2q ¨ ¨ ¨ px´ rnq “ px´ s1qpx´ s2q ¨ ¨ ¨ px´ snq

for some elements r1, . . . , rn, s1, . . . , sn of a field E. Evaluating each side at x “ s1 gives

ps1 ´ r1qps1 ´ r2q ¨ ¨ ¨ ps1 ´ rnq “ ps1 ´ s1qps1 ´ s2q ¨ ¨ ¨ ps1 ´ snq

“ 0ps1 ´ s2q ¨ ¨ ¨ ps1 ´ snq

“ 0,

which implies that s1 ´ ri “ 0 and hence s1 “ ri for some index i. After re-indexing the
elements s1, . . . , sn if necessary we may assume that r1 “ s1 and then we may cancel the
common factor x´ r1 “ x´ s1 from each side:16

���
�

px´ r1qpx´ r2q ¨ ¨ ¨ px´ rnq “���
��

px´ s1qpx´ s2q ¨ ¨ ¨ px´ snq

px´ r2q ¨ ¨ ¨ px´ rnq “ px´ s2q ¨ ¨ ¨ px´ snq.

By repeating the argument (i.e., by using induction) we may re-index the remaining
elements s2, . . . , sn so that r1 “ s1, r2 “ s2, . . . and rn “ sn, as desired.

Let me emphasize that the concept of the splitting field is relative to field of coefficients.
Examples:

• The polynomial x2 ` 1 P Rrxs has splitting field C Ě R. Indeed, this polynomial splits
over C because x2 ` 1 “ px´ iqpx` iq with ˘i P C. To see that C is the minimal such
field, suppose that there exists another field C Ě E Ě R such that x2 ` 1 splits over E.
By definition this means that

x2 ` 1 “ px´ r1qpx´ r2q for some r1, r2 P E.

Then substituting x “ i gives

0 “ pi´ r1qpi´ r2q,

which implies that i “ r1 or i “ r2. Either way, we must have i P E. Finally, I claim
that every complex number is in E, so that E “ C. Indeed, for any a, b P R we have
a, b P E because R Ď E. Then since a, b, i P E we have a` bi P E because E is a ring. In
summary:

The polynomial x2 ` 1 has splitting field C over R.

15In the next section we will prove more generally that any polynomial over any field has a unique factorization
into irreducible polynomials, not necessarily of degree 1.

16You will investigate “cancellation” on the homework.
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• On the other hand, if we regard x2 ` 1 as an element of Qrxs then I claim that the
splitting field is

Qpiq :“ ta` bi : a, b P Qu Ě Q,

which is strictly smaller than C because, e.g.,
?

2 is in C but not in Qpiq. Indeed, it is
easy to check that Qpiq is a subring of C. It is also a field since for any rational numbers
a, b P Q we have

1

a` bi
“

ˆ

a

a2 ` b2

˙

`

ˆ

´b

a2 ` b2

˙

i,

where the coefficients a{pa2 ` b2q and ´b{pa2 ` b2q are also rational numbers. And the
polynomial x2 ` 1 splits over Q because ˘i P Q. Finally, we need to show that Qpiq
is the smallest extension of Q over which x2 ` 1 splits. The proof is the same as
above. Suppose that Qpiq Ě E Ě Q for some some field E over which x2 ` 1 splits. Say
x2 ` 1 “ px´ r1qpx´ r2q for some r1, r2 P E. Then substituting x “ i shows that i “ r1

or i “ r2. In either case this implies that i P E. Then for any a, b P Q we have a` bi P E
and hence E “ Qpiq. In summary:

The polynomial x2 ` 1 has splitting field Qpiq over Q.

On the homework you will find the splitting field of x2 ´ 2 over Q.

Review for the First Exam

• hello

3 Unique Prime Factorization

3.1 Definition of Euclidean Domains

Before proceeding with topic of polynomial equations, we pause to develop some general
theory. Much of the theory of (commutative) rings is based on a deep analogy between the
ring of integers and rings of polynomials over fields:

Z « Frxs
In order to describe this analogy we must first develop the language of “divisibility”.

Divisibility in a Ring

Let pR,`, ¨, 0, 1q be a ring. Then for all a, b P R we define the notation

a|b ðñ there exists k P R such that ak “ b.

It is important to note that the symbol “a|b” represents a whole sentence. It means that

39



“a divides b” or “b is divisible by a”. We have the following basic properties:

• 1|a for all a P R,

• a|0 for all a P R,

• a|b and b|c imply a|c.

Indeed, we have 1|a because 1a “ a and we have a|0 because a0 “ 0. Now suppose that
a|b and b|c. By definition this means that ak “ b and b` “ c for some k, ` P R. But then
we also have

apk`q “ pakq` “ b` “ c,

which implies that a|c.

The properties of divisibility in a general ring can be quite wild. In order to model the
properties of Z and Frxs we make a further restriction.

Definition of Integral Domains

We say that a ring pR,`, ¨, 0, 1q is an integral domain (or just a domain) if for all a, b P R,

ab “ 0 ùñ a “ 0 or b “ 0.

For example, the rings Z and Frxs are integral domains. For a non-example, consider the
ring Z{4Z “ t0, 1, 2, 3u of “arithmetic mod 4” with the following addition and multipli-
cation tables:17

` 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

¨ 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

This ring is not an integral domain because 2 ¨ 2 “ 0 but 2 ‰ 0.

Every field is an integral domain since if ab “ 0 and b ‰ 0 then b´1 exists and we can
multiply both sides by b´1 to obtain

ab “ 0

abb´1 “ 0b´1

a “ 0.

Similarly, if ab “ 0 and a ‰ 0 then we must have b “ 0. Not every integral domain is
a field; for example Z and Frxs are not fields. However, every integral domain satisfies
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multiplicative cancellation:

ac “ bc and c ‰ 0 ùñ a “ b.

To see this, we write

ac “ bc

ac´ bc “ 0

pa´ bqc “ 0.

If c ‰ 0 then since R is an integral domain we have a´ b “ 0 and hence a “ b.

The theory of divisibility in integral domains is closer to our intuition coming from Z and Frxs.
For example, suppose that some nonzero elements a, b P R satisfy a|b and b|a. By definition
this means that ak “ b and b` “ a for some k, ` P R and hence

b` “ a

ak` “ a

ak`´ a “ 0

apk`´ 1q “ 0.

Since a ‰ 0 this implies that k` ´ 1 “ 0 and hence k` “ 1. This is more interesting than it
looks because there may not be many elements in R that have a multiplicative inverse.

Definition of Units

Let R be a ring. We say that u P R is a unit of R if there exists a (necessarily unique)
multiplicative inverse u´1 P R. We denote the set of units by

Rˆ “ tu P R : Dv P R, uv “ 1u.

For example, I claim that

Zˆ “ t˘1u and Frxsˆ “ tnonzero constantsu.

To prove this for integers, we first observe that ˘1 P Z are units because 1 ¨ 1 “ 1 and
p´1qp´1q “ 1. To see that every unit is one of these, suppose that some nonzero integers

17It is not necessarily clear that these operations satisfy the ring axioms, but they do. We will discuss this
in detail later.
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a, b P Z satisfy ab “ 1. Since a, b are nonzero we have |a|, |b| ě 1. But if |a| ě 2 then we obtain
a contradiction:

1 “ |ab| “ |a||b| ě |a| ě 2.

Hence |a| “ 1, and a symmetric argument shows that |b| “ 1.

To prove the result for polynomials, we first observe that each nonzero constant a P Frxs is a
unit whose inverse is the nonzero constant 1{a. To see that every unit has this form, suppose
that some nonzero fpxq, gpxq P Frxs satisfy fpxqgpxq “ 1, so that

degpfq ` degpgq “ degpfgq “ degp1q “ 0.

Since degpfq,degpgq ě 0 this implies that degpfq “ degpgq “ 0 and hence fpxq, gpxq are
nonzero constants, as desired.

Units are important for the theory of divisibility.

Definition of Association

For a, b P R in a ring we define the following notation:

a „ b ðñ there exists a unit u P Rˆ such that au “ b.

Again, the symbol “a „ b” represents a whole sentence. It says that “a is associate to
b”. You will check on the homework that this is an equivalence relation on the set R.

If R is an integral domain, then I claim that18

a „ b ðñ a|b and b|a.

Indeed, suppose that a „ b so that au “ b for some unit u P Rˆ. The equation au “ b
implies that a|b and the equation bu´1 “ a implies that b|a. Conversely, suppose that
a|b and b|a. By definition this means that ak “ b and b` “ a for some k, ` P R. Since
a ‰ 0 and since R is an integral domain, we have

b` “ a

ak` “ a

ak`´ a “ 0

apk`´ 1q “ 0

k`´ 1 “ 0

k` “ 1.

This implies that k, ` P Rˆ and hence a „ b.
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For example, if a, b P Z then since Zˆ “ t˘1u we have a „ b if and only if a “ ˘b. Hence

a|b and b|a in Z ðñ a “ ˘b.

And for nonzero polynomials fpxq, gpxq P Frxs we have

fpxq|gpxq and gpxq|fpxq in Frxs ðñ fpxq “ λgpxq for some nonzero λ P F.

There is one final property that the rings Z and Frxs have in common. Each of them has a
notion of “division with remainder”. The following definition is a little bit non-standard but
it suffices for our purposes.19

Definition of Euclidean Domains

Let pR,`, ¨, 0, 1q be a ring. We say that R is a Euclidean domain if there exists a “size
function” N : Rzt0u Ñ N satisfying the following two properties:

• For all nonzero a, b P R with a|b we have Npaq ď Npbq.

• For all a, b P R with b ‰ 0, there exist some q, r P R (called quotient and remainder)
satisfying the following two properties:

"

a “ bq ` r,
r “ 0 or Nprq ă Npbq.

For example, we have already seen that the ring of integers Z with the size function Npaq “ |a|
is a Euclidean domain. Indeed, to see that this N satisfies the desired property, consider some
nonzero a, b P Z with a|b. Since b ‰ 0 this means that ak “ b for some nonzero k. Since k
is nonzero we have |k| ě 1 and then we multiply both sides of this inequality by the positive
integer |a| to obtain

1 ď |k|

|a| ď |a||k|

|a| ď |ak|

|a| ď |b|.

We have also seen that the ring of polynomials Frxs with size function Npfq “ degpfq is a
Euclidean domain. Indeed, to see that this N satisfies the desired property, consider some

18Let us assume that a, b are both nonzero.
19Actually the concept of Euclidean domain is a bit awkward. The more elegant concept is a principal ideal

domain, but we are not yet ready for that level of abstraction.
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nonzero fpxq, gpxq P Frxs with fpxq|gpxq. Since gpxq ‰ 0 this means that fpxqhpxq “ gpxq for
some nonzero hpxq. Then since f, g, h are all nonzero we have

degpfq ď degpfq ` degphq “ degpfhq “ degpgq.

Let me observe, however, that the abstract definition above is more compatible with Frxs than
it is with Z. Indeed, the usual statement of the division theorem for Z says that for all a, b P Z
with b ‰ 0 there exist q, r P Z with

"

a “ bq ` r,
0 ď r ď |b|.

This is not quite the same as saying that r “ 0 or |r| ă |b| because it also includes the
requirement that r ě 0. But it makes no sense to say that r ě 0 in a general Euclidean
domain because the elements of a ring need not be ordered. For example, the elements of Frxs
are not ordered; it makes no sense to say that 6x` 5 ě 5x` 6, or the other way around.

For this reason, quotients and remainders in a general Euclidean domain need not be unique.
Luckily, we don’t need them to be. Our purpose for defining Euclidean domains is to prove
that every Euclidean domain has “unique prime factorization”. For example, the integer 60
can be factored into prime integers in essentially only one way:

60 “ 2 ¨ 2 ¨ 3 ¨ 5

“ 3 ¨ 2 ¨ 5 ¨ 2 ¨ 1 ¨ 1

“ p´3q ¨ p´5q ¨ 2 ¨ 2

“ etc.

We can rearrange the factors and we can insert copies of 1 and ´1 as we please, but this does
not change the fact that there are “two copies of 2, one copy of 3 and one copy of 5”. We
will see that polynomials over a field also have unique prime factorization. For example, the
polynomial x2 ´ 4 P Qrxs can be factored as

x2 ´ 4 “ px´ 2qpx` 2q “ p´x` 2qp´x´ 2q “ p3x` 6q

ˆ

1

3
x´

2

3

˙

“ etc.

This time the prime factors are unique up to multiplication by nonzero constants, which are
the units in the ring. Finally, let me note that the notion of “prime polynomial”20 is relative
to the field of coefficients. For example, the polynomial x2 ´ 2 is prime as an element of Qrxs
but it is not prime as an element of Rrxs because x2 ´ 2 “ px´

?
2qpx`

?
2q.

We will make all of this precise below.

20The term “irreducible polynomial” is more common. This might come from the study of the ring Zrxs,
where we must distinguish between prime polynomials and prime coefficients.
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3.2 The Euclidean Algorithm

In the pursuit of unique prime factorization we must first discuss greatest common divisors.

Definition of Greatest Common Divisors

Let R be a Euclidean domain with size function N : Rzt0u Ñ N. For any two nonzero
elements a, b P R we consider their set of common divisors

Divpa, bq “ td P R : d|a and d|bu.

We note that every common divisor d satisfies Npdq ď mintNpaq, Npbqu because d|a
implies that dk “ a for some k and henceNpdq ď Npdkq “ Npaq. Similarly, Npdq ď Npbq.

Since the sizes of common divisors of a, b are bounded above by mintNpaq, Npbqu it follows
from the well-ordering property of the integers that there exist elements in Divpa, bq of
maximum size. Any such element will be called a greatest common divisor of a, b.

For example: Consider the set of common divisors of the integers 12 and 30:

Divp12, 30q “ t1, 2, 3, 6,´1,´2,´3,´6u.

Thus, in this case, we have two greatest common divisors: 6 and ´6.

More generally, we will prove below that any two greatest common divisors are associates.
In the case of our two favorite Euclidean domains Z and Frxs this will allow us to make
a further choice and to speak of the greatest common divisor.

Since the units of Z are ˘1, there will be exactly two greatest common divisors, and we
will choose the positive one. Thus, for any nonzero integers a, b P Z we define

gcdpa, bq “ the unique positive common divisor of maximum absolute value.

Since the units of Frxs are the nonzero constants, we can always scale our greatest
common divisor so that the leading coefficient equals 1. [Jargon: A polynomial with
leading coefficient 1 is called monic.] Thus, for any nonzero fpxq, gpxq P Frxs we define

gcdpf, gq “ the unique monic common divisor of maximum degree.

How can we prove that any two greatest common divisors are associate? We will do this by
giving an algorithm to compute all of the elements of the set Divpa, bq. The proof that the
algorithm works will involve the following lemmas.
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Lemmas for the Euclidean Algorithm

(1) Let R be any ring and let a, b, c, x P R be elements satisfying a “ bx ` c. Then we
have the following equality of sets:

Divpa, bq “ Divpb, cq.

(2) Let a P R be a nonzero element of a Euclidean domain. Since every element of R is
a divisor, the common divisors of a and 0 are just the divisors of a:

Divpa, 0q “ Divpaq “ td P R : d|au.

I claim that the maximum-sized divisors of a are exactly the associates of a.

Here is the algorithm.

The Euclidean Algorithm

Let R be a Euclidean domain with size function N : Rzt0u Ñ N. For any nonzero
a, b P R, I claim that there exists a nonzero element d P R such that the common divisors
of a and b are the same as the divisors of d:

Divpa, bq “ Divpdq.

Since these two sets are equal, their maximum-sized elements are the same. It then
follows from Lemma (2) that any two greatest common divisors of a and b are associate
to d, hence associate to each other.

To prove that such an element d P R exists we will actually give an efficient algorithm to
compute it. To begin, we set r0 “ b and then divide a by r0 to obtain

a “ r0q1 ` r1, with r1 “ 0 or Npr1q ă Npr0q.

If r1 “ 0 then the algorithm stops. Otherwise, we divide r0 by r1 to obtain

r0 “ r1q2 ` r2, with r2 “ 0 or Npr2q ă Npr1q.

If r2 “ 0 then the algorithm stops. Otherwise, we continue in the same fashion, to
produce a sequence of nonzero remainders satisfying

Npr0q ą Npr1q ą Npr2q ą ¨ ¨ ¨ .
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This process cannot continue forever because there cannot be an infinite decreasing se-
quence of non-negative integers. Hence there exists some index n ě 0 such that rn ‰ 0
and rn`1 “ 0. I claim that this rn is the desired element d. Indeed, by repeated applica-
tion of Lemma (1) we have

Divpa, bq “ Divpa, r0q “ Divpr0, r1q “ Divpr1, r2q “ ¨ ¨ ¨ “ Divprn, 0q “ Divprnq.

To summarize: If R is a Euclidean domain then we have shown that the greatest common
divisor of two elements a, b P R is well-defined up to multiplication by units. Furthermore,
we have given an algorithm to compute this greatest common divisor. If Npaq ě Npbq then
Lamé’s Theorem (which we will not prove) says that the algorithm takes no more than 5d` 2
steps, where d is the number of decimal digits in Npbq. That’s pretty fast.

3.3 The Vector Euclidean Algorithm

Let R be a Euclidean domain. In the last section we defined the greatest common divisor
of two elements a, b P R (which we proved is unique up to multiplication by units) as the
common divisor of maximum size. But you may see other definitions in the literature. Here
we list three equivalent definitions.

Three Equivalent Definitions of GCD

Let R be a Euclidean domain with size function N : Rzt0u Ñ N and consider two nonzero
elements a, b P R. I claim that the following three definitions of greatest common divisor
are equivalent:

(1) A maximum-sized common divisor. To be precise, consider the set Divpa, bq of
common divisors. Then d is a greatest common divisor if d P Divpa, bq and if for
any e P Divpa, bq we have Npeq ď Npdq.

(2) A maximally-divisible common divisor. To be precise, we say that d is a greatest
common divisor if d P Divpa, bq and if for any e P Divpa, bq we have e|d.

(3) A minimum-sized nonzero R-linear combination. To be precise, for any a P R we
define the set of multiples aR “ tax : x P Ru and for any two elements a, b P R we
define the set of linear combinations:

aR` bR “ tax` by : x, y P Ru.

Note that 0 P aR ` bR . We say that d ‰ 0 is a greatest common divisor if
d P aR` bR and if for all e P aR` bR we have Npdq ď Npeq. This last definition is
the least intuitive but it generalizes more naturally to rings that are not Euclidean.
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The proof that these three definitions are equivalent will involve a modification of the Euclidean
algorithm. In the original statement of the Euclidean algorithm we completely ignored the
sequence of quotients q1, q2, . . .. This time we will keep track of the information that is
contained in the quotients.

Before presenting the general theorem I will give an example from the ring of integers. First
we compute the greatest common divisor of 3094 and 2513 using the standard Euclidean
algorithm, as described in the previous section:

3094 “ 2513 ¨ 1 ` 581
2513 “ 581 ¨ 4 ` 189
581 “ 189 ¨ 3 ` 14
189 “ 14 ¨ 13 ` 7
14 “ 7 ¨ 2 ` 0 STOP

Hence from the lemma in the previous section we have:

Divp3094, 2513q “ Divp2513, 581q

“ Divp581, 189q

“ Divp189, 14q

“ Divp14, 7q

“ Divp7, 0q

“ Divp7q.

Since the set of common divisors of 3094 and 2513 is equal to the set of divisors of 7, we
conclude that the greatest common divisors are ˘7 and we choose the positive one:

gcdp3094, 2513q “ 7.

But note that we have ignored the sequence of quotients: 1, 4, 3, 13, 2. What information
do these numbers contain? I claim that we can use them to find a solution x, y P Z to the
following equation:21

3094x` 2513y “ 7.

In order to do this we first consider the more general equation ax` by “ z. This equation has
two obvious solutions px, y, zq “ p1, 0, 3094q and px, y, zq “ p0, 1, 2513q. It also has the useful
property that any linear combination of solutions is still a solution. To be precise, consider
the following set of triples of integers:

V “ tpx, y, zq P Z3 : 3094x` 2513y “ zu Ď Z3.

If x “ px, y, zq and x1 “ px1, y1, z1q are any two elements of V then for any integers r, s P Z I
claim that the linear combination

rx` sx1 “ rpx, y, zq ` spx1, y1, z1q “ prx` sx1, ry ` sy1, rz ` sz1q

21It will become clear later why we want to solve this equation.
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is also in the set V .22 Indeed, by assumption we have ax` by “ z and ax1 ` by1 “ z1, hence

aprx` sx1q ` bpry ` sy1q “ rpax` byq ` spax1 ` by1q “ rz ` sz1.

The goal is to begin with the basic triples x1 “ p1, 0, 3094q and x2 “ p0, 1, 2513q and then to
perform Z-linear combinations until we obtain a triple of the form px, y, 7q for some integers
x, y P Z. The Euclidean algorithm guarantees that this is always possible, and the sequence
of quotients 1, 4, 3, 13, 2 tells us exactly which linear combinations to perform. We record the
computation in tabular form:

x y z x

1 0 3094 x1

0 1 2513 x2

1 ´1 581 x3 “ x1 ´ 1x2

´4 5 189 x4 “ x2 ´ 4x3

13 ´16 14 x5 “ x3 ´ 3x4

´173 213 7 x6 “ x4 ´ 13x5

359 ´442 0 x7 “ x5 ´ 2x6

Note that the values of z are precisely the sequence of remainders from the Euclidean algo-
rithm, thus we stop when we reach a remainder of 0. The final nonzero remainder is the
greatest common divisor and reading off the corresponding values of x and y tells us that

3094p´173q ` 2513p213q “ 7,

which solves the desired equation. Here is the general theorem. This result is also sometimes
called Bézout’s Identity.

The Vector Euclidean Algorithm

Let R be a Euclidean domain with size function N : Rzt0u Ñ N. For any nonzero
a, b P R we showed in the previous section that there exists a greatest common divisor
gcdpa, bq P R, which is unique up to multiplication by units. I claim now that there exist
(non-unique) elements x, y P R satisfying23

ax` by “ gcdpa, bq.

To prove the existence of such x, y we will actually give an algorithm to compute them.
First, consider the set of triples px, y, zq P R3 satisfying ax` by “ z:

V “ tpx, y, zq P R3 : ax` by “ zu Ď R3.

This set is closed under R-linear combinations,24 since for any vectors x “ px, y, zq and
x1 “ px1, y1, z1q in V and for any elements r, r1 P R, the vector rx` r1x1 “ prx` r1x1, ry`

22Jargon: The set Z3 is not quite a vector space because Z is not a field. Instead we call it a Z-module. The
fact that V Ď Z3 is closed under Z-linear combinations makes it a Z-submodule.
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r1y1, rz ` r1z1q is also in V :

aprx` r1x1q ` bpry ` r1y1q “ rpax` byq ` r1pax1 ` by1q “ rz ` rz1.

Our goal is to start with the basic vectors x1 “ p1, 0, aq and x2 “ p0, 1, bq in V and to
form R-linear combinations until we obtain a vector of the form px, y, gcdpa, bqq P V ,
from which it will follow that ax ` by “ gcdpa, bq. To do this, we consider the steps in
the usual (non-vector) Euclidean Algorithm:

a “ bq1 ` r1,

b “ r1q2 ` r2,

r1 “ r2q3 ` r3,

...

ri´2 “ ri´1qi ` ri,

...

rn´2 “ rn´1qn ` rn,

rn´1 “ rnqn`1 ` 0,

where rn “ gcdpa, bq. If we recursively define the vector xi`2 “ xi ´ qixi`1 then it will
follow that xn`2 “ px, y, rnq for some x, y P R. Indeed, if we assume for induction that
xi “ px

1, y1, ri´2q and xi`1 “ px
2, y2, ri´1q for some x1, y1, x2, y2 P R then it follows that

xi`2 “ xi ´ qixi`1 “ px
1 ´ qix

2, y1 ´ qiy
2, ri´2 ´ qiri´1q “ px, y, riq

for some x, y P R, as desired. Anyway, that’s how a computer does it. A human would
find it more convenient to organize all of the computations in a table:

x y z

1 0 a
0 1 b
1 ´q1 r1

´q2 1` q1q2 r2

1` q2q3 ´q1 ´ q3 ´ q1q2q3 r3

...
...

...
something something gcdpa, bq

In summary, for any nonzero elements a, b of a Euclidean domain and for any of their greatest

23It doesn’t matter which GCD we choose since if d is some GCD satisfying d “ ax` by then any other GCD
has the form du for some unit u P Rˆ, hence du “ apxuq ` bpyuq for some xu, yu P R.

24If R were a field then R3 would be a vector space and we would call V Ď R3 a vector subspace. If R is not
a field then we use the more general terms R-module and R-submodule.
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common divisors d, there exist some elements x, y satisfying

ax` by “ d.

This innocuous looking result unlocks the theory of prime factorization, as we will discuss in
the next section. For now, we can use it to prove the equivalence of the three definitions of
GCD discussed at the beginning of this section.

Proof that (1)ô(2). Let d be a “maximally-divisible” common divisor of a and b. That
is, suppose that d|a and d|b, and suppose that for all e satisfying e|a and e|b we must have
e|d. In this case we want to show that d is a “maximum-sized” common divisor. This follows
immediately since for any other common divisor e we must have e|d, which implies that
Npeq ď Npdq. Conversely, let d be a “maximum-sized” common divisor of a and b. In order to
show that d is “maximally-divisible” let e be any other common divisor. Our goal is to show
that e|d. To do this we must use the result of the Vector Euclidean Algorithm just discussed.
It tells us that there exist x, y P R satisfying

ax` by “ d.

Then since e|a and e|b we have ek “ a and e` “ b for some k, ` P R, which implies that

d “ ax` by “ ekx` e`y “ epkx` `yq,

and hence e|d. ˝

The third equivalent definition has significant theoretical importance so we will isolate it as a
theorem.

Bézout’s Identity

Let a, b P R be any two nonzero elements of a Euclidean domain and let d P R be their
greatest common divisor. Then I claim that

aR` bR “ dR.

To explain this notation, dR “ tdr : r P Ru is the set of multiples of d and aR ` bR “
tar ` bs : r, s P Ru is the set of “R-linear combinations” of a and b.

To prove this we must show both inclusions. To see that aR ` bR Ď dR, consider any
element ar ` bs P aR ` bR. Since d is a common divisor of a and b we have dk “ a and
d` “ b for some k, ` P R and it follows that

ar ` bs “ dkr ` d`s “ dpkr ` `sq,

so that ar` bs is an element of dR. Conversely, to see that dR Ď aR` bR, consider any
element dr P dR. From the Vector Euclidean Algorithm there exist x, y P R satisfying
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ax` by “ d. It follows that

dr “ pax` byqr “ apxrq ` bpyrq,

so that dr is an element of aR` bR.

Proof that (1) and (2) are equivalent to (3). Let d be any GCD of a, b in the sense of
definition (1) or (2). Then from the basic Euclidean Algorithm we know that the set of all
GCDs of a and b are just the associates of d, and from Bézout’s Identity just proved we have

aR` bR “ dR.

It remains to show that the minimum-sized nonzero elements of dR are precisely the associates
of d.25 First of all, we note that d itself is a minimum-sized element of dR since d “ d1 P dR
and since any element dr satisfies Npdq ď Npdrq. This also shows that Npdq is the minimum
size of an element of dR. Next we observe that any associate e „ d is a minimum-sized element
of dR. Indeed, suppose that e „ d so that d “ eu and e “ du´1 for some unit u P Rˆ. This
implies that d|e (in particular, e P dR) and e|d. Then from properties of the size function we
have Npdq ď Npeq and Npeq ď Npdq, hence Npeq “ Npdq. It only remains to show that any
minimum-sized element of dR is associate to d. For this, let m “ dk P dR be any multiple of
d satisfying Npmq “ Npdq. If we can prove that m|d then it will follow from the usual proof26

that m „ d. So let us divide d by m to obtain q, r P R satisfying
"

d “ mq ` r,
r “ 0 or Nprq ă Npmq.

If r ‰ 0 then we must have Nprq ă Npmq. On the other hand, we know that r “ d ´mq “
d ´ dkq “ dp1 ´ kqq so that d|r and hence Nprq ě Npdq “ Npmq. This contradiction shows
that r “ 0 and hence m|d. ˝

We end this section by considering the special case when gcdpa, bq “ 1.

Definition of Coprime

Let R be a Euclidean domain. We say that nonzero elements a, b P R are coprime (or
relatively prime) when 1 is a greatest common divisor, hence the units Rˆ are the set of
common divisors. In this case it is convenient to write

gcdpa, bq “ 1,

25In other words, we need to show that the minimum-sized multiples of d are the associates of d. Compare this
to our lemma for the Euclidean Algorithm which says that the maximum-sized divisors of d are the associates
of d, which you will prove on the homework. Pay attention because the proofs are almost identical.

26If d|m and m|d then we have dk “ m and m` “ d for some k, `, which implies mp1´ k`q “ 0. Since m ‰ 0
this implies that 1´ k` “ 0 so that k, ` are units.
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even though the GCD is not generally unique. If a, b are coprime then it follows from
the Vector Euclidean Algorithm that we have

ax` by “ 1

for some x, y P R. Conversely, if such x, y exist then I claim that a, b are coprime. Indeed,
suppose that ax ` by “ 1 and let d be any common divisor of a and b, so that dk “ a
and d` “ b for some k, ` P R. It follows that

1 “ ax` by “ dkx` d`y “ dpkx` `yq,

and hence d|1. But the divisors of 1 are precisely the units.

3.4 Unique Prime Factorization

The previous section was fairly technical. The key result was the existence for any nonzero
a, b P R in a Euclidean domain of elements x, y P R satisfying

ax` by “ gcdpa, bq.

In this section we will exploit this result to prove the important Fundamental Theorem of
Arithmetic, which says that elements of a Euclidean domain have “unique prime factorization”.
Before stating the result we must define the word “prime”.

Definition of Prime

Recall that a positive integer p ě 2 is called prime when its only positive divisors are
1 and itself. In a general Euclidean domain R we say that a nonzero, nonunit element
p P R is prime when its only divisors are units and the associates of p. In other words:

d|p ùñ d „ 1 or d „ p.

Let me also record a useful property of this definition. If a nonunit, nonzero element
a P R is not prime then by definition it can be expressed as

a “ bc where b, c are not units and not associate to a.

Applying the size function gives Npbq ď Npaq and Npcq ď Npaq. But you will show on
the homework that the maximum-sized divisors of a are the associates of a, hence in this
situation we must have Npbq ă Npaq and Npcq ă Npaq.

The reason for saying that units are not prime is purely conventional.27 We do this so that
factorization into primes will be unique. Indeed, the following factorizations of 60 should be

27The reason for saying that 0 is not prime is more subtle and we won’t discuss this.
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considered the same:

60 “ 2 ¨ 2 ¨ 3 ¨ 5 “ 2 ¨ 2 ¨ 3 ¨ 5 ¨ 1 “ 2 ¨ 2 ¨ 3 ¨ 5 ¨ 1 ¨ 1 “ 2 ¨ 2 ¨ 3 ¨ 5 ¨ 1 ¨ 1 ¨ 1 ¨ ¨ ¨ .

We should also consider prime factorizations to be the same if they differ by rearranging the
terms or inserting an even number of negative signs:

60 “ 2 ¨ 2 ¨ 3 ¨ 5

“ 3 ¨ 2 ¨ 5 ¨ 2

“ p´3qp´2q ¨ 5 ¨ 2

“ p´1q ¨ 5 ¨ 2 ¨ p´3q ¨ 2

“ etc.

The following theorem is sometimes called the Fundamental Theorem of Arithmetic.

Unique Prime Factorization

Let a P R be a nonzero, nonunit element of a Euclidean domain. Then:

(1) We can express a as a product of prime elements.

(2) The prime factors are unique up to permutations and multiplication by units.

In other words, in a Euclidean domain there is a concept of prime multiplicity. Given a
prime element p P R there is a well-defined function νp : Rzt0u Ñ N such that νppaq is
the multiplicity of the prime p in the factorization of a. For example, we have

ν2p60q “ 2,

ν3p60q “ 1,

ν5p60q “ 1,

ν7p60q “ 0.

By convention we will also define νppuq “ 0 for all primes p and units u.

Proof of (1). We will use induction on the size of a. If a is prime then we are done. Otherwise
from the remarks above we can write a “ bc with Npbq ă Npaq and Npcq ă Npaq. Since b
and c are strictly smaller than a we can assume that each is a product of primes. Hence a is
also a product of primes. ˝

For the proof of uniqueness we need the following famous lemma.

54



Euclid’s Lemma

Let p P R be a prime element of a Euclidean domain. Then for all a, b P R we have

p|ab ùñ p|a or p|b.

The proof is classic and it makes a good exam problem. If p|pabq and p - a then we
will show that p|b. To do this we first observe that gcdpa, pq “ 1. Indeed, let d be any
common divisor of a and p. Since d|p and p is prime we must have d „ 1 or d „ p. But if
d „ p then since d|a we would have p|a. Contradiction. It follows that d „ 1, hence the
only common divisors of a and p are the units. In other words, we have gcdpa, pq “ 1,
hence the Vector Euclidean Algorithm tells us that there exist x, y P R satisfying

ax` py “ 1.

Now the trick is to multiply both sides by b and use the fact that p|pabq to write ab “ pk
for some k P R:

ax` py “ 1

abx` pby “ b

pkx` pby “ b

ppkx` byq “ b.

We conclude that p|b as desired.

The hypothesis that p be prime is necessary. For example, we have 4|p6 ¨ 10q but 4 - 6 and
4 - 10. Now here is the proof of uniqueness.

Proof of Uniqueness. Suppose that we have

p1p2 ¨ ¨ ¨ pk “ uq1q2 ¨ ¨ ¨ q`

for some prime elements p1, . . . , pk, q1, . . . , q` P R and unit u P Rˆ. In this case I claim that
k “ ` and that we can rearrange the factors so that p1 „ q1, p2 „ q2, . . . , pk „ qk. To see this
we observe that p1 divides the left hand side, so it also divides the right hand side:

p1|pq1q2 ¨ ¨ ¨ q`q.

By applying induction to Euclid’s Lemma we must have p1|qi for some i. After rearranging
the factors if necessary we may assume that p1|q1. Since q1 is prime this implies that p1 „ 1
or p1 „ q1. But p1 „ 1 is impossible because p1, being prime, is not a unit. Hence we must
have p1 „ q1 so that p1 “ u1q1 for some unit u1 P Rˆ. Finally, we cancel p1 from both sides:

p1p2 ¨ ¨ ¨ pk “ uq1q2 ¨ ¨ ¨ q`
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p1p2 ¨ ¨ ¨ pk “ uu1p1q2 ¨ ¨ ¨ q`

p2 ¨ ¨ ¨ pk “ uu1q2 ¨ ¨ ¨ q`.

And the result follows by induction. ˝

All of these ideas were implicit in Euclid’s Elements, Book X. The explicit proof was first
written down by Gauss in the case of integers. Simon Stevin was the first to observe that the
same arguments apply to factorization of polynomials.

3.5 Irreducible Polynomials

Prime factorization in the ring Z is a familiar concept. However, since Frxs is also a Euclidean
domain, the previous theorem also tells us that polynomials have unique prime factorization.
You should be aware, however, that prime elements of the ring Frxs are more commonly called
irreducible polynomials.

Definition of Irreducible Polynomials

Let fpxq be a nonzero, nonconstant polynomial with coefficients in a field F. We say that
fpxq is irreducible over F if for all polynomials gpxq, hpxq with coefficients in F we have

fpxq “ gpxqhpxq ùñ gpxq or hpxq is constant.

Note that we say “irreducible over F” instead of just “irreducible”. For example, the polyno-
mial x2 ` 1 is reducible (i.e., not irreducible) over C because

x2 ` 1 “ px´ iqpx` iq.

However, I claim that x2`1 is irreducible over R. To see this, let us suppose for contradiction
that x2 ` 1 “ gpxqhpxq for some nonconstant polynomials gpxq, hpxq with real coefficients.
Taking degrees gives

2 “ degpx2 ` 1q “ degpgq ` degphq,

which since gpxq, hpxq are nonconstant implies that degpgq “ degphq “ 1. In particular, this
tells us that gpxq “ ax` b for some real a, b P R with a ‰ 0, which implies that ´b{a P R is a
real root of x2 ` 1 because

p´b{aq2 ` 1 “ pap´b{aq ` bqhp´b{aq “ 0 ¨ hp´b{aq “ 0.

But we know that the polynomial x2 ` 1 has no real roots because any real number α P R
satisfies α2 ě 0 and hence α2 ` 1 ě 1.

These observations are quite useful so we record them as a theorem.
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Irreducible Polynomials of Small Degree

Let fpxq be a polynomial with coefficients in a field F.

(1) If degpfq “ 1 then fpxq is irreducible over any field containing F.

(2) If degpfq “ 2 or 3 then I claim that

fpxq is reducible over F ðñ fpxq has a root in F.

To prove (1), suppose for contradiction that degpfq “ 1 and that fpxq “ gpxqhpxq for
some nonconstant gpxq, hpxq with roots in a field containing F. Then taking degrees gives
a contradiction:

1 “ degpfq “ degpgq ` degphq ě 1` 1 “ 2.

To prove one direction of (2), let us suppose that fpaq for some a P F. Then from
Descartes’ Theorem we have fpxq “ px´aqgpxq for some gpxq P Frxs of degree degpfq´1.
Since degpfq ě 2 this polynomial gpxq is nonconstant and we conclude that fpxq is re-
ducible over F, as desired. For the other direction of (2), let us suppose that fpxq is
reducible over F, so that fpxq “ gpxqhpxq for some nonconstant gpxq, hpxq with coeffi-
cients in F. Taking degrees gives

degpgq ` degphq “ degpfq “ 2 or 3.

Since degpgq,degphq ě 1 this implies that we must have degpgq “ 1 or degphq “ 1.
Without loss of generality, suppose that degpgq “ 1, so that gpxq “ ax ` b for some
a, b P F with a ‰ 0. Then it follows that ´b{a P F is a root of fpxq:

fp´b{aq “ pap´b{aq ` bqhp´b{aq “ 0 ¨ hp´b{aq “ 0.

For example, we have already discussed the prime factorization of xn ´ 1 over C:28

xn ´ 1 “ px´ 1qpx´ ωqpx´ ω2q ¨ ¨ ¨ px´ ωn´1q,

And over R:

xn ´ 1 “

#

px´ 1q
śpn´1q{2
k“1 px2 ´ 2 cosp2πk{nqx` 1q if n is odd,

px´ 1qpx` 1q
śpn´2q{2
k“1 px2 ´ 2 cosp2πk{nqx` 1q if n is even.

Indeed, for any integer k P Z such that ωk is not real, its complex conjugate ω´k is also not
real. It follows that the quadratic polynomial

px´ ωkqpx´ ω´kq “ x2 ´ 2 cosp2πk{nq ` 1

28Here we take ω “ e2πi{n.
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has no real roots, hence is irreducible over R.

But this criterion does not work for polynomials of degree ě 4. For example, we have seen
that the polynomial x4 ` 4 has no real roots. Nevertheless, it is reducible over R:

x4 ` 4 “ px2 ` 2x` 2qpx2 ´ 2x` 2q.

In general it is quite difficult to prove that a given polynomial is irreducible. To give a taste
of things to come, I will just show you the prime factorizations of xn ´ 1 over Q for the first
several values of n:

x2 ´ 1 “ px´ 1qpx` 1q

x3 ´ 1 “ px´ 1qpx2 ` x` 1q

x4 ´ 1 “ px´ 1qpx` 1qpx2 ` 1q

x5 ´ 1 “ px´ 1qpx4 ` x3 ` x2 ` x` 1q

x6 ´ 1 “ px´ 1qpx` 1qpx2 ` x` 1qpx2 ´ x` 1q

x7 ´ 1 “ px´ 1qpx6 ` x5 ` x4 ` x3 ` x2 ` 1q

x8 ´ 1 “ px´ 1qpx` 1qpx2 ` 1qpx4 ` 1q

x9 ´ 1 “ px´ 1qpx2 ` x` 1qpx6 ` x3 ` 1q.

Do you notice any patterns here?

4 Some Number Theory

4.1 Modular Arithmetic

Before returning to the theory of polynomials in the next chapter, we pause to examine some
consequences of unique prime factorization in the ring of integers. Some of this material was
developed in the homework.

Definition of Equivalence Relations

Let S be a set. A relation on S is just a subset of the cartesian product set:

R Ď S ˆ S “ tpx, yq : a, b P Su.

However, instead of writing px, yq P R we will write xRy, “x is related to y” by R. We
will say that R is an equivalence relation when it satisfies the following three properties:

• @x P S, xRx (reflexive)

• @x, y P S, xRy implies yRx (symmetric)

• @x, y, z P S, xRy and yRz imply xRy (transitive)

In this case will use a symbol such as „, », «, – or ” to emphasize that R behaves like
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an equals sign.

We have already seen one equivalence relation in this course. For elements a, b P R in a ring
R we have defined the relation of association:

a „ b ðñ Du P Rˆ, au “ b.

Let us verify that this is, indeed, an equivalence:

• Reflexive. Since 1 is a unit we have a1 “ a and hence a „ a.

• Symmetric. Suppose that a „ b so that au “ b for some unit u P Rˆ. By definition
this means that u has a multiplicative inverse u´1, so that bu´1 “ a. Since the element
u´1 is also a unit this implies that b „ a.

• Transitive. Suppose that a „ b and b „ c so that au “ b and bv “ c for some
units u, v P Rˆ. By definition this means that u and v have multiplicative inverses u´1

and v´1. But then the product uv is also a unit with puvq´1 “ u´1v´1. Then since
apuvq “ pauqv “ bv “ c we conclude that a „ c as desired.

The next concept was introduced by Gauss in his Disquisitiones Arithmeticae (1801). We still
use the same notation as he did.

Definition of Congruence Modulo and Integer

Fix an integer n ě 1. Then for all integers a, b P Z we define the following notation:

a ” b mod n ðñ n|pa´ bq.

In this case we say that a is congruent to b modulo n. Let us verify that this is an
equivalence relation on the set Z:

• Reflexive. Since n0 “ a´ a we have n|pa´ aq and hence a ” a mod n.

• Symmetric. Let a ” b mod n so that n|pa ´ bq and hence a ´ b “ nk for some
k P Z. Then we have b´ a “ np´kq so that n|pb´ aq and hence b ” a mod n.

• Transitive. Let a ” b mod n and b ” c mod n so that a´ b “ nk and b´ c “ n`
for some integers k, ` P Z. Then we have

a´ c “ pa´ bq ` pb´ aq “ nk ` n` “ npk ` `q,

so that n|pa´ cq and hence a ” c mod n.
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The main reason for defining this relation is that it behaves well with respect to addition and
multiplication of integers. To be precise, let us suppose that a ” a1 mod n and b ” b1 mod n,
so that a´ a1 “ nk and b´ b1 “ n` for some integers k, ` P Z. Then we have

rpa` bq ´ pa1 ` b1qs “ pa´ a1q ` pb´ b1q “ nk ` n` “ npk ` `q,

which implies that a` b ” a1 ` b1 mod n, and we have

ab´ a1b1 “ ab´ ab1 ` ab1 ´ a1b1 “ apb´ b1q ` pa´ a1qb1 “ an`` nkb1 “ npa`` kb1q,

which implies that ab ” a1b1 mod n. This just means that we can perform arithmetic using
the symbol ” instead of “ and we won’t get into trouble. For example, since 3 ” 13 and
4 ” ´6 mod 10, we should also have 3 ¨ 4 ” 13 ¨ p´6q mod 10. And, indeed,

13 ¨ p´6q ” ´78 ” 2 ” 12 ” 3 ¨ 4 mod 10.

We can use these operations to define a new family of finite rings.

The Ring Z{nZ (i.e., Modular Arithmetic)

Fix an integer n ě 1. I claim that every integer a P Z is congruent mod n to a unique
integer r in the set t0, 1, . . . , n´1u. Indeed, dividing a by n gives some q, r P Z satisfying

"

a “ nq ` r,
0 ď r ă n,

and hence a ” nq ` r ” n0` r ” r mod n. To see that this integer r is unique, suppose
that we have a ” r ” r1 mod n for some integers r, r1 in the set t0, 1, . . . , n ´ 1u. Our
goal is to show that r “ r1. First we observe that r ´ r1 ” a ´ a ” 0 mod n, so that
n|pr´ r1q. Now let us assume for contradiction that r ‰ r1. Without loss of generality we
can assume that r1 ă r and hence r ´ r1 ą 0. But then the condition n|pr ´ r1q implies
n ď r ´ r1 and we obtain the desired contradiction:

r ă n ď r ´ r1 ď r.

In summary, we can define a ring structure on the finite set

Z{nZ “ t0, 1, 2, . . . , n´ 1u.

The ring operations are addition and multiplication mod n and the special elements are
0 and 1. It is boring to check that the eight ring axioms are satisfied so we won’t bother.

Remark: The theorem that every a P Z is congruent mod n to a unique integer r in the set
t0, 1, . . . , n´ 1u is equivalent to the existence and uniqueness of remainders in the ring Z. We
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previously proved the existence but we did not prove the uniqueness until now. Thus we could
view Z{nZ “ t0, 1, . . . , n ´ 1u as the set of possible remainders mod n. For this reason, the
ring structure of Z{nZ is sometimes called the arithmetic of remainders. More commonly it
is called modular arithmetic.

4.2 Some Finite Fields

In the previous section we defined a family of finite rings Z{nZ, one for each positive integer
n ě 1. For example, here are the addition and multiplication tables for the ring Z{6Z:

` 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

¨ 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

The following identities are quite interesting:

2 ¨ 3 ” 3 ¨ 2 ” 4 ¨ 3 ” 3 ¨ 4 ” 0 mod 6.

They tell us that the ring Z{6Z is not an integral domain, thus the theory developed in the
previous chapter does not apply to it. The problem here is that the number 6 can be factored
as 2 ¨ 3. The situation is better for prime moduli.

The Ring Z{pZ is a Field

Let p ě 2 be a prime integer and consider the ring Z{pZ of size p. Recall Euclid’s Lemma,
which says that

p|ab ùñ p|a or p|b.

Since the statement p|c is equivalent to c ” 0 mod p, this becomes

ab ” 0 mod p ùñ a ” 0 mod p or b ” 0 mod p.

In other words, the ring Z{pZ is an integral domain. You showed on a previous homework
that every finite integral domain is a field. Let me reproduce the proof here. For any
nonzero a P Z{pZ we consider the multiplication function µa : Z{pZ Ñ Z{pZ defined by
µapbq “ ab. Since Z{pZ is an integral domain this function is injective:29

µapbq ” µapcq

ab ” ac

apb´ cq ” 0

pb´ cq ” 0
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b ” c.

But any injective function from a finite set to itself must also be surjective. Hence the
element 1 P Z{pZ is expressible as µapbq for some b P Z{pZ. In other words, each nonzero
element a P Z{pZ has a multiplicative inverse

µapbq ” 1

ab ” 1

a´1 ” b.

The proof above tells us that inverses exist in the ring Z{pZ but it does not tell us how to find
them. Since there are only finitely many possibilities we could always just check them all. For
example, to find the inverse of 3 mod 7 we could just multiply 3 by every element of Z{7Z:

3 ¨ 1 ” 3

3 ¨ 2 ” 6

3 ¨ 3 ” 9 ” 2

3 ¨ 4 ” 12 ” 5

3 ¨ 5 ” 15 ” 1

3 ¨ 6 ” 18 ” 4.

We see that 3 ¨ 5 ” 1 mod 7 and hence 3´1 ” 5 mod 7. In the worst case scenario this method
will use p´ 1 computations to find the inverse of a nonzero element of Z{pZ.

Luckily we can do much better.

Computing Inverses in Z{pZ

Let p ě 2 be prime and consider a nonzero element a P Z{pZ. In other words, consider
an integer a P Z such that p - a. Since p is prime this implies that gcdpp, aq “ 1, hence
we can use the Vector Euclidean Algorithm to find some integers x, y P Z such that

px` ay “ 1.

Then reducing both sides of this equation mod p gives

1 ” px` ay ” 0x` ay ” ay

and it follows that a´1 ” y mod p. For example, we compute 346´1 mod 1009.30 We
consider the set of triples px, y, zq satisfying 1009x ` 346y “ z. Then starting with the
easy triples p1, 0, 1009q and p0, 1, 346q we perform linear combinations until we obtain a

29All congruences are mod p.
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triple of the form px, y, 1q:31

x y z

1 0 1009
0 1 346
1 ´2 317
´1 3 29
11 ´32 27
´12 35 2
167 ´487 1

We conclude that 1009p167q ` 346p´487q “ 1. Reducing this equation mod 1009 gives

1 ” 1009p167q ` 346p´487q ” 0p167q ` 346p´487q ” 346p´487q,

and hence
346´1 ” ´487 ” 522 mod 1009.

Just to be sure, let’s check:

346 ¨ 522 ” 180612 ” 1009 ¨ 179` 1 ” 0 ¨ 179` 1 ” 1 mod 1009.

Note that this method only used 5 steps. In general, the Vector Euclidean Algorithm
uses less than log2paq steps to compute the inverse of a mod p.

The results of computations in Z{pZ have “psedorandom” behavior. Even though the algo-
rithm is perfectly deterministic, the results seem to bounce around randomly. For example, if
we change a just a little bit then its inverse may change by a lot:

346´1 ” 522

347´1 ” 410

348´1 ” 519

349´1 ” 717

350´1 ” 320

There is no discernible pattern. This is one reason by modular arithmetic is used in cryp-
tography. The next section will discuss a theorem that is at the heart of the most popular
public-key cryptosystem.

30My computer told me that 1009 is prime.
31Strictly speaking, we do not need to include the x column.
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4.3 The Euler-Fermat Theorem

Just as inverses behave pseudorandomly in the field Z{pZ, powers also behave pseudorandomly.
For example, here are the first several powers of the element 346 P Z{1009Z:

3461 ” 346

3462 ” 972

3463 ” 352

3464 ” 360

3465 ” 93

3466 ” 806

3467 ” 595

This sequence seems to have no pattern. But we know that this cannot go on forever because
the set Z{1009Z is finite. I claim that the sequence of powers will eventually hit 1 and then it
cycle through the same sequence endlessly.

To prove this, we first establish an exponential notation for elements of Z{pZ. For any positive
integer n ě 1 and for any nonzero element a P Z{pZ we know that an is also nonzero mod p
because Z{pZ is a domain. Furthermore, the inverse of an is just pa´1qn because

an ¨ pa´1qn ” aa ¨ ¨ ¨ a
loomoon

n times

¨ a´1a´1 ¨ ¨ ¨ a´1
looooooomooooooon

n times

” 1 mod p.

This suggests that we should define the notation an for any integer value of n, including
zero and negative integers:

an “

$

’

&

’

%

an n ě 1,

1 n “ 0,

pa´1q´n n ď ´1.

Finally, we observe that this notation satisfies the general rule

am`n ” am ¨ an mod p for any integers m,n P Z.

The following theorem illustrates the utility of this notation.

The Multiplicative Order of an Element

Let p be prime. For any nonzero a P Z{pZ we consider the sequence of powers mod p:

a, a2, a3, a4, . . . P Z{pZ.

Since Z{pZ is finite, some element of this sequence must be repeated. Let’s say ak ” a`

mod p for some integers 1 ď ` ă k. Then multiplying both sides by a´` gives

ak ” a`
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ak ¨ a´` ” a` ¨ a´`

ak´` ” 1.

We have shown that ak´` ” 1 mod p for some positive integer k ´ ` ě 1. The smallest
such integer is called the order of a mod p:

ordppaq “ mintr ě 1 : ar ” 1 mod pu.

Thus the sequence of powers a, a2, a3, . . . mod p will reach 1 after ordppaq steps, after
which the sequence will repeat. For example, consider the powers of 3 mod 11:

k 3k mod 11

1 3
2 9
3 5
4 4
5 1
6 3
7 9
8 5
9 4
10 1
...

...

We see from this table that ord11p3q “ 5, and the sequence repeats after every 5 steps.

We have proved the existence of the numbers ordppaq P N for all nonzero elements a P Z{pZ.
It is difficult to predict the exact value of ordppaq for a given value of a. However, in this
section we will prove the important theorem that the order always divides p´ 1:

ordppaq|pp´ 1q for all nonzero elements a P Z{pZ.

This theorem was stated by Pierre de Fermat in a letter to Frénicle de Bessy in 1640. After
giving some examples, Fermat said: “I would send you the demonstration, if I did not fear it
being too long.”32 This was a common way of communicating scientific discoveries at the time,
since there were no scientific journals. The first published proofs of Fermat’s theorem were
given by Euler in the 1700s. We will present Euler’s second proof from 1761 since it involves
a concept that will be important in this course: the concept of a group. We will present the
modern definition, even though this concept was not formalized until the late 1800s.

Informally, a group is a set with an invertible, associative, binary operation. The main exam-
ples are addition `, multiplication ¨ and functional composition ˝. Each of these examples also

32Oystein Ore, Number theory and its history, page 272.
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has a special “identity element”, which is 0 for addition, 1 for multiplication, and the identity
function id for functional composition. Because functional composition is not commutative,
we do not assume that a group operation is commutative.

The Concept of a Group

A group consists of a set G together with a binary operation ˚ : G ˆ G Ñ G, which we
write as a ˚ b, and a special element ε P G satisfying the following three axioms:

(G1) @a, b, c P G, a ˚ pb ˚ cq “ pa ˚ bq ˚ c (associative)

(G2) @a P G, a ˚ ε “ ε ˚ a “ a (identity)

(G3) @a P G, Db P G, a ˚ b “ ε and b ˚ a “ ε (inverses)

We say that the group pG, ˚, εq is abelian if it satisfies the additional axiom33

(G4) @a, b P G, a ˚ b “ b ˚ a (commutative)

Axiom (G3) says that any element of a group has a two-sided inverse. In fact, this inverse
must be unique. To see this, suppose that we have a ˚ b “ b ˚ a “ ε and a ˚ c “ c ˚ a “ ε.
It follows that

b “ b ˚ ε (G2)

“ b ˚ pa ˚ cq

“ pb ˚ aq ˚ c (G1)

“ ε ˚ c

“ c. (G2)

Since the inverse of a is unique, we give the name a´1. This notation makes sense when
˚ is multiplication or functional composition, but is less appropriate when ˚ is addition.
In that case we might sometimes write ´a for the inverse.

We have already seen some examples of groups. If pR,`, ¨, 0, 1q is a ring then the structure
pR,`, 0q is an abelian group. The structure pR, ¨, 1q is not a group34 because it contains the
element 0 P R which has no multiplicative inverse, and it may contain other non-invertible
elements. However, the set of units pRˆ, ¨, 1q is an abelian group, called the group of units of
the ring. The ring R is a field if and only if Rˆ “ Rzt0u.

33This is a peculiar notation. It would be more sensible to call this a commutative group. This “abelian”
notation was introduced by Leopold Kronecker to commemorate from a theorem of Niels Henrik Abel, which
says that a polynomial equation with a commutative “Galois group” is solvable by radicals. We will discuss
this next semester.

34I don’t want to overwhelm you with terminology, but a structure pG, ˚, εq satisfying axioms (G1) and (G2)
is called a monoid.
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So far we have not studied any examples of non-abelian groups. These kind of groups come
from functional composition. Here are two of the prototypical examples:

• Given a field F and a positive integer n ě 1 we define

GLnpFq “ the set of invertible nˆ n matrices with entries from F.

This is a group, called a general linear group, with group operation given by matrix
multiplication and identity element given by the nˆ n identity matrix.

• Invertible functions from a finite set to itself are called permutations. The permutations
of a set form a group under composition, with the identity permutations as the identity
element. The group of permutations of t1, 2, . . . , nu is called the symmetric group Sn.

Our discussion of multiplicative order generalizes to any group.

Order of a Group Element

Let pG, ˚, εq be a group. Then for any element a P G and for any integer n P Z we define
the exponential notation

an “

$

’

&

’

%

a ˚ a ˚ ¨ ¨ ¨ ˚ a (n times) if n ě 1

ε if n “ 0

a´1 ˚ a´1 ˚ ¨ ¨ ¨ ˚ a´1 (´n times) if n ď ´1

One can check that this notation satisfies am`n “ am ˚ an for all integers m,n P Z. We
define the order of a P G as the minimum positive exponent r such that ar “ ε, or as 8
if no such exponent exists:

ordGpaq “ mintr ě 1 : ar “ εu P Zě1 Y t8u.

If G is a finite then then I claim that ordGpaq is finite. Indeed, in this case the sequence
of powers a, a2, . . . P G must contain repetition, so that ak “ a` for some k ą ` ě 1.
Then we have

ak “ a`

ak ˚ a´` “ a` ˚ a´`

ak´` “ a0

ak´` “ ε

for some positive integer k ´ ` ě 1.
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The Euler-Fermat theorem shows us that the order of an element in a finite group is related to
the size of the group. We will prove this in modern group-theoretic language but the ideas are
due to Euler (1761). We will discuss afterwards how this abstract version implies the classical
theorems of Euler and Fermat.

The Euler-Fermat Theorem

Let pG, ˚, εq be a finite abelian group. Then for all a P G we have35

a#G “ ε.

To save space we will write a ˚ b “ ab and ε “ 1, but the proof is completely general.
Consider the function µa : G Ñ G defined by µapbq “ ab. This function is injective
because every element of a group is invertible:

µapbq “ µapcq

ab “ ac

a´1ab “ a´1ac

b “ c.

If G is finite then the function µa is also surjective. To be precise, suppose that m “

#G and label the group elements as G “ tb1, b2, . . . , bmu. Then we also have G “

tab1, ab2, . . . , abmu with the group elements possibly listed in a different order. Indeed,
every element bj has the form abi for some i because µa is surjective, and abi “ abj
implies bi “ bj because µa is injective. Now we “multiply” all of the group elements
together in two different ways:

b1b2 ¨ ¨ ¨ bm “ pab1qpab2q ¨ ¨ ¨ pabmq

((((
((

b1b2 ¨ ¨ ¨ bm “ am((((
((

b1b2 ¨ ¨ ¨ bm

1 “ am.

Euler’s original application was to the group of units of the finite ring Z{nZ. I claim that

pZ{nZqˆ “ ta P Z{nZ : gcdpa, nq “ 1u.

Indeed, if gcdpa, nq “ 1 then from Bézout’s Identity we have ax ` ny “ 1 for some x, y P Z.
It follows that

ax` ny “ 1

35In fact, this theorem also holds for finite non-abelian groups, but the proof is harder.
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ax´ 1 “ np´yq

n | pax´ 1q

ax ” 1 mod n,

and hence a P Z{nZ is a unit. Conversely, suppose that a P Z{nZ is a unit, so that ab ” 1
mod n for some b P Z. By definition this means that ab ´ 1 “ nk for some k P Z. If d P Z
is any common divisor of a and n then the equation 1 “ ab ´ nk implies that d|1 and hence
d “ ˘1. In other words, gcdpa, nq “ 1.

Euler’s Totient Theorem

For any integer n ě 1 we define Euler’s totient function36

φpnq “ #pZ{nZqˆ “ #ta P Z : 1 ď a ă n and gcdpa, nq “ 1u.

Since φpnq is the size of the abelian group pZ{nZqˆ, the previous theorem tells us that

aφpnq ” 1 mod n for all a P pZ{nZqˆ.

In other words,

aφpnq ” 1 mod n for all a P Z such that gcdpa, nq “ 1.

If p is prime then Z{pZ is a field. In other words, every nonzero element of Z{pZ is a unit:

pZ{pZqˆ “ pZ{pZqzt0u
#pZ{pZqˆ “ #pZ{pZq ´ 1

φppq “ p´ 1.

Thus we recover the original theorem of Fermat, which was Euler’s goal.

Fermat’s Little Theorem

Let p be prime so that gcdpa, pq “ 1 if and only if p - a. Then since φppq “ p´ 1, Euler’s
totient theorem tells us that

ap´1 ” 1 mod p for all a P Z such that p - a.

36This notation was introduced by James Joseph Sylvester in 1879. Sylvester is famous for introducing
ridiculous mathematicial terminology, a small percentage of which has become standard. For example, Sylvester
introduced the term matrix for a rectangular array of numbers, his reasoning being that such an array is a
“womb” that gives birth to determinants. True story.
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We can clean this up a bit by multiplying both sides by a to obtain

ap ” a mod p,

which is true for any integer a P Z whatsoever.

This result is called Fermat’s Little Theorem in order to distinguish it from Fermat’s Last
Theorem.37 Fermat, being an amateur mathematician working in a time before scientific
journals, left behind few proofs. Euler later supplied proofs for most of Fermat’s claimed
results and disproved at least one.38 But Euler was unable to prove or disprove the following.

Fermat’s Last Theorem

For all positive integers a, b, c, n with n ě 3 we have

an ` bn ‰ cn.

This problem became famous and inspired many fundamental concepts in number theory. It
was finally proved in 1993 by Andrew Wiles and appeared on the front page of the New York
Times. A gap in the proof led to some panic but Wiles was able to patch the gap with his
student Richard Taylor, and a correct proof appeared in 1994. The ideas of this proof are far
beyond the scope of our course.

4.4 The Chinese Remainder Theorem

Recall Euler’s totient function:

φpnq “ #pZ{nZqˆ “ #ta P Z : 1 ď a ă n and gcdpa, nq “ 1u.

We proved last time that

aφpnq ” 1 mod n for all integers a P Z satisfying gcdpa, nq “ 1.

If p is prime then since φppq “ p´ 1 we obtain Fermat’s little theorem:

ap´1 ” 1 mod p for all integers a P Z satisfying p - a.

37I do not know the origin of these names.
38Fermat had claimed that the number 22n

`1 is prime for all integers n ě 0. Euler shows that 225
`1 is not

prime, and no other Fermat prime has ever been found. So this is a case where Fermat was completely wrong.
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But what if n is not prime? In this section we will prove the following formula:

φpnq “ n ¨
ź

p|n

ˆ

1´
1

p

˙

,

where the product is taken over all prime divisors p|n. This result seems intuitively plausible.
Indeed, we observe that gcdpa, nq ‰ 1 if and only if a and n share a prime factor. Thus we
wish to remove all multiples of the prime factors of n. We can remove the multiples of p
by multiplying n with p1 ´ 1{pq. Then, presumably, we can remove the multiples of another
prime factor q by multiplying the result with p1´1{qq. But this is not so simple because some
multiples of q are also multiples of p.

The underlying issue is today expressed in terms of a general property of rings called the
“Chinese Remainder Theorem”.39 The first example of the theorem appeared in the fourth
century text Sun Zu Suan Jing (Master Sun’s Mathematical Manual):

There are certain things whose number is unknown. If we count them by threes,
we have two left over; by fives, we have three left over; and by sevens, two are left
over. How many things are there?

In modern language, we are looking for integer solutions c P Z to the following system of
congruences:

$

&

%

c ” 2 mod 3,
c ” 3 mod 5,
c ” 2 mod 7.

Instead of just solving this one problem we will develop the general theory. The idea is to
compare the set Z{mnZ with the cartesian product set Z{mZ ˆ Z{nZ. To be specific, we
consider the function sending the congruence class a mod mn to the pair of congruence classes
pa mod m, a mod nq. Here is an example with m “ 2 and n “ 3:

a mod 6 pa mod 2, a mod 3q

0 p0, 0q
1 p1, 1q
2 p0, 2q
3 p1, 0q
4 p0, 1q
5 p1, 2q

Note that each ordered pair on the right appears exactly once, which happens because 2 and
3 are coprime. Indeed, we see that the first coordinate cycles through t0, 1u while the second
coordinate cycles through t0, 1, 2u. Since 2 and 3 are coprime there is no repetition. We will
be more precise about this below.

39The theorem was named by Leonard Dickson in 1929 and this notation has become standard.

71



In practical terms, this example tells us that each system of congruences c ” a mod 2 and
c ” b mod 3 has a unique solution mod 6. For example, the final row of the table tells us that

"

c ” 1 mod 2
c ” 2 mod 3

*

ðñ c ” 5 mod 6.

In general, we would like a recipe to send a pair of congruence classes mod m and n to a unique
congruence class mod mn. This is what the Chinese Remainder Theorem does. Actually, the
term “Chinese Remainder Theorem” refers to a collection of ideas, which I will break into a
few pieces. The proof will use two lemmas, which are only slight modification of things that
we already know.

Lemmas for the Chinese Remainder Theorem

(1) If gcdpm,nq “ 1 then m|c and n|c imply pmnq|c.

(2) If ax` by “ 1 then gcdpa, bq “ 1.

To prove (1), let gcdpm,nq “ 1 so that mx ` ny “ 1 for some x, y P Z. If mk “ c and
n` “ c for some k, ` P Z then

pmx` nyqc “ c

mxc` nyc “ c

mxn`` nymk “ c

mnpx`` ykq “ c.

To prove (2), let ax` by “ 1. If dk “ a and d` “ b then

1 “ ax` by “ dkx` d`y “ dpkx` `yq.

In other words, any common divisor of a and b must be a divisor of 1. Hence gcdpa, bq “ 1.

Remark: It is always possible to use unique prime factorization to prove things like this. But
there is a general rule when writing proofs that one should not use a deeper theorem to prove
a shallower theorem. This helps minimize the risk of circular reasoning.

Chinese Remainder Theorem, Part I

Let integers m,n ě 1 satisfy gcdpa, bq “ 1 and consider the following function:

ϕ : Z{mnZ Ñ Z{mZˆ Z{nZ
a mod mn ÞÑ pa mod m, a mod nq.
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To save space we could write ϕpaq “ pa, aq, as long as we are clear that the input is a
congruence class mod mn and the output is ordered pair of congruence classes mod m
and n. I claim that ϕ is a bijection.

What needs to be proved?

• Well-Defined?40 First we should check that the definition is not affected by chang-
ing a to another integer a1 satisfying a ” a1 mod mn. Indeed, if a ” a1 mod mn,
so that a´ a1 “ mnk for some k P Z, then we have a´ a1 “ mpnkq, which implies
that a ” a1 mod m and a´ a1 “ npmkq, which implies that a ” a1 mod n.

• Injective? Suppose that a ” b mod m and a ” b mod n, so that m|pa ´ bq and
n|pa´ bq. Then from Lemma (1) we have mn|pa´ bq, so that a ” b mod mn.

• Surjective? We have an injective function from the set Z{mnZ to the set Z{mZˆ
Z{nZ. Since these sets have the same size mn any injective function must also be
surjective.

It follows that the function ϕ : Z{mnZÑ Z{mZˆ Z{nZ has an inverse function:

ϕ´1 : Z{mZˆ Z{nZ Ñ Z{mnZ
pa mod m, b mod nq ÞÑ ? mod mn.

But it is not at all clear how to express the output as a function of the input pa, bq.

Chinese Remainder Theorem, Part 2

Let integers m,n ě 1 satisfy gcdpm,nq “ 1, so we can use the Vector Euclidean Algorithm
to find some (non-unique) integers x, y P Z satisfying

mx` ny “ 1.

I claim that the inverse of the function ϕpa mod mnq “ pa mod m, a mod nq from Z{mnZ
to Z{mZˆ Z{nZ can be computed as follows:41

ϕ´1pa mod m, b mod nq “ any ` bmx mod mn.

In concrete terms, we have the following solution to a system of two congruences:

"

c ” a mod m
c ” b mod n

*

ðñ c ” any ` bmx mod mn.

To prove this we only need to check that ϕpany` bmxq “ pa, bq. In other words, we need

40Students usually have difficulty with the concept of “well-definedness”. The idea is that a function whose
input is an equivalence class must not be affected by changing the representative from this class.
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to check that

any ` bmx ” a mod m,

any ` bmx ” b mod n.

We only need to check one of these because they are symmetric. All congruences in the
following computation are mod m:

any ` bmx ” any ` b0x

” any

” ap1´mxq

” ap1´ 0xq

” a.

For example, when m “ 2 and n “ 3 we can take x “ ´1 and y “ 1, so that any ` bmx “
3a´ 2b, and hence42

"

c ” a mod 2
c ” b mod 3

*

ðñ c ” 3a´ 2b mod 6.

We can use the same method to solve multiple simultaneous congruences by induction. Recall
Sun Zu’s system of congruences:

$

&

%

c ” 2 mod 3,
c ” 3 mod 5,
c ” 2 mod 7.

First we take m “ 3 and n “ 5 and observe that 3p2q ` 5p´1q “ 1, so that

"

c ” 2 mod 3
c ” 3 mod 5

*

ðñ c ” 2 ¨ 5p´1q ` 3 ¨ 3p2q ” 8 mod 15.

Hence we have
$

&

%

c ” 2 mod 3
c ” 3 mod 5
c ” 2 mod 7

,

.

-

ðñ

"

c ” 8 mod 15
c ” 2 mod 7

*

.

Then we take m “ 15 and n “ 7 and observe that 15p1q ` 7p´2q “ 1, so that

"

c ” 8 mod 15
c ” 2 mod 7

*

ðñ c ” 8 ¨ 7p´2q ` 2 ¨ 15p1q ” 23 mod 105.

41Over the years I have settled on this mnemonic because any is a word and bmx is a type of bicycle that
was popular in my childhood.

42We could equally well take x “ 2 and y ´ 1. The solution would look different but it would be the same.
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On the homework will you investigate a method to solve a system of multiple congruences in
one step. It is not any faster but it is slightly more beautiful.

We end this section by using the Chinese Remainder Theorem to compute Euler’s totient
function. We have seen that the the following function is well-defined for any integers m,n ě 1:

ϕ : Z{mnZ Ñ Z{mZˆ Z{nZ
a mod mn ÞÑ pa mod m, a mod nq.

But this is not just a function between sets. We know that Z{mnZ is a ring and we can also
view Z{mZˆ Z{nZ as a ring by defining addition and multiplication componentwise:

pa mod m, b mod nq ` pa mod m, b mod nq “ pa` a1 mod m, b` b1 mod nq,

pa mod m, b mod nq ¨ pa mod m, b mod nq “ paa1 mod m, bb1 mod nq.

The “zero” and “one” elements of this ring are p0, 0q and p1, 1q. Since the function ϕ preserves
this ring structure we say that ϕ is a ring homomorphism. When gcdpm,nq “ 1 we also know
that ϕ is a bijection, in which case we say it is a ring isomorphism. The final piece of the
Chinese Remainder Theorem says that this ring isomorphism restricts to a group isomorphism
between the groups of units. I won’t bother to use this language in the official statement. We
will be much more systematic about homomorphisms next semester.

Chinese Remainder Theorem, Part 3

Let integers m,n ě 1 satisfy gcdpm,nq “ 1, so the function ϕpaq “ pa, aq defines a
bijection:

ϕ : Z{mnZ „
ÝÑ Z{mZˆ Z{nZ.

I claim that this restricts to a bijection:

ϕ : pZ{mnZqˆ „
ÝÑ pZ{mZqˆ ˆ pZ{nZqˆ.

Hence the domain and codomain have the same size, which gives us the following identity
for Euler’s totient function:

φpmnq “ #pZ{mnZqˆ “ #pZ{mZqˆ ¨#pZ{nZqˆ “ φpmqφpnq.

What needs to be checked? We only need to show that a is a unit mod mn if and only
if a is a unit mod m and n separately:

gcdpa,mnq “ 1 ðñ gcdpa,mq “ 1 and gcdpa, nq “ 1.

For one direction, suppose that gcdpa,mnq “ 1 so that ax`mny “ 1 for some x, y P Z.
Then since ax`mpnyq “ 1, Lemma (2) implies that gcdpa,mq “ 1 and since ax`npmyq “
1, Lemma (2) implies that gcdpa, nq “ 1. Conversely, suppose that gcdpa,mq “ 1 and
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gcdpa, nq “ 1, hence there exist integers x, y, x1, y1 P Z satisfying ax ` my “ 1 and
ax1 ` ny1 “ 1. Multiplying these equations gives

pax`myqpax1 ` ny1q “ 1

apxx1 ` xny1 `myx1q `mnpyy1q “ 1,

and it follows from Lemma (2) that gcdpa,mnq “ 1.

Finally, we will prove the formula from the beginning of the section. Consider the prime
factorization of an integer n ě 1:

n “ pn1
1 pn2

2 ¨ ¨ ¨ pnkk .

Applying the previous result gives

φpnq “ φppn1
1 qφpp

n2
2 q ¨ ¨ ¨φpp

nk
k q.

But now we are stuck. It is not true that φpp2q “ φppqφppq because p is not coprime to p. We
need to find a way to compute φppmq when p is prime. I claim that

φppmq “ pm ´ pm´1 “ pm
ˆ

1´
1

p

˙

.

To see this, we first observe that

gcdpa, pmq “ 1 ðñ p - a.

Indeed, since p is prime the only divisors of pm are the powers of p. If p - a then a is also not
divisible by any power of p, hence a and pm have no common divisor. Conversely, if p|a then
p is a nontrivial common divisor of a and pm.

Recall that φppmq is the number of integers between 1 and pm that are coprime to pm. By
the previous remark these are just the integers that are not divisible by p. So our goal is to
count the integers between 1 and pm that are not divisible by p. But it is easier to count the
integers that are divisible by p. Indeed, there are pm´1 multiples of p in this range:

1p, 2p, 3p, . . . , ppm´1qp.

Then throwing away these multiples of p gives φppmq “ pm ´ pm´1 as desired.

We conclude that

φpnq “ φppn1
1 qφpp

n2
2 q ¨ ¨ ¨φpp

nk
k q

“ pn1
1

ˆ

1´
1

p1

˙

pn2
2

ˆ

1´
1

p2

˙

¨ ¨ ¨ pnkk

ˆ

1´
1

pk

˙

“ pn1
1 pn2

2 pnkk

ˆ

1´
1

p1

˙ˆ

1´
1

p2

˙ˆ

1´
1

pk

˙
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“ n
k
ź

i“1

ˆ

1´
1

pi

˙

“ n
ź

p|n

ˆ

1´
1

p

˙

,

where the product is taken over the prime divisors of n.

5 The Fundamental Theorem of Algebra

5.1 Leibniz’ Mistake

After our detour through number theory, we return to the theory of polynomials over a field.
Because Z and Frxs are both examples of Euclidean domains we will find that some of the
theorems have already been proved. In particular, in this section we will see that the method
of partial fractions from calculus is basically equivalent to the Chinese Remainder Theorem
from number theory.

The goal of this chapter is to prove the following theorem. There are many equivalent state-
ments; for now we will state the original version.

The Fundamental Theorem of Algebra (Original Version)

Every non-constant polynomial fpxq P Rrxs can be expressed as

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq,

where pipxq P Rrxs and degppiq “ 1 or 2 for all i.

We will see that this result is highly non-trivial. Several generations of mathematicians (in-
cluding Euler) tried and failed to give a rigorous proof. Even the first generally accepted
proofs had logical gaps that were not completely filled until the late 1800s.

The fundamental theorem is so difficult that Gottfried Leibniz, one of the two founders of
Calculus, temporarily convinced himself that it is false. In 1702, Leibniz wrote a paper on
the integration of rational expressions fpxq{gpxq where fpxq, gpxq P Rrxs. If the denominator
gpxq could be factored into polynomials of degrees 1 and 2 then Leibniz knew that the integral
could be solved by means of the following two basic integrals:

ż

xndx “

#

xn`1{pn` 1q if n ‰ ´1

log |x| if n “ ´1
and

ż

1

x2 ` 1
dx “ arctanpxq.
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For example, consider the integral

ż

x5

x4 ´ 2x3 ` 2x2 ´ 2x` 1
dx.

By inspection we see that x “ 1 is a root of the denominator, which then factors as

x4 ´ 2x3 ` 2x2 ´ 2x` 1 “ px´ 1q2px2 ` 1q.

After knowing this, one can use the method of partial fractions to compute43

x5

x4 ´ 2x3 ` 2x2 ´ 2x` 1
“ x` 2`

2

x´ 1
`

1{2

px´ 1q2
´

1{2

x2 ` 1
,

and then the integral is straightforward:

ż

x5

x4 ´ 2x3 ` 2x2 ´ 2x` 1
dx “

x2

2
` 2x` 2 log |x´ 1| ´

1{2

x´ 1
´

1

2
arctanpxq.

However, Leibniz claimed that not all real polynomials can be so factored. As an example he
gave the polynomial x4 ` a4, where a is a real number. In his words:44

Therefore
ş

dx
x4`a4

cannot be reduced to the squaring of the circle or the hyperbola
by our analysis above, but founds a new kind of its own.

To see that this is wrong, we will compute the 4th roots of ´a4 for any positive number a ą 0.
First we write ´a4 in polar form as

´a4 “ a4eiπ.

Thus the principal 4th root is

aeiπ{4 “ a rcospπ{4q ` i sinpπ{4qs “
a
?

2
p1` iq,

and since 1, i,´1,´i are the 4th roots of unity, the remaining 4th roots of ´a4 are

aeiπ{4i “ api´ 1q{
?

2,

aeiπ{4p´1q “ ap´1´ iq{
?

2,

aeiπ{4p´iq “ ap´i` 1q{
?

2.

Then grouping these roots into conjugate pairs gives the following factorization:

x4 ` a4 “

”

px´ ap1` iq{
?

2qpx´ ap1´ iq{
?

2q
ı ”

px´ ap´1` iq{
?

2qpx´ ap´1´ iq{
?

2q
ı

“ px2 ´ a
?

2x` a2qpx2 ` a
?

2` a2q.

43We will discuss this method in detail below.
44“Squaring the circle” refers to arctan and “squaring the hyperbola” refers to log.
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If Leibniz had found this factorization then he would have been able to compute the integral.
To illustrate the method we will examine the simplest case a “

?
2. I claim that there exist

real numbers A,B,C,D such that45

1

x4 ` 4
“

1

px2 ´ 2x` 2qpx2 ` 2x` 2q

“
A`Bx

x2 ´ 2x` 2
`

C `Dx

x2 ` 2x` 2
.

To find these numbers we could add the fractions on the right hand side and then equate the
coefficients in the numerator to the numerator 1 “ 1 ` 0x ` 0x2 ` 0x3 on the left side. This
would lead to a system of four linear equations in four unknowns, which is not too difficult to
solve. However, we will use a more general method that is common to all Euclidean Domains.

First we will apply the Vector Euclidean Algorithm in the ring Rrxs to obtain some polynomials
αpxq, βpxq P Rrxs satisfying

px2 ` 2x` 2qαpxq ` px2 ´ 2x` 2qβpxq “ 1.

The method here is exactly the same as for integers, though the calculations are a bit more
involved. Consider the set of triples of polynomials

V “ tpαpxq, βpxq, γpxqq P Rrxs3 : fpxqαpxq ` gpxqβpxq “ γpxqu,

which is closed under Frxs-linear combinations.46 Then beginning with the basic triples
p1, 0, x2 ` 2x` 2q and p0, 1, x2 ´ 2x` 1q we perform the steps of the Euclidean Algorithm to
obtain a triple of the form pαpxq, βpxq, γpxqq, where γpxq is the greatest common divisor. In
this case we find that γpxq “ 1:

αpxq βpxq γpxq

1 0 x2 ` 2x` 2

0 1 x2 ´ 2x` 2
1 ´1 4x

´x{4` 1{2 x{4` 1{2 2
´x{8` 1{4 x{8` 1{4 1

To get from the third to the fourth row we need to compute the quotient and remainder of
x2 ´ 2x` 2 mod 4x:

1
4x´

1
2

4x
˘

x2 ´ 2x ` 2
´ x2

´ 2x
2x

2

45This follows from a general theorem on partial fractions which we will prove below.
46We say that V is an Frxs-module.
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Then the fourth row equals the second row minus px{4´ 1{2q times the third row. In the last
step we just scaled everything by 1{2 to obtain the monic GCD. In conclusion, we have have

1 “
1

8
p2´ xqpx2 ` 2x` 2q `

1

8
p2` xqpx2 ´ 2x` 2q.

Then we divide both sides by x4` 4 “ px2` 2x` 2qpx2´ 2x` 2q to obtain the desired partial
fraction expansion:

1

px2 ` 2x` 2qpx2 ´ 2x` 2q
“

p2´ xq{8 ¨ px2 ` 2x` 2q

px2 ` 2x` 2qpx2 ´ 2x` 2q
`

p2` xq{8 ¨ px2 ´ 2x` 2q

px2 ` 2x` 2qpx2 ´ 2x` 2q

1

x4 ` 4
“

p2´ xq{8

x2 ´ 2x` 2
`

p2` xq{8

x2 ` 2x` 2

At this point, Leibniz would easily have computed the integral in terms of log and arctan.
Since it is not easy for me, and since this is not a Calculus class, I will just tell you the answer
that my computer gives:

ż

dx

x4 ` 4
“

arctanpx` 1q ` arctanpx´ 1q

8
`

logpx2 ` 2x` 2q ´ logpx2 ´ 2x` 2q

16
.

5.2 Partial Fractions

In this section we will prove the general theorem on partial fractions in Euclidean domains,
and relate this to the Chinese Remainder Theorem from the previous chapter.

Theorem on Partial Fractions

5.3 Equivalent Statements of the FTA

The original statement of the Fundamental Theorem of Algebra says that every non-constant
polynomial fpxq P Rrxs can be expressed as

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq,

where pipxq P Rrxs and degppiq “ 1 or 2. As we have seen, if this version of the FTA is true
then any rational expression can be integrated in terms of log and arctan. In this section we
will still not prove that the FTA is true. Instead we will increase our understanding of what
the FTA actually says by examining several equivalent statements.

Equivalent Statements of the FTA

The following six statements are logically equivalent:

(1R) Every non-constant fpxq P Rrxs has a root in C.
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(2R) Every non-constant fpxq P Rrxs can be expressed as

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq,

where pipxq P Rrxs and degppiq “ 1 or 2.

(3R) Every prime element of Rrxs has degree 1 or 2.

(1C) Every non-constant fpxq P Crxs has a root in C.

(2C) Every non-constant fpxq P Crxs splits over C.

(3C) Every prime element of Crxs has degree 1.

It is straightforward to prove that the three statements (1C), (2C) and (3C) are equivalent.
We will refer to any of these three as the CFTA.

Proof of Equivalent Forms of the CFTA.

(1C)ñ(2C): Consider some non-constant fpxq P Crxs. By assumption there exists α1 P C
such that fpα1q “ 0, hence by Descartes’ Theorem we can write

fpxq “ px´ α1qgpxq

for some gpxq P Crxs. If gpxq is constant then we are done. Otherwise, there exists some
α2 P C such that gpα2q “ 0. Then by Descartes’ Theorem we have gpxq “ px ´ α2qhpxq and
hence

fpxq “ px´ α1qgpxq “ px´ α1qpx´ α2qhpxq.

By continuing in this way47 we conclude that fpxq splits over C.

(2C)ñ(3C): Let ppxq be a prime element of Crxs. Since units are not prime we know that
ppxq is non-constant. Hence by assumption we can write

ppxq “ cpx´ α1q ¨ ¨ ¨ px´ αnq

for some c, α1, . . . , αn P C. Since ppxq divides the product
ś

ipx ´ αiq, and since ppxq is
prime, we know from Euclid’s Lemma that ppxq|px´ αiq for some i. It follows that degppq ď
degpx´ αiq “ 1, which implies that degppq “ 1.

(3C)ñ(1C): Every non-constant fpxq P Crxs has a unique prime factorization in Crxs:

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq.

By assumption, each prime pipxq has degree 1, hence fpxq splits over C. ˝

The equivalence of the statements (1R), (2R) and (3R) is a bit less straightforward since it
uses some properties of complex conjugation. We will refer to any of these three statements
as the RFTA. Our proof of equivalence will use the following lemma.

47We could also phrase this as a formal proof by induction.

81



Lemma for the RFTA

For any extension of fields E Ě F we have an extension of rings Erxs Ě Frxs. If there
exist fpxq, ppxq P Frxs and qpxq P Erxs such that fpxq “ ppxqqpxq then I claim that in
fact qpxq P Frxs.

Indeed, we know from the Division Theorem in Frxs that there exist q1pxq, r1pxq P Frxs
satisfying fpxq “ ppxqq1pxq ` r1pxq and degpr1q ă degppq. But now we have fpxq “
ppxqqpxq ` 0 and fpxq “ ppxqq1pxq ` r1pxq in the ring Erxs and it follows from the
uniqueness of quotients in Erxs that qpxq “ q1pxq P Frxs.

Proof of Equivalent Forms of the RFTA.

(1R)ñ(2R): Consider some non-constant fpxq P Rrxs. By assumption there exists α P C such
that fpαq “ 0. If α P R then by Descartes’ Theorem we can write fpxq “ px ´ αqgpxq for
some gpxq P Rrxs. If α R C then since the coefficients of fpxq are real we also have fpα˚q “ 0
with α ‰ α˚ and it follows from Descartes’ Theorem that

fpxq “ px´ αqpx´ α˚qgpxq

for some gpxq P Crxs. But in fact I claim that gpxq P Rrxs. To see this we let ppxq “
px´αqpx´α˚q “ x2´pα`α˚qx`αα˚, which has real coefficients. Then since fpxq “ ppxqgpxq
with fpxq, ppxq P Rrxs and gpxq P Crxs we conclude from the Lemma that in fact gpxq P Rrxs.
In summary, we have shown that any non-constant fpxq P Rrxs satisfies fpxq “ ppxqgpxq for
some ppxq, gpxq P Rrxs with degppq “ 1 or 2. Now the result follows by induction.

(2R)ñ(3R): Let ppxq be a prime element of Rrxs. Since units are not prime we know that
ppxq is non-constant. Hence we can write

ppxq “ q1pxq ¨ ¨ ¨ qkpxq,

where qipxq P Rrxs and degpqiq “ 1 or 2 for all i. Since ppxq divides the product
ś

i qipxq, and
since ppxq is prime, we know from Euclid’s Lemma that ppxq|qipxq for some i. It follows that
degppq ď degpqiq, which implies that degppq “ 1 or 2.

(3R)ñ(1R): Every non-constant fpxq P Rrxs has a unique prime factorization in Rrxs:

fpxq “ p1pxqp2pxq ¨ ¨ ¨ pkpxq.

By assumption, each prime pipxq has degree 1 or 2. If there exists a factor pipxq of degree 1,
say pipxq “ ax` b then fpxq has the root ´b{a P R, which is also an element of C. Otherwise,
every factor pipxq has degree 2. But we know from the quadratic formula that any quadratic
polynomial with real coefficients has a root in C. Hence fpxq has a root in C. ˝

It is more surprising that the real and complex forms of the FTA are also equivalent. To prove
this we need another trick.
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Lemma for the Equivalence of RFTA and CFTA

blah

5.4 Intermediate Value Theorem

5.5 Descartes and Euler on Quartic Equations

5.6 Waring’s Method

5.7 Laplace’s Proof of the FTA
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