
Math 561/661 Fall 2021
Homework 6 Drew Armstrong

1. Invariance of Quotient and Remainder. For every extension of fields E ⊇ F we obtain
an extension of rings E[x] ⊇ F[x].

(a) Consider f(x), g(x) ∈ F[x] with g(x) 6= 0. Since F[x] ⊆ E[x] we also have f(x), g(x) ∈
E[x], hence there exist some q(x), r(x) ∈ E[x] satisfying{

f(x) = g(x)q(x) + r(x),
r(x) = 0 or deg(r) < deg(g).

Prove that we must in fact have q(x), r(x) ∈ F[x]. [Hint: Uniqueness.]
(b) Consider any f(x), g(x) ∈ F[x]. We can also view f(x), g(x) as elements of E[x]. If

f(x)|g(x) in the ring E[x], use part (a) to prove that f(x)|g(x) in the ring F[x].
(c) Now consider the field extension C ⊇ R. If f(x) ∈ R[x] and f(i) = 0, prove that there

exists q(x) ∈ R[x] such that f(x) = (x2 + 1)q(x). [Hint: Use Descartes’ Theorem to
prove that (x2 + 1)|f(x) in the ring C[x]. Then use part (b).]

(a): Given f(x), g(x) ∈ E[x] with g(x) 6= 0 there exist unique q(x), r(x) ∈ E[x] satisfying{
f(x) = g(x)q(x) + r(x),
r(x) = 0 or deg(r) < deg(g).

Since we also have f(x), g(x) ∈ F[x] there also exist q′(x), r′(x) ∈ F[x] satisfying{
f(x) = g(x)q′(x) + r′(x),
r′(x) = 0 or deg(r′) < deg(g).

But then since q′(x), r′(x) ∈ E[x], it follows from uniqueness that q(x) = q′(x) and r(x) = r′(x),
which implies that q(x) ∈ F[x] and r(x) ∈ F[x].

(b): Given f(x), g(x) ∈ F[x] we say that f(x)|g(x) if E[x] if there exists h(x) ∈ E[x] such
that f(x)h(x) = g(x) and we say that f(x)|g(x) in F[x] if there exists h′(x) ∈ F[x] such that
f(x)h′(x) = g(x). Clearly f(x)|g(x) in F[x] implies f(x)|g(x) in E[x] because F[x] ⊆ E[x]. (I
did not ask you to prove this.) On the other hand, suppose that f(x)|g(x) in E[x] so that
f(x)h(x) = g(x) for some h(x) ∈ E[x]. We can view this h(x) as the quotient of g(x) mod
f(x). Since f(x), g(x) ∈ F[x], part (a) tells us that h(x) ∈ F[x], hence f(x)|g(x) in F[x].

(c): Let f(x) ∈ F[x] and f(i) = 0. Then Descartes’ Theorem in the ring C[x] tells us that
f(x) = (x − i)g(x) for some g(x) ∈ C[x]. Since f(x) has real coefficients we also know that
f(−i), so that

0 = f(−i) = (−i− i)g(−i) = −2ig(−i).
Applying Descartes again gives g(x) = (x+ i)h(x) for some h(x) ∈ C[x] and hence

f(x) = (x− i)(x+ i)h(x)

= (x2 + 1)h(x).

Finally, since f(x) and x2 + 1 ∈ R[x], part (a) tells us that h(x) ∈ R[x], hence (x2 + 1)|f(x)
in the ring R[x].

Remark: We have shown for f(x) ∈ R[x] that f(i) = 0 if and only if (x2 + 1)|f(x). Next
semester we will say that x2 + 1 is the minimal polynomial for i over R.



2. Field of Fractions. Let R be an integral domain and consider the set of abstract fractions

Frac(R) = {a/b : a, b ∈ R, b 6= 0} .

We declare that a/b = a′/b′ if and only if ab′ = a′b and we define the following operations:

a

b
· c
d

:=
ac

bd
a

b
+
c

d
:=

ad+ bc

bd
.

Note that the fractions on the right exist because b 6= 0 and d 6= 0 imply bd 6= 0. One can
check that these operations make Frac(R) in a field with identity elements 0/1 and 1/1.

(a) If a/b = a′/b′ and c/d = c′/d′, prove that
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(b) Prove that the function ϕ : R → Frac(R) defined by ϕ(a) := a/1 is an injective ring
homomorphism.

(c) Let F be a field containing R as a subring. Prove that the function µ : Frac(R) → F
defined by µ(a/b) := ab−1 is an injective ring homomorphism. [Hint: In addition
to the usual properties of an injective ring homomorphism, you must also show that
a/b = a′/b′ implies µ(a/b) = µ(a′/b′). That is, you must show that µ is “well-defined”.]

Remark: Given rings R and S, a ring homomorphism is a function ϕ : R→ S satisfying

• ϕ(1) = 1,
• ϕ(a+ b) = ϕ(a) + ϕ(b),
• ϕ(ab) = ϕ(a)ϕ(b).

(a): Let a/b = a′/b′ and c/d = c′/d′ so that ab′ = a′b and cd′ = c′d. Then we have

(ac)(b′d′) = (ab′)(cd′)

= (a′b)(c′d)

= (a′c′)(bd)

and

(ad+ bc)(b′d′) = (ab′)(dd′) + (bb′)(cd′)

= (a′b)(dd′) + (bb′)(c′d)

= (a′d′ + b′c′)(bd).

(b): First we observe that ϕ preserves the multiplicative identity:

ϕ(1) = 1/1.

Next we observe that ϕ is injective:

ϕ(a) = ϕ(b)⇒ a/1 = b/1

⇒ a · 1 = b · 1
⇒ a = b.

Finally, we observe that ϕ preserves addition and multiplication:

ϕ(a) + ϕ(b) = a/1 + b/1 = (a · 1 + b · 1)/1 = (a+ b)/1 = ϕ(a+ b)



and
ϕ(a)ϕ(b) = (a/1)(b/1) = (ab)/(1 · 1) = (ab)/1 = ϕ(ab).

(c): First we observe that µ is well-defined:

a/b = a′/b′ ⇒ ab′ = a′b

⇒ ab′b−1(b′)−1 = a′bb−1(b′)−1

⇒ ab−1 = a′(b′)−1

⇒ µ(a/b) = µ(a′/b′).

Next we observe that µ preserves the multiplicative identity:

µ(1/1) = 1 · 1−1 = 1.

Next we observe that µ is injective:

µ(a/b) = µ(a′/b′)⇒ ab−1 = a′(b′)−1

⇒ ab−1bb′ = a′(b′)−1bb′

⇒ ab′ = a′b

⇒ a/b = a′/b′.

Finally, we observe that µ preserves addition and multiplication:

µ(a/b+ c/d) = µ((ad+ bc)/(bd))

= (ad+ bc)(bd)−1

= adb−1d−1 + bcb−1d−1

= ab−1 + cd−1

= µ(a/b) + µ(c/d)

and
µ(a/b)µ(c/d) = (ab−1)(cd−1) = (ab)(bd)−1 = µ((ab)/(cd)) = µ(a/b · c/d).

Remark: Now we have earned the right to use fractional notation. This problem was intended
as an introduction to the concept of ring homomorphisms. We will have much more to say
about this next semester.


