1. Bézout's Identity for Vectors. Consider a vector of integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$. Since every common divisor of a_{1}, \ldots, a_{n} is bounded above by the maximum of $\left|a_{i}\right|$, it follows that there exists a unique positive GCD. Let's call it $d=\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
(a) Prove that there exist integers $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ satisfying $a_{1} x_{1}+\cdots+a_{n} x_{n}=d$. [Hint: Consider the set $S=\left\{a_{1} x_{1}+\cdots a_{n} x_{n}: x_{1}, \ldots, x_{n} \in \mathbb{Z}\right\}$ and let e be the smallest positive element of this set. Since d divides each a_{i} we have $d \mid e$ and hence $d \leq e$. On other hand, show that e is a common divisor of the a_{i}, so that $e \leq d$. Idea: If the remainder of $e \bmod a_{i}$ is nonzero then you can find a smaller positive element of S.]
(b) Use part (a) to prove that

$$
\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right)
$$

(c) We can turn part (b) into a recursive algorithm. Use this algorithm to find integers $x, y, z \in \mathbb{Z}$ satisfying $35 x+21 y+15 z=1$. [Hint: First find x^{\prime}, y^{\prime} such that $\operatorname{gcd}(35,12)=$ $35 x^{\prime}+21 y^{\prime}$. Then find $x^{\prime \prime}, y^{\prime \prime}$ such that $\left.\operatorname{gcd}(\operatorname{gcd}(35,21), 15)=\operatorname{gcd}(35,21) x^{\prime \prime}+15 y^{\prime \prime}.\right]$
(a): Let $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$. Since d is a common divisor of a_{1}, \ldots, a_{n} we can write $d k_{i}=a_{i}$ for some integers $k_{1}, \ldots, k_{n} \in \mathbb{Z}$. Now consider the set $S=\left\{a_{1} x_{1}+\cdots a_{n} x_{n}: x_{1}, \ldots, x_{n} \in \mathbb{Z}\right\}$ and let e be the smallest positive element of S. By definition we have $e=a_{1} x_{1}+\cdots+a_{n} x_{n}$ for some $x_{1}, \ldots, x_{n} \in \mathbb{Z}$. But then we have

$$
e=d k_{1} x_{1}+\cdots+d k_{n} x_{k}=d\left(k_{1} x_{1}+\cdots+k_{n} x_{n}\right)
$$

which implies that $d \mid e$ and hence $d \leq e$. On the other hand, we will show that $e \leq d$. To do this, let us divide each a_{i} by e to obtain some integers $q_{i}, r_{i} \in \mathbb{Z}$ satisfying

$$
\left\{\begin{array}{l}
a_{i}=e q_{i}+r_{i}, \\
0 \leq r_{i}<e
\end{array}\right.
$$

I claim that $r_{i}=0$ for all i. Indeed, if $r_{i}>0$ then since $r_{i}<e$ and since

$$
r_{i}=e-a_{i} q_{i}=a_{1}\left(-x_{1}\right)+\cdots+a_{i}\left(q_{i}-x_{i}\right)+\cdots+a_{n}\left(-x_{n}\right) \in S,
$$

we obtain a positive element of S that is strictly smaller than e. Contradiction. We have shown that $r_{i}=0$ for all i and hence e is a common divisor of a_{1}, \ldots, a_{n}. Since d is the greatest common divisor, this implies that $e \leq d$ as desired.

In summary, we have shown that

$$
d=e=a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

for some integers $x_{1}, \ldots, x_{n} \in \mathbb{Z}$.
(b): For this part we write $e=\operatorname{gcd}\left(a_{1}, \ldots, a_{n-1}\right)$. Then we consider the sets

$$
\begin{aligned}
\operatorname{Div}\left(a_{1}, \ldots, a_{n}\right) & =\left\{d \in \mathbb{Z}: d \mid a_{i} \text { for all } i\right\} \\
\operatorname{Div}\left(e, a_{n}\right) & =\left\{d \in \mathbb{Z}: d \mid e \text { and } d \mid a_{n}\right\} .
\end{aligned}
$$

If we can show that these two sets are equal then the desired GCDs will also be equal. First suppose that $d \in \operatorname{Div}\left(e, a_{n}\right)$ so that $d \ell=e$ and $d m=a_{n}$ for some $\ell, m \in \mathbb{Z}$. Since e is a common divisor of a_{1}, \ldots, a_{n-1} we also have $e k_{i}=a_{i}$ for some $k_{1}, \ldots, k_{n-1} \in \mathbb{Z}$. But this implies that $a_{i}=e k_{i}=d \ell k_{i}$ so that $d \mid a_{i}$ for all $1 \leq i \leq n-1$ and it follows that d is in the set $\operatorname{Div}\left(a_{1}, \ldots, a_{n}\right)$. On the other hand, suppose that $d \in \operatorname{Div}\left(a_{1}, \ldots, a_{n}\right)$ so that $d k_{i}=a_{i}$ for
some integers $k_{1}, \ldots, k_{n} \in \mathbb{Z}$. From part (a) we can also write $e=a_{1} x_{1}+\cdots+a_{n-1} x_{n-1}$ for some integers $x_{1}, \ldots, x_{n-1} \in \mathbb{Z}$. It follows that

$$
e=a_{1} x_{1}+\cdots+a_{n-1} x_{n-1}=d k_{1} x_{1}+\cdots+d k_{n-1} x_{n-1}=d\left(k_{1} x_{1}+\cdots k_{n-1} x_{n-1}\right)
$$

and hence d is an element of $\operatorname{Div}\left(e, a_{n}\right)$ as desired.
(c): Our goal is to find $x, y, z \in \mathbb{Z}$ such that $35 x+21 y+15 z=1$. For this we will use the Euclidean Algorithm and the fact that

$$
\operatorname{gcd}(35,21,15)=\operatorname{gcd}(\operatorname{gcd}(35,21), 15)=\operatorname{gcd}(7,15)=1
$$

First we apply the EA to find x^{\prime}, y^{\prime} such that $7 x^{\prime}+15 y^{\prime}=1$:

0	1	15
1	0	7
-2	1	1

We see that $7(-2)+15(1)=1$. Then we apply the EA to find $x^{\prime \prime}, y^{\prime \prime}$ such that $35 x^{\prime \prime}+21 y^{\prime \prime}=7$:

1	0	35
0	1	21
1	-1	14
-1	2	7

We see that $35(-1)+21(2)=7$. Then putting the two equations together gives

$$
1=7(-2)+15(1)=[35(-1)+21(2)](-2)+15(1)=35(2)+21(-4)+15(1)
$$

2. Generalized Chinese Remainder Theorem. Consider some positive integers n_{1}, \ldots, n_{k} such that $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for all $i \neq j \downarrow^{1}$ If $n=n_{1} \cdots n_{k}$ then our goal is to show that the following ring homomorphism is invertible by explicitly finding its inverse:

$$
\begin{aligned}
\varphi: \mathbb{Z} / n \mathbb{Z} & \rightarrow \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z} \\
a \bmod n & \mapsto\left(a \bmod n_{1}, \cdots, a \bmod n_{k}\right)
\end{aligned}
$$

(a) For each i, define $\hat{n}_{i}=n_{1} \cdots n_{i-1} n_{i+1} \cdots n_{k}$. Prove that

$$
\operatorname{gcd}\left(\hat{n}_{1}, \hat{n}_{2}, \ldots, \hat{n}_{k}\right)=1
$$

[Hint: Use induction on k. For $1 \leq i<k$ let $\tilde{n}_{i}=n_{1} \cdots n_{i-1} n_{i+1} \cdots n_{k-1}$ so that $\hat{n}_{i}=\tilde{n}_{i} n_{k}$ and assume for induction that $\operatorname{gcd}\left(\tilde{n}_{1}, \ldots, \tilde{n}_{k-1}\right)=1$. If some prime p divides each \hat{n}_{i} then it either divides n_{k} or it divides each \tilde{n}_{i}, which is a contradiction.]
(b) It follows from Problem $1(\mathrm{a})$ that there exist some integers $x_{1}, \ldots, x_{k} \in \mathbb{Z}$ satisfying

$$
\hat{n}_{1} x_{1}+\hat{n}_{2} x_{2}+\ldots+\hat{n}_{k} x_{k}=1
$$

In this case prove that $\varphi^{-1}\left(a_{1}, \ldots, a_{k}\right)=a_{1} \hat{n}_{1} x_{1}+\cdots+a_{k} \hat{n}_{k} x_{k} \bmod n$. [Hint: You only need to show that $a_{1} \hat{n}_{1} x_{1}+\cdots+a_{k} \hat{n}_{k} x_{k} \equiv a_{i} \bmod n_{i}$.]
(c) Use your answer from Problem 1(c) to find an expression for the ring homomorphism $\varphi^{-1}: \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 7 \mathbb{Z} \rightarrow \mathbb{Z} / 105 \mathbb{Z}$.

[^0](a): The result is true when $k=2$ because in that case we have $\hat{n}_{1}=n_{2}$ and $\hat{n}_{2}=n_{1}$, so that
$$
\operatorname{gcd}\left(\hat{n}_{1}, \hat{n}_{2}\right)=\operatorname{gcd}\left(n_{2}, n_{1}\right)=1
$$

Now let $k \geq 3$ and assume for induction that the statement is true for $k-1$. Given integers $n_{1}, \ldots, n_{k} \in \mathbb{Z}$ with $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for all $i \neq j$, our goal is to show that

$$
\operatorname{gcd}\left(\hat{n}_{1}, \ldots, \hat{n}_{k}\right)=1
$$

And by induction we may assume that

$$
\operatorname{gcd}\left(\tilde{n}_{1}, \ldots, \tilde{n}_{k-1}\right)=1
$$

where $\tilde{n}_{i}=n_{1} \cdots n_{i-1} n_{i+1} \cdots n_{k-1}$. So let us suppose for contradiction that there exists a common prime divisor $p\left|\hat{n}_{1}, \ldots, p\right| \hat{n}_{k}$. There are two cases:

- Suppose that $p \mid n_{k}$. Since $p \mid \hat{n}_{k}$ and since p is prime we must also have $p \mid n_{i}$ for some $1 \leq i \leq k-1$. Then $p \mid n_{k}$ and $p \mid n_{i}$ contradict the fact that $\operatorname{gcd}\left(n_{i}, n_{k}\right)=1$.
- Suppose that $p \nmid n_{k}$. Then since $\hat{n}_{i}=\tilde{n}_{i} n_{k}$ for all $1 \leq i \leq k-1$ and since $p \mid \hat{n}_{i}$, we must have $p \mid \tilde{n}_{i}$ for all $1 \leq i \leq k-1$, which contradicts the induction hypothesis.
We have shown that the numbers $\hat{n}_{1}, \ldots, \hat{n}_{k}$ have no common prime factor, as desired.
(b): Let integers $n_{1}, \ldots, n_{k} \in \mathbb{Z}$ satisfy $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for all $i \neq j$. If $\hat{n}_{i}=n_{1} \cdots n_{i-1} n_{i+1} \cdots n_{k}$ then it follows from Problem 1(a) that there exist $x_{1}, \ldots, x_{k} \in \mathbb{Z}$ satisfying

$$
\hat{n}_{1} x_{1}+\cdots+\hat{n}_{k} x_{k}=1
$$

Let $n=n_{1} \cdots n_{k}$ and recall the definition of the ring homomorphism φ :

$$
\left.\begin{array}{rl}
\varphi: & \mathbb{Z} / n \mathbb{Z}
\end{array} \rightarrow \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z}, ~ 子 ~ . ~ a ~ m o d ~ n_{1}, \cdots, a \bmod n_{k}\right) .
$$

I claim that the inverse of the ring homomorphism φ is given by

$$
\varphi^{-1}\left(a_{1}, \ldots, a_{k}\right)=b \bmod n
$$

where $b=a_{1} \hat{n}_{1} x_{1}+\cdots a_{k} \hat{n}_{k} x_{k}$. To prove this we need to show that $b \equiv a_{i} \bmod n_{i}$ for all i. First we observe for all $i \neq j$ that $n_{i} \mid \hat{n}_{j}$ and hence $\hat{n}_{j} \equiv 0 \bmod n_{i}$, so that

$$
b \equiv 0+\cdots+0+a_{i} \hat{n}_{i} x_{i}+0+\cdots+0 \bmod n_{i} .
$$

Then we observe that $\hat{n}_{i} x_{i}=1-\sum_{j \neq i} \hat{n}_{j} x_{j}$, so that

$$
\hat{n}_{i} x_{i} \equiv 1-\sum_{j \neq i} 0 \equiv 1 \bmod n_{i},
$$

and hence

$$
b \equiv a_{i} \hat{n}_{i} x_{i} \equiv a_{i}(1) \equiv a_{i} \bmod n_{i} .
$$

(c): Let $\left(n_{1}, n_{2}, n_{3}\right)=(3,5,7)$ so that $\left(\hat{n}_{1}, \hat{n}_{2}, \hat{n}_{3}\right)=(35,21,15)$. In Problem 1(c) we showed that the integers $\left(x_{1}, x_{2}, x_{3}\right)=(2,-4,1)$ satisfy $\hat{n}_{1} x_{1}+\hat{n}_{2} x_{2}+\hat{n}_{3} x_{3}=1$. Therefore the inverse ring homomorphism $\varphi^{-1}: \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 7 \mathbb{Z} \rightarrow \mathbb{Z} / 105 \mathbb{Z}$ is given by

$$
\varphi^{-1}\left(a_{1}, a_{2}, a_{3}\right)=70 a_{1}-84 a_{2}+15 a_{3} \bmod 105 .
$$

For example, φ^{-1} preserves the multiplicative identity, as it should:

$$
\varphi^{-1}(1,1,1)=70-84+15=1 \bmod 105
$$

3. Partial Fractions. Let R be a Euclidean domain with size function $N: R \backslash\{0\} \rightarrow \mathbb{N}$. You can assume that the result of Problems 1 and 2 still hold in this context.
(a) Suppose that an element $n \in R$ has prime factorization $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ and write $n_{i}=p_{i}^{e_{i}}$. Show that there exist elements $x_{1}, \ldots, x_{k} \in R$ satisfying

$$
\frac{1}{n}=\frac{x_{1}}{n_{1}}+\frac{x_{2}}{n_{2}}+\cdots+\frac{x_{k}}{n_{k}} .
$$

[Hint: $\hat{n}_{i} / n=1 / n_{i}$.]
(b) Continuing from part (a), prove that there exist elements $m, r_{i j} \in R$ satisfying $r_{i j}=0$ or $N\left(r_{i j}\right)<N\left(p_{i}\right)$, such that

$$
\frac{1}{n}=m+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{r_{i j}}{p_{i}^{j}} .
$$

[Hint: Consider a fraction of the form x / p^{e}. Divide x by p to obtain $x=p q+r$ where $r=0$ or $N(r)<N(p)$. Then we have $x / p^{e}=r / p^{e}+q / p^{e-1}$.]
(a): Let $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ for distinct primes $p_{i} \neq p_{j}$ and let $n_{i}=p_{i}^{e_{i}}$, so that $n=n_{1} \cdots n_{k}$. Let $\hat{n}_{i}=n / n_{i}$ as in Problem 2. Then from Problem 2(a) there exist elements $x_{1}, \ldots, x_{k} \in R$ satisfying ${ }^{2}$

$$
1=\hat{n}_{1} x_{1}+\cdots+\hat{n}_{k} x_{k},
$$

and dividing both sides by n gives \square^{3}

$$
\frac{1}{n}=\frac{\hat{n}_{1} x_{1}}{n}+\cdots+\frac{\hat{n}_{k} x_{k}}{n}=\frac{x_{1}}{n_{1}}+\cdots+\frac{x_{k}}{n_{k}}=\frac{x_{1}}{p_{1}^{e_{1}}}+\cdots+\frac{x_{k}}{p_{k}^{p_{k}}} .
$$

(b): Now consider any fraction x / p^{e} where p is prime and $e \geq 0$. Our goal is to show that

$$
\frac{x}{p^{e}}=\frac{r_{1}}{p^{e}}+\frac{r_{2}}{p^{e-1}}+\cdots+\frac{r_{e}}{p}+m
$$

for some elements $m, r_{1}, \ldots, r_{e} \in R$ satisfying $r_{i}=0$ or $N\left(r_{i}\right)<N(p)$ for all i. The idea is to repeatedly divide the numerator by p. First we have $x=r_{1}+p q_{1}$ so that

$$
\frac{x}{p^{e}}=\frac{r_{1}+p q_{1}}{p^{e}}=\frac{r_{1}}{p^{e}}+\frac{q_{1}}{p^{e-1}} .
$$

Then we divide q_{1} by p to obtain $q_{1}=r_{2}+p q_{2}$, and repeat to obtain

$$
\frac{x}{p^{e}}=\frac{r_{1}}{p^{e}}+\frac{r_{2}}{p^{e-1}}+\cdots+\frac{r_{e}}{p}+q_{e} .
$$

By construction each remainder r_{i} satisfies $r_{i}=0$ or $N\left(r_{i}\right)<N(p)$.
4. Conjugation of Complex Polynomials. For any polynomial $f(x)=\sum \alpha_{k} x^{k}$ with complex coefficients we define the conjugate polynomial by conjugating the coefficients:

$$
f^{*}(x)=\sum \alpha_{k}^{*} x^{k}
$$

(a) For all $f(x) \in \mathbb{C}[x]$ and $\beta \in \mathbb{C}$ prove that

$$
f(\beta)=0 \quad \Longleftrightarrow \quad f^{*}\left(\beta^{*}\right)=0
$$

(b) We can think of $\mathbb{R}[x] \subseteq \mathbb{C}[x]$ as a subring. For all $f(x) \in \mathbb{C}[x]$ prove that

$$
f(x)=f^{*}(x) \quad \Longleftrightarrow \quad f(x) \in \mathbb{R}[x] .
$$

[^1](c) For all $f(x), g(x) \in \mathbb{C}[x]$, prove that
$$
(f+g)^{*}(x)=f^{*}(x)+g^{*}(x) \quad \text { and } \quad(f g)^{*}(x)=f^{*}(x) g^{*}(x) .
$$
(d) For all $f(x) \in \mathbb{C}[x]$, use parts (b) and (c) to show that
$$
f(x)+f^{*}(x) \in \mathbb{R}[x] \quad \text { and } f(x) f^{*}(x) \in \mathbb{R}[x] .
$$
(a): Since $*: \mathbb{C} \rightarrow \mathbb{C}$ preserves all ring operations, we have
$$
f(\beta)^{*}=\left(\sum_{k} \alpha_{k} \beta^{k}\right)^{*}=\sum_{k} \alpha_{k}^{*}\left(\beta^{*}\right)^{k}=f^{*}\left(\beta^{*}\right)
$$

It follows from this that $f(\beta)=0$ implies $f^{*}\left(\beta^{*}\right)=f(\beta)^{*}=0^{*}=0$ and $f^{*}\left(\beta^{*}\right)=0$ implies $f(\beta)=\left(f^{*}\left(\beta^{*}\right)\right)^{*}=0^{*}=0$.
(b): Two formal polynomials are equal if and only if their coefficients are equal. The coefficient of x^{k} in $f(x)$ is α_{k} and the coefficient of x^{k} in $f^{*}(x)$ is α_{k}^{*}. If $f^{*}(x)=f(x)$ then we must have $\alpha_{k}^{*}=\alpha_{k}$, which implies that $\alpha_{k} \in \mathbb{R}$ for all k. In other words, we must have $f(x) \in \mathbb{R}[x]$.
(c): Let $f(x)=\sum_{k} \alpha_{k} x^{k}$ and $g(x)=\sum_{k} \beta_{k} x^{k}$. The coefficients of $f+g$ are $\alpha_{k}+\beta_{k}$, hence the coefficients of $(f+g)^{*}$ are $\left(\alpha_{k}+\beta_{k}\right)^{*}=\alpha_{k}^{*}+\beta_{k}^{*}$. But these are also the coefficients of $f^{*}+g^{*}$, hence $(f+g)(x)=f^{*}(x)+g^{*}(x)$. For the second statement, recall that

$$
f(x) g(x)=\sum_{k}\left(\sum_{i+j=k} \alpha_{i} \beta_{j}\right) x^{k} .
$$

So the coefficients of $(f g)^{*}(x)$ are

$$
\left(\sum_{i+j=k} \alpha_{i} \beta_{j}\right)^{*}=\left(\sum_{i+j=k} \alpha_{i}^{*} \beta_{j}^{*}\right) .
$$

But these are also the coefficients of $f^{*}(x) g^{*}(x)$, hence $(f g)^{*}(x)=f^{*}(x) g^{*}(x)$.
(d): As we sometimes do, we will write f instead of $f(x)$ to save space. Let $f(x) \in \mathbb{C}[x]$. Then from part (c) we have

$$
\left(f+f^{*}\right)^{*}=f^{*}+f^{* *}=f^{*}+f=f+f^{*}
$$

and

$$
\left(f f^{*}\right)^{*}=f^{*} f^{* *}=f^{*} f=f f^{*},
$$

hence it follows from part (b) that $f+f^{*} \in \mathbb{R}[x]$ and $f f^{*} \in \mathbb{R}[x]$.

[^0]: ${ }^{1}$ This is a stronger restriction than $\operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)=1$. For example, $\operatorname{gcd}(2,3,4)=1$ but $\operatorname{gcd}(2,4) \neq 1$.

[^1]: ${ }^{2}$ In the familiar Euclidean domains \mathbb{Z} and $\mathbb{F}[x]$ we may take $m=0$ but not in general. See Partial Fractions in Euclidean Domains (1989) by Packard and Wilson.
 ${ }^{3}$ Here we are working in the field of fractions of the domain R. See HW6.

