
Math 561/661 Fall 2021
Homework 5 Drew Armstrong

1. Bézout’s Identity for Vectors. Consider a vector of integers (a1, a2, . . . , an) ∈ Zn.
Since every common divisor of a1, . . . , an is bounded above by the maximum of |ai|, it follows
that there exists a unique positive GCD. Let’s call it d = gcd(a1, a2, . . . , an).

(a) Prove that there exist integers x1, . . . , xn ∈ Z satisfying a1x1 + · · ·+ anxn = d. [Hint:
Consider the set S = {a1x1 + · · · anxn : x1, . . . , xn ∈ Z} and let e be the smallest
positive element of this set. Since d divides each ai we have d|e and hence d ≤ e. On
other hand, show that e is a common divisor of the ai, so that e ≤ d. Idea: If the
remainder of e mod ai is nonzero then you can find a smaller positive element of S.]

(b) Use part (a) to prove that

gcd(a1, . . . , an) = gcd(gcd(a1, . . . , an−1), an).

(c) We can turn part (b) into a recursive algorithm. Use this algorithm to find integers
x, y, z ∈ Z satisfying 35x+21y+15z = 1. [Hint: First find x′, y′ such that gcd(35, 12) =
35x′ + 21y′. Then find x′′, y′′ such that gcd(gcd(35, 21), 15) = gcd(35, 21)x′′ + 15y′′.]

2. Generalized Chinese Remainder Theorem. Consider some positive integers n1, . . . , nk
such that gcd(ni, nj) = 1 for all i 6= j.1 If n = n1 · · ·nk then our goal is to show that the
following ring homomorphism is invertible, and to find its inverse:

ϕ : Z/nZ → Z/n1Z× · · · × Z/nkZ
a mod n 7→ (a mod n1, . . . , a mod nk).

(a) For each i, define n̂i = n1 · · ·ni−1ni+1 · · ·nk. Prove that

gcd(n̂1, n̂2, . . . , n̂k) = 1.

[Hint: Use induction on k. For 1 ≤ i < k let ñi = n1 · · ·ni−1ni+1 · · ·nk−1 so that
n̂i = ñink and assume for induction that gcd(ñ1, . . . , ñk−1) = 1. If some prime p
divides each n̂i then it either divides nk or it divides each ñi, which is a contradiction.]

(b) It follows from Problem 1(a) that there exist some integers x1, . . . , xk ∈ Z satisfying

n̂1x1 + n̂2x2 + . . .+ n̂kxk = 1.

In this case prove that ϕ−1(a1, . . . , ak) = a1n̂1x1 + · · · + akn̂kxk mod n. [Hint: You
only need to show that a1n̂1x1 + · · ·+ akn̂kxk ≡ ai mod ni.]

(c) Use your answer from Problem 1(c) to find an expression for the ring homomorphism
ϕ−1 : Z/3Z× Z/5Z× Z/7Z→ Z/105Z.

3. Partial Fractions. Let R be a Euclidean domain with size function N : R \ {0} → N.
You can assume that the result of Problems 1 and 2 still hold in this context.

(a) Suppose that an element n ∈ R has prime factorization n = pe11 · · · p
ek
k and write

ni = peii . Show that there exist elements x1, . . . , xk ∈ R satisfying

1

n
=
x1
n1

+
x2
n2

+ · · ·+ xk
nk
.

[Hint: n̂i/n = 1/ni.]

1This is a stronger restriction than gcd(n1, . . . , nk) = 1. For example, gcd(2, 3, 4) = 1 but gcd(2, 4) 6= 1.



(b) Continuing from part (a), prove that there exist elements m, rij ∈ R satisfying rij = 0
or N(rij) < N(pi), such that

1

n
= m+

k∑
i=1

ei∑
j=1

rij

pji
.

[Hint: Consider a fraction of the form x/pe. Divide x by p to obtain x = pq + r where
r = 0 or N(r) < N(p). Then we have x/pe = r/pe + q/pe−1.]

4. Conjugation of Complex Polynomials. For any polynomial f(x) =
∑
akx

k with
complex coefficients we define the conjugate polynomial by conjugating the coefficients:

f∗(x) =
∑

a∗kx
k.

(a) For all f(x) ∈ C[x] and α ∈ C prove that

f(α) = 0 ⇐⇒ f∗(α∗) = 0.

(b) We can think of R[x] ⊆ C[x] as a subring. For all f(x) ∈ C[x] prove that

f(x) = f∗(x) ⇐⇒ f(x) ∈ R[x].

(c) For all f(x), g(x) ∈ C[x], prove that

(f + g)∗(x) = f∗(x) + g∗(x) and (fg)∗(x) = f∗(x)g∗(x).

(d) For all f(x) ∈ C[x], use parts (b) and (c) to show that

f(x) + f∗(x) ∈ R[x] and f(x)f∗(x) ∈ R[x].


