1. Bézout's Identity for Vectors. Consider a vector of integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$. Since every common divisor of a_{1}, \ldots, a_{n} is bounded above by the maximum of $\left|a_{i}\right|$, it follows that there exists a unique positive GCD. Let's call it $d=\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
(a) Prove that there exist integers $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ satisfying $a_{1} x_{1}+\cdots+a_{n} x_{n}=d$. [Hint: Consider the set $S=\left\{a_{1} x_{1}+\cdots a_{n} x_{n}: x_{1}, \ldots, x_{n} \in \mathbb{Z}\right\}$ and let e be the smallest positive element of this set. Since d divides each a_{i} we have $d \mid e$ and hence $d \leq e$. On other hand, show that e is a common divisor of the a_{i}, so that $e \leq d$. Idea: If the remainder of $e \bmod a_{i}$ is nonzero then you can find a smaller positive element of S.]
(b) Use part (a) to prove that

$$
\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right) .
$$

(c) We can turn part (b) into a recursive algorithm. Use this algorithm to find integers $x, y, z \in \mathbb{Z}$ satisfying $35 x+21 y+15 z=1$. [Hint: First find x^{\prime}, y^{\prime} such that $\operatorname{gcd}(35,12)=$ $35 x^{\prime}+21 y^{\prime}$. Then find $x^{\prime \prime}, y^{\prime \prime}$ such that $\left.\operatorname{gcd}(\operatorname{gcd}(35,21), 15)=\operatorname{gcd}(35,21) x^{\prime \prime}+15 y^{\prime \prime}.\right]$
2. Generalized Chinese Remainder Theorem. Consider some positive integers n_{1}, \ldots, n_{k} such that $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for all $i \neq j \stackrel{1}{1}^{1}$ If $n=n_{1} \cdots n_{k}$ then our goal is to show that the following ring homomorphism is invertible, and to find its inverse:

$$
\begin{aligned}
\varphi: & \mathbb{Z} / n \mathbb{Z}
\end{aligned} \rightarrow \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z}, ~=\left(a \bmod n_{1}, \cdots, a \bmod n_{k}\right) .
$$

(a) For each i, define $\hat{n}_{i}=n_{1} \cdots n_{i-1} n_{i+1} \cdots n_{k}$. Prove that

$$
\operatorname{gcd}\left(\hat{n}_{1}, \hat{n}_{2}, \ldots, \hat{n}_{k}\right)=1
$$

[Hint: Use induction on k. For $1 \leq i<k$ let $\tilde{n}_{i}=n_{1} \cdots n_{i-1} n_{i+1} \cdots n_{k-1}$ so that $\hat{n}_{i}=\tilde{n}_{i} n_{k}$ and assume for induction that $\operatorname{gcd}\left(\tilde{n}_{1}, \ldots, \tilde{n}_{k-1}\right)=1$. If some prime p divides each \hat{n}_{i} then it either divides n_{k} or it divides each \tilde{n}_{i}, which is a contradiction.]
(b) It follows from Problem 1(a) that there exist some integers $x_{1}, \ldots, x_{k} \in \mathbb{Z}$ satisfying

$$
\hat{n}_{1} x_{1}+\hat{n}_{2} x_{2}+\ldots+\hat{n}_{k} x_{k}=1 .
$$

In this case prove that $\varphi^{-1}\left(a_{1}, \ldots, a_{k}\right)=a_{1} \hat{n}_{1} x_{1}+\cdots+a_{k} \hat{n}_{k} x_{k} \bmod n$. [Hint: You only need to show that $a_{1} \hat{n}_{1} x_{1}+\cdots+a_{k} \hat{n}_{k} x_{k} \equiv a_{i} \bmod n_{i}$.]
(c) Use your answer from Problem 1(c) to find an expression for the ring homomorphism $\varphi^{-1}: \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 7 \mathbb{Z} \rightarrow \mathbb{Z} / 105 \mathbb{Z}$.
3. Partial Fractions. Let R be a Euclidean domain with size function $N: R \backslash\{0\} \rightarrow \mathbb{N}$. You can assume that the result of Problems 1 and 2 still hold in this context.
(a) Suppose that an element $n \in R$ has prime factorization $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ and write $n_{i}=p_{i}^{e_{i}}$. Show that there exist elements $x_{1}, \ldots, x_{k} \in R$ satisfying

$$
\frac{1}{n}=\frac{x_{1}}{n_{1}}+\frac{x_{2}}{n_{2}}+\cdots+\frac{x_{k}}{n_{k}} .
$$

[Hint: $\hat{n}_{i} / n=1 / n_{i}$.]

[^0](b) Continuing from part (a), prove that there exist elements $m, r_{i j} \in R$ satisfying $r_{i j}=0$ or $N\left(r_{i j}\right)<N\left(p_{i}\right)$, such that
$$
\frac{1}{n}=m+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{r_{i j}}{p_{i}^{j}}
$$
[Hint: Consider a fraction of the form x / p^{e}. Divide x by p to obtain $x=p q+r$ where $r=0$ or $N(r)<N(p)$. Then we have $x / p^{e}=r / p^{e}+q / p^{e-1}$.]
4. Conjugation of Complex Polynomials. For any polynomial $f(x)=\sum a_{k} x^{k}$ with complex coefficients we define the conjugate polynomial by conjugating the coefficients:
$$
f^{*}(x)=\sum a_{k}^{*} x^{k}
$$
(a) For all $f(x) \in \mathbb{C}[x]$ and $\alpha \in \mathbb{C}$ prove that
$$
f(\alpha)=0 \quad \Longleftrightarrow \quad f^{*}\left(\alpha^{*}\right)=0
$$
(b) We can think of $\mathbb{R}[x] \subseteq \mathbb{C}[x]$ as a subring. For all $f(x) \in \mathbb{C}[x]$ prove that
$$
f(x)=f^{*}(x) \quad \Longleftrightarrow \quad f(x) \in \mathbb{R}[x]
$$
(c) For all $f(x), g(x) \in \mathbb{C}[x]$, prove that
$$
(f+g)^{*}(x)=f^{*}(x)+g^{*}(x) \quad \text { and } \quad(f g)^{*}(x)=f^{*}(x) g^{*}(x)
$$
(d) For all $f(x) \in \mathbb{C}[x]$, use parts (b) and (c) to show that
$$
f(x)+f^{*}(x) \in \mathbb{R}[x] \quad \text { and } f(x) f^{*}(x) \in \mathbb{R}[x]
$$

[^0]: ${ }^{1}$ This is a stronger restriction than $\operatorname{gcd}\left(n_{1}, \ldots, n_{k}\right)=1$. For example, $\operatorname{gcd}(2,3,4)=1$ but $\operatorname{gcd}(2,4) \neq 1$.

