1. Equivalence Relation = Partition. Given a set S, a relation on S is just a subset $\mathscr{R} \subseteq S^2$ of ordered pairs. We usually write $a \sim b^1$ instead of $(a, b) \in \mathscr{R}$, and say "a is related to b". We further say that \mathscr{R} is an equivalence relation if for all $a, b, c \in S$ we have

- $a \sim a$
- $a \sim b \Rightarrow b \sim a$
- $a \sim b$ and $b \sim c \Rightarrow a \sim c$

On the other hand, we define a *partition* of the set S as a set of subsets $X_i \subseteq S$ with the following properties:

•
$$S = \cup_i X_i$$

• $X_i \cap X_j = \emptyset$ for all $i \neq j$

Prove that these two concepts are equivalent. [Hint: Given an equivalence \sim and an element $a \in S$ let $[a] = \{b \in S : a \sim b\} \subseteq S$ denote the *equivalence class of a* and let S/\sim denote the set of equivalence classes. Conversely, given a partition $X_i \subseteq S$ write $a \sim b$ to denote the fact that $a, b \in S$ are members of the same part X_i .]

2. The Group of Units.

- (a) Given a ring R we define the set of units $R^{\times} = \{u \in R : \exists v \in R, uv = 1\}$. Prove that this set satisfies the following three properties:
 - $1 \in R^{\times}$
 - $\bullet \ u \in R^{\times} \ \Rightarrow \ u^{-1} \in R^{\times}$
 - $u, v \in R^{\times} \Rightarrow uv \in R^{\times}$

We say that the structure $(R^{\times}, \cdot, 1)$ is a group, called the group of units of R. (b) Prove that the group of units of the ring $\mathbb{Z}/n\mathbb{Z}$ is given by

(b) Prove that the group of units of the ring $\mathbb{Z}/n\mathbb{Z}$ is given by

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ a \in \mathbb{Z}/n\mathbb{Z} : \gcd(a, n) = 1 \}.$$

We will write $\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$ to denote the size of this group. [Hint: If $gcd(a, n) = d \geq 2$, say a = dk and $n = d\ell$, show that $a\ell \equiv 0 \mod n$ and use this to show that a is not a unit mod n. Conversely, if gcd(a, n) = 1, use the Vector Euclidean Algorithm to show that a is a unit mod n.]

3. The Euler-Fermat Theorem. Let $(G, \cdot, 1)$ be an *abelian group*. That is, let G be a set with a binary operation $\cdot : G \times G \to G$ and a special element $1 \in G$ satisfying the following axioms:

- ab = ba
- a(bc) = (ab)c
- 1a = a
- $\forall a \in G, \exists b \in G, ab = 1$
- (a) For all $a, b, c \in G$ prove that ab = ac implies b = c.
- (b) For any element $a \in G$ we define the function $\mu_a : G \to G$ by $b \mapsto ab$. Use part (a) to show that this function is injective.

¹There are limited number of appropriate symbols for relations and sometimes we run out.

(c) If $G = \{a_1, a_2, \dots, a_m\}$ is a finite set then the function μ_a must also be surjective, so

$$\prod_{b \in G} b = \prod_{b \in G} \mu_a(b)$$
$$a_1 a_2 a_3 \cdots a_m = (aa_1)(aa_2) \cdots (aa_m).$$

Use this to prove that $a^m = 1.^2$

(d) The group of units $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is an example of an abelian group. Apply the result from part (c) to prove Euler's Theorem:

 $a^{\phi(n)} \equiv 1 \mod n$ for all integers a satisfying $\gcd(a, n) = 1$.

(e) If $p \in \mathbb{Z}$ is prime, use the result from part (d) to prove Fermat's Little Theorem:

 $a^{p-1} \equiv 1 \mod p$ for all integers a satisfying $p \nmid a$.

²The notation a^m means $a \cdot a \cdot a \cdots a$ (*m* times).