1. Equivalence Relation $=$ Partition. Given a set $S$, a relation on $S$ is just a subset $\mathscr{R} \subseteq S^{2}$ of ordered pairs. We usually write $a \sim \psi^{1}$ instead of $(a, b) \in \mathscr{R}$, and say " $a$ is related to $b "$. We further say that $\mathscr{R}$ is an equivalence relation if for all $a, b, c \in S$ we have

- $a \sim a$
- $a \sim b \Rightarrow b \sim a$
- $a \sim b$ and $b \sim c \Rightarrow a \sim c$

On the other hand, we define a partition of the set $S$ as a set of subsets $X_{i} \subseteq S$ with the following properties:

- $S=\cup_{i} X_{i}$
- $X_{i} \cap X_{j}=\emptyset$ for all $i \neq j$

Prove that these two concepts are equivalent. [Hint: Given an equivalence $\sim$ and an element $a \in S$ let $[a]=\{b \in S: a \sim b\} \subseteq S$ denote the equivalence class of $a$ and let $S / \sim$ denote the set of equivalence classes. Conversely, given a partition $X_{i} \subseteq S$ write $a \sim b$ to denote the fact that $a, b \in S$ are members of the same part $X_{i}$.]

## 2. The Group of Units.

(a) Given a ring $R$ we define the set of units $R^{\times}=\{u \in R: \exists v \in R$, $u v=1\}$. Prove that this set satisfies the following three properties:

- $1 \in R^{\times}$
- $u \in R^{\times} \Rightarrow u^{-1} \in R^{\times}$
- $u, v \in R^{\times} \Rightarrow u v \in R^{\times}$

We say that the structure $\left(R^{\times}, \cdot, 1\right)$ is a group, called the group of units of $R$.
(b) Prove that the group of units of the ring $\mathbb{Z} / n \mathbb{Z}$ is given by

$$
(\mathbb{Z} / n \mathbb{Z})^{\times}=\{a \in \mathbb{Z} / n \mathbb{Z}: \operatorname{gcd}(a, n)=1\} .
$$

We will write $\phi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}$to denote the size of this group. [Hint: If $\operatorname{gcd}(a, n)=$ $d \geq 2$, say $a=d k$ and $n=d \ell$, show that $a \ell \equiv 0 \bmod n$ and use this to show that $a$ is not a unit $\bmod n$. Conversely, if $\operatorname{gcd}(a, n)=1$, use the Vector Euclidean Algorithm to show that $a$ is a unit $\bmod n$.]
3. The Euler-Fermat Theorem. Let $(G, \cdot, 1)$ be an abelian group. That is, let $G$ be a set with a binary operation $: G \times G \rightarrow G$ and a special element $1 \in G$ satisfying the following axioms:

- $a b=b a$
- $a(b c)=(a b) c$
- $1 a=a$
- $\forall a \in G, \exists b \in G, a b=1$
(a) For all $a, b, c \in G$ prove that $a b=a c$ implies $b=c$.
(b) For any element $a \in G$ we define the function $\mu_{a}: G \rightarrow G$ by $b \mapsto a b$. Use part (a) to show that this function is injective.

[^0](c) If $G=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a finite set then the function $\mu_{a}$ must also be surjective, so
\[

$$
\begin{aligned}
\prod_{b \in G} b & =\prod_{b \in G} \mu_{a}(b) \\
a_{1} a_{2} a_{3} \cdots a_{m} & =\left(a a_{1}\right)\left(a a_{2}\right) \cdots\left(a a_{m}\right) .
\end{aligned}
$$
\]

Use this to prove that $a^{m}=1 \cdot \frac{2}{2}$
(d) The group of units $(\mathbb{Z} / n \mathbb{Z})^{\times}$is an example of an abelian group. Apply the result from part (c) to prove Euler's Theorem:

$$
a^{\phi(n)} \equiv 1 \bmod n \quad \text { for all integers } a \text { satisfying } \operatorname{gcd}(a, n)=1
$$

(e) If $p \in \mathbb{Z}$ is prime, use the result from part (d) to prove Fermat's Little Theorem:

$$
a^{p-1} \equiv 1 \bmod p \quad \text { for all integers } a \text { satisfying } p \nmid a .
$$

[^1]
[^0]:    ${ }^{1}$ There are limited number of appropriate symbols for relations and sometimes we run out.

[^1]:    ${ }^{2}$ The notation $a^{m}$ means $a \cdot a \cdot a \cdots a$ ( $m$ times).

