Math 561/661 Fall 2021
Homework 3 Drew Armstrong

1. Units and Associates. We say that v € R is a unit if there exists v € R with uv = 1.
Let R* be the set of units. We say that a,b € R are associates if there exists a unit u € R*
such that au = v. We define the notation

a~b <<= 3JueR* au=0bh.

(a) Prove that ~ is an equivalence relation on the set R.
(b) Prove that Z* = {#1}. [Hint: Use absolute value.]
(c) Prove that F[z]* =F \ {0}. [Hint: Use degree.]

(a): Reflexive. Since 1 is a unit we have al = a and hence a ~ a. Symmetric. If a ~ b then
we have au = b for some unit v € R*, which implies that bu™! = a. Since v~! is also a unit
this implies that b ~ a. Transitive. If a ~ b and b ~ ¢ then we have au = b and bv = ¢ for
some units u,v € R*. But note that uv is also a unit with inverse (uv)~! = v_lu_lﬂ Then
since ¢ = bv = (au)v = a(uv) we have a ~ c.

(b): First we observe that 1 and —1 are units because 1-1 =1 and (—1)(—1) = 1. Conversely,
we want to show that any unit must be equal to 1 or —1. So let u € Z be a unit. This means
that uv = 1 for some integer v € Z. Since u # 0 we also have v # 0, hence 1 < |u] and 1 < |v].
It follows that

1< vl
lu| < |ullv] multiply both sides by |u|
u < |uv|
ul < [1
lul < 1.

Since u # 0 this implies that u =1 or u = —1.

(c): First we observe that nonzero constant polynomials are units. Indeed, if f(x) = a for
some nonzero constant a € F then since F is a field the inverse constant a~! € F exists and
f(x)~! = a~!. Conversely, we want to show that any unit must be a nonzero constant. So let
f(z) € Flx] be a unit. This means that f(x)g(z) = 1 for some polynomial g(z) € F[z], and
taking degrees gives

deg(fg) = deg(1)
deg(f) + deg(g) = 0.

Since f(z) and g(x) are nonzero we have deg(f) > 0 and deg(g) > 0, hence the above equation
implies that deg(f) = 0 and deg(g) = 0. In other words, f(x) and g(x) are nonzero constants.

2. Lemmas for the Euclidean Algorithm.

1T could have said (uv) ™' = u~ v ™! but I chose to write (uv) ™! = v 'u~! because this second identity also

holds in cases where the multiplication is not commutative; for example, for matrix multiplication.



(a) For elements a,b, ¢,z in a ring R satisfying a = bx + ¢, prove that the following sets of
common divisors are equal:

Div(a,b) = Div(b, ).

[Hint: You need to prove the inclusion in both directions.]
(b) Now let R be a Euclidean domain with size function N : R\ {0} — N. For any nonzero
element a € R, prove that

d~a <= disamaximum-sized element of Div(a).

[Hint: Every divisor d|a satisfies N(d) < N(a), so a itself is among the maximum-sized
divisors of a. Use this to show that every associate of a is a maximum-sized divisor.
Conversely, let d|a be a maximum-sized divisor, i.e., with N(d) = N(a). To prove
d ~ a you need to show a|d. Divide d by a and show that the remainder r is divisible
by d. Then show that r # 0 leads to a contradiction.]

(a): Suppose that a,b,c,x € R satisfy a = bx + c. To see that Div(b,c) C Div(a,b), let d be a
common divisor of b and ¢, so that dk = b and d¢ = ¢ for some k,¢ € R. It follows that

a=br+c=dkr+dl =d(kx+?),

so that d is also a divisor of a. Hence d is a common divisor of a and b. Conversely, to see
that Div(a,b) C Div(b, ¢), let d be a common divisor of a and b, so that dk = a and d¢ = b for
some k, ¢ € R. It follows that

c=a—br=dk—dlx =d(k — lx),

so that d is also divisor of ¢. Hence d is a common divisor of b and c.

(b): First we observe that N(a) is the maximum size of a divisor of a. Indeed, since a divides
itself there does exist a divisor with this size. Also, since d|a implies N(d) < N(a) we see that
no divisor of a has size larger than N(a).

If d ~ a then we have d|a and ald. The first of these says that d is a divisor of a. We also
have N(d) < N(a) and N(a) < N(d), so that N(d) = N(a). It follows that d is a divisor of
maximum size.

Conversely, suppose that d is a divisor of @ with maximum size. That is, suppose that d|a
and N(d) = N(a). If we can show that a|d then we will be done because d|a and a|d imply
d ~ a. So let us divide d by a to obtain

d=aq+r,
r=0or N(r) < N(a).
Our goal is to show that » = 0 so let us assume for contradiction that r # 0, so that

N(r) < N(a). Since d|a we also have dk = a for some k € R, hence
r=d—aq=d—dkq=d(1—kq).
This implies that d|r and hence N(a) = N(d) < N(r). Contradiction.

3. Roots are Irrational. Let d > 1 be a positive integer and let ¥/d > 0 be its unique
positive nth root. We will prove the following:

If {/d is not an integer then ¥/d is not a rational number.

In the proof we will use the notation v,(a) for the multiplicity of the prime p in the unique
prime factorization of the integer a.

(a) Show that v,(ab) = vp(a) + v,(b) for all primes p and integers a, b € Z.



(b) Consider integers d,n > 1. Prove that d is the nth power of an integer if and only if
n|vp(d) for all primes pE|

(c) If d € Z is not the nth power of an integer, prove that d is not the nth power of a
rational number. [Hint: Assume for contradiction that d = (a/b)™. Multiply both sides
by b". Then use parts (a) and (b).]

(a): By definition we have
a = ov2(@)gvs(a)grs(a)pvr(a)

p = ov2(b)gra(b) 5rs(b) 77 (b) |

)

so that
ab = 2v2(a)+r2(b) gus(a)+vs(b) grs(a)+vs(b) vr(a)+vr(b)

But we also have
ab = 2v2(ab)gvs(ab) gus(ab)prr(ab) ..

hence it follows from uniqueness that vp,(ab) = vp(a) + v, (b) for all pE|

(b): Suppose that d = ¢" for some ¢ > 1. Then for any prime p, part (a) gives
vp(d) = vp(c") = vp(c) + vp(c) + -+ +1p(c) = nup(c),

and hence n|v,(d). Conversely, suppose that n|v,(d) for all primes p. In other words, suppose
that v,(d) = ne, for some integers e,. Then we have

d = 2% (d) 3V3(d)5l’5 (d) 71’7(d) e
— gnezgnesgnesyner
= (2°23%35%7°7 .. )"

so that d is the nth power of an integer.

9

¢): We will prove the contrapositive statement. Suppose that V/d = a/b for some integers
a,b, so that

Vd=a/b
d=a"/b"
av* =a".
Then for any prime p we have
vy(db") = vy(a™)
vy(d) + 7y (b) = ny(a)
vp(d) = n (vyla) — (b)),
and hence n|v,(d).
4. Modular Arithmetic. Fix a positive integer n > 1. Following Gauss, we define the
following notation for all a,b € Z, and we call this congruence modulo n:
a=b modn <= nl|(a—0b).

(a) Prove that congruence mod n is an equivalence relation on the set Z.

2The version of the homework I gave you only asked for one direction of this theorem. Unfortunately, it was
the wrong direction; i.e., the direction that is not useful for part (c). Oops.

3There are cleaner ways to do this but I think that writing out the factorizations explicitly, even though it’s
ugly, is the easiest proof to understand.



(b) Prove that congruence mod n respects addition and multiplication. In other words, if
a=a and b =V mod n, prove that a+b = a' + b and ab = @’b’ mod n. [Hint: For the
second property, consider the identity ab—a'b’ = ab—ab’'+ab'—a't/ = a(b—b')+(a—a’)V'.]

(c) Prove that for all a € Z there exists a unique integer r € Z satisfying a = r mod n
and 0 < r <n—1. [Hint: Let r be the remainder of a when divided by n. Suppose
that @ = r and @ = 7’ mod n for some 0 < r,7/ <n — 1. If r # ¢/ then it follows that
n|(r — r") and hence |n| < |r —7’|. Use this to obtain a contradiction.]

It follows that the finite set Z/nZ = {0,1,2,...,n — 1} can be viewed as a ringﬁ

(a): Reflexive. For all a € Z we have n0 = (a — a), which implies that n|(a — a) and hence
a = a mod n. Symmetric. If « = b mod n then we have n|(a —b), hence nk = a — b for some
k € Z. 1t follows that n(—k) = b — a, which implies that n|(b — a) and hence b = a mod n.
Transitive. If a = b and b = ¢ mod n then by definition we have nk =a —band nf =b — ¢
for some k, ¢ € Z. But then we also have

a—c=(a—b)+(b—c)=nk+nl =n(k+1),

which implies that a = ¢ mod n.

(b): Suppose that a = @’ and b = ¥ mod n, so that nk = a — o’ and nl = b — V' for some
k,¢ € Z. Then we have

(a+b)—(d+V)=(a—a)+ (b—1)
=nk +n/l
=n(k+ ),
which implies that a + b = a’ + ' mod n. And we have
ab—a't) = ab—ab +ab/ — 't/
=ab—"0")+ (a—ad)V
= anl + nkb/
=n(al + kb,

which implies that ab = a/b’ mod n.

(¢c): Suppose that we have a = r and a = r’ mod n for some integers r,r’ € Z satisfying
0<r<n-1and 0 <7 <n-—1. We will show that r = r’ﬂ By assumption we have
a —r =nk and a — v’ = nf for some k, ¢, which implies that

nk+r=nl+7r
r—r' =nl—k),
and hence |n| < |r — ¢/ \H Now let’s assume for contradiction that r # r’, so we may take
r’ < r without loss of generality. It follows that
r<n=ln|<|lr—r|=r—1"<nr,

which is a contradiction.

41 will explain the notation Z/nZ later.

5This statement is equivalent to the uniqueness of quotients and remainders for integer division.

6Here’s a reiminder: If zy = z and z # 0 then we also have z,y # 0 and multiplying both sides of the
inequality |y| > 1 by the positive number |z| gives |z| = |z||ly| > |z|.



5. Some Finite Fields. In class we proved that for all a,b,p € Z with p prime we have
plab = pla or p|b.

(a) If p is prime, use this property to prove that Z/pZ is an integral domain. Since this
set is finite, it follows from the previous homework that Z/pZ is a field.

(b) Since 23 is prime it follows from part (a) that the nonzero element 16 € Z/23Z has a
multiplicative inverse. Use the Vector Euclidean Algorithm to find this element. [Hint:
Find some z,y € Z such that 23z + 16y = 1.]

(c) If n > 1 is not prime, prove that Z/nZ is not an integral domain.

(a): By definition of integral domain, we want to show that
ab=0 modp =— a=0modp or = 0 mod p.

But this is just a direct translation of Euclid’s lemma because ¢ = 0 mod p if and only if p|c.

(b): We are looking for an integer y such that 16y = 1 mod 23. In other words, we are looking
for an integer y such that 23|(1—16y). In other words, we are looking for integers x, y such that
23z = 1—16y. And we know how to find such integers using the Vector Euclidean Algorithm.
To do this we consider the set of triples (z,y, z) of integers such that 23z + 16y = z. Then we
combine the triples (1,0,23) and (0, 1,16) to obtain a triple of the form (x,y,1):

x y |z
1 0 |23
0 1 |16
1] -117
-2 3 |2
7 1-10] 1
We conclude that y = —10 is one such integer. In other words:

167'=-10=13 mod 23.
Check: Since 16-13 =208 =23-9 4+ 1 we have 16-13 = 1 mod 23.

Remark: There is also a slow method. We could multiply 16 by every element of Z/237Z until
we get 1E|
16-1=16#1
16-2=32=9#1
16-3=48=2#1
etc.

In general, to find the inverse of @ mod p might take p — 1 steps using the slow method. But
it takes approximately logs(p) steps using the Euclidean Algorithm, which is much faster.

(c): We will ignore the case n = 1, since it is not important whether you want to call
ZJ/17Z = {0} a domain. If n > 2 is not prime then we can write n = ab where 1 < a < n and
1 <b<n, hence a Z 0 and b #Z 0 mod n. If Z/nZ were a domain this would imply ab Z 0
mod n. But we have

ab=n=0 mod n,
hence Z/nZ is not a domain.

TAll computations are mod 23.



