1. Units and Associates. We say that $u \in R$ is a *unit* if there exists $v \in R$ with uv = 1. Let R^{\times} be the set of units. We say that $a, b \in R$ are *associates* if there exists a unit $u \in R^{\times}$ such that au = v. We define the notation

 $a \sim b \iff \exists u \in R^{\times}, au = b.$

- (a) Prove that \sim is an equivalence relation on the set R.
- (b) Prove that $\mathbb{Z}^{\times} = \{\pm 1\}$. [Hint: Use absolute value.]
- (c) Prove that $\mathbb{F}[x]^{\times} = \mathbb{F} \setminus \{0\}$. [Hint: Use degree.]

(a): **Reflexive.** Since 1 is a unit we have a1 = a and hence $a \sim a$. **Symmetric.** If $a \sim b$ then we have au = b for some unit $u \in R^{\times}$, which implies that $bu^{-1} = a$. Since u^{-1} is also a unit this implies that $b \sim a$. **Transitive.** If $a \sim b$ and $b \sim c$ then we have au = b and bv = c for some units $u, v \in R^{\times}$. But note that uv is also a unit with inverse $(uv)^{-1} = v^{-1}u^{-1}$.¹ Then since c = bv = (au)v = a(uv) we have $a \sim c$.

(b): First we observe that 1 and -1 are units because $1 \cdot 1 = 1$ and (-1)(-1) = 1. Conversely, we want to show that any unit must be equal to 1 or -1. So let $u \in \mathbb{Z}$ be a unit. This means that uv = 1 for some integer $v \in \mathbb{Z}$. Since $u \neq 0$ we also have $v \neq 0$, hence $1 \leq |u|$ and $1 \leq |v|$. It follows that

$$\begin{split} &1 \leq |v| \\ &|u| \leq |u||v| & \text{multiply both sides by } |u| \\ &|u| \leq |uv| \\ &|u| \leq |1| \\ &|u| \leq 1. \end{split}$$

Since $u \neq 0$ this implies that u = 1 or u = -1.

(c): First we observe that nonzero constant polynomials are units. Indeed, if f(x) = a for some nonzero constant $a \in \mathbb{F}$ then since \mathbb{F} is a field the inverse constant $a^{-1} \in \mathbb{F}$ exists and $f(x)^{-1} = a^{-1}$. Conversely, we want to show that any unit must be a nonzero constant. So let $f(x) \in \mathbb{F}[x]$ be a unit. This means that f(x)g(x) = 1 for some polynomial $g(x) \in \mathbb{F}[x]$, and taking degrees gives

$$\deg(fg) = \deg(1)$$
$$\deg(f) + \deg(g) = 0.$$

Since f(x) and g(x) are nonzero we have $\deg(f) \ge 0$ and $\deg(g) \ge 0$, hence the above equation implies that $\deg(f) = 0$ and $\deg(g) = 0$. In other words, f(x) and g(x) are nonzero constants.

2. Lemmas for the Euclidean Algorithm.

¹I could have said $(uv)^{-1} = u^{-1}v^{-1}$ but I chose to write $(uv)^{-1} = v^{-1}u^{-1}$ because this second identity also holds in cases where the multiplication is not commutative; for example, for matrix multiplication.

(a) For elements a, b, c, x in a ring R satisfying a = bx + c, prove that the following sets of common divisors are equal:

$$\operatorname{Div}(a, b) = \operatorname{Div}(b, c).$$

[Hint: You need to prove the inclusion in both directions.]

(b) Now let R be a Euclidean domain with size function $N : R \setminus \{0\} \to \mathbb{N}$. For any nonzero element $a \in R$, prove that

 $d \sim a \iff d$ is a maximum-sized element of Div(a).

[Hint: Every divisor d|a satisfies $N(d) \leq N(a)$, so a itself is among the maximum-sized divisors of a. Use this to show that every associate of a is a maximum-sized divisor. Conversely, let d|a be a maximum-sized divisor, i.e., with N(d) = N(a). To prove $d \sim a$ you need to show a|d. Divide d by a and show that the remainder r is divisible by d. Then show that $r \neq 0$ leads to a contradiction.]

(a): Suppose that $a, b, c, x \in R$ satisfy a = bx + c. To see that $\text{Div}(b, c) \subseteq \text{Div}(a, b)$, let d be a common divisor of b and c, so that dk = b and $d\ell = c$ for some $k, \ell \in R$. It follows that

$$a = bx + c = dkx + d\ell = d(kx + \ell),$$

so that d is also a divisor of a. Hence d is a common divisor of a and b. Conversely, to see that $\text{Div}(a,b) \subseteq \text{Div}(b,c)$, let d be a common divisor of a and b, so that dk = a and $d\ell = b$ for some $k, \ell \in \mathbb{R}$. It follows that

$$c = a - bx = dk - d\ell x = d(k - \ell x),$$

so that d is also divisor of c. Hence d is a common divisor of b and c.

(b): First we observe that N(a) is the maximum size of a divisor of a. Indeed, since a divides itself there does exist a divisor with this size. Also, since d|a implies $N(d) \leq N(a)$ we see that no divisor of a has size larger than N(a).

If $d \sim a$ then we have d|a and a|d. The first of these says that d is a divisor of a. We also have $N(d) \leq N(a)$ and $N(a) \leq N(d)$, so that N(d) = N(a). It follows that d is a divisor of maximum size.

Conversely, suppose that d is a divisor of a with maximum size. That is, suppose that d|a and N(d) = N(a). If we can show that a|d then we will be done because d|a and a|d imply $d \sim a$. So let us divide d by a to obtain

$$\begin{cases} d = aq + r, \\ r = 0 \text{ or } N(r) < N(a). \end{cases}$$

Our goal is to show that r = 0 so let us assume for contradiction that $r \neq 0$, so that N(r) < N(a). Since d|a we also have dk = a for some $k \in R$, hence

$$r = d - aq = d - dkq = d(1 - kq).$$

This implies that d|r and hence $N(a) = N(d) \leq N(r)$. Contradiction.

3. Roots are Irrational. Let $d \ge 1$ be a positive integer and let $\sqrt[n]{d} > 0$ be its unique positive *n*th root. We will prove the following:

If $\sqrt[n]{d}$ is not an integer then $\sqrt[n]{d}$ is not a rational number.

In the proof we will use the notation $\nu_p(a)$ for the *multiplicity* of the prime p in the unique prime factorization of the integer a.

(a) Show that $\nu_p(ab) = \nu_p(a) + \nu_p(b)$ for all primes p and integers $a, b \in \mathbb{Z}$.

- (b) Consider integers $d, n \ge 1$. Prove that d is the *n*th power of an integer if and only if $n|\nu_p(d)$ for all primes p^{2} .
- (c) If $d \in \mathbb{Z}$ is not the *n*th power of an integer, prove that *d* is not the *n*th power of a rational number. [Hint: Assume for contradiction that $d = (a/b)^n$. Multiply both sides by b^n . Then use parts (a) and (b).]

(a): By definition we have

$$a = 2^{\nu_2(a)} 3^{\nu_3(a)} 5^{\nu_5(a)} 7^{\nu_7(a)} \cdots,$$

$$b = 2^{\nu_2(b)} 3^{\nu_3(b)} 5^{\nu_5(b)} 7^{\nu_7(b)} \cdots.$$

so that

$$ab = 2^{\nu_2(a) + \nu_2(b)} 3^{\nu_3(a) + \nu_3(b)} 5^{\nu_5(a) + \nu_5(b)} 7^{\nu_7(a) + \nu_7(b)} \cdots$$

But we also have

$$ab = 2^{\nu_2(ab)} 3^{\nu_3(ab)} 5^{\nu_5(ab)} 7^{\nu_7(ab)} \cdots$$

hence it follows from uniqueness that $\nu_p(ab) = \nu_p(a) + \nu_p(b)$ for all p.³

(b): Suppose that $d = c^n$ for some $c \ge 1$. Then for any prime p, part (a) gives

$$\nu_p(d) = \nu_p(c^n) = \nu_p(c) + \nu_p(c) + \dots + \nu_p(c) = n\nu_p(c),$$

and hence $n|\nu_p(d)$. Conversely, suppose that $n|\nu_p(d)$ for all primes p. In other words, suppose that $\nu_p(d) = ne_p$ for some integers e_p . Then we have

$$d = 2^{\nu_2(d)} 3^{\nu_3(d)} 5^{\nu_5(d)} 7^{\nu_7(d)} \cdots ,$$

= 2^{ne_2} 3^{ne_3} 5^{ne_5} 7^{ne_7} \dots ,
= (2^{e_2} 3^{e_3} 5^{e_5} 7^{e_7} \dots)ⁿ ,

so that d is the nth power of an integer.

(c): We will prove the contrapositive statement. Suppose that $\sqrt[n]{d} = a/b$ for some integers a, b, so that

$$\sqrt[n]{d} = a/b$$
$$d = a^n/b^n$$
$$db^n = a^n.$$

Then for any prime p we have

$$\nu_p(db^n) = \nu_p(a^n)$$

$$\nu_p(d) + n\nu_p(b) = n\nu_p(a)$$

$$\nu_p(d) = n\left(\nu_p(a) - \nu_p(b)\right),$$

and hence $n|\nu_p(d)$.

4. Modular Arithmetic. Fix a positive integer $n \ge 1$. Following Gauss, we define the following notation for all $a, b \in \mathbb{Z}$, and we call this *congruence modulo* n:

 $a \equiv b \mod n \iff n \mid (a-b).$

(a) Prove that congruence mod n is an equivalence relation on the set \mathbb{Z} .

 $^{^{2}}$ The version of the homework I gave you only asked for one direction of this theorem. Unfortunately, it was the wrong direction; i.e., the direction that is not useful for part (c). Oops.

³There are cleaner ways to do this but I think that writing out the factorizations explicitly, even though it's ugly, is the easiest proof to understand.

- (b) Prove that congruence mod n respects addition and multiplication. In other words, if $a \equiv a'$ and $b \equiv b' \mod n$, prove that $a + b \equiv a' + b'$ and $ab \equiv a'b' \mod n$. [Hint: For the second property, consider the identity ab-a'b' = ab-ab'+ab'-a'b' = a(b-b')+(a-a')b'.]
- (c) Prove that for all $a \in \mathbb{Z}$ there exists a unique integer $r \in \mathbb{Z}$ satisfying $a \equiv r \mod n$ and $0 \leq r \leq n-1$. [Hint: Let r be the remainder of a when divided by n. Suppose that $a \equiv r$ and $a \equiv r' \mod n$ for some $0 \leq r, r' \leq n-1$. If $r \neq r'$ then it follows that n|(r-r') and hence $|n| \leq |r-r'|$. Use this to obtain a contradiction.]

It follows that the finite set $\mathbb{Z}/n\mathbb{Z} = \{0, 1, 2, \dots, n-1\}$ can be viewed as a ring.⁴

(a): **Reflexive.** For all $a \in \mathbb{Z}$ we have n0 = (a - a), which implies that n|(a - a) and hence $a \equiv a \mod n$. Symmetric. If $a \equiv b \mod n$ then we have n|(a - b), hence nk = a - b for some $k \in \mathbb{Z}$. It follows that n(-k) = b - a, which implies that n|(b - a) and hence $b \equiv a \mod n$. Transitive. If $a \equiv b$ and $b \equiv c \mod n$ then by definition we have nk = a - b and $n\ell = b - c$ for some $k, \ell \in \mathbb{Z}$. But then we also have

$$a - c = (a - b) + (b - c) = nk + n\ell = n(k + \ell),$$

which implies that $a \equiv c \mod n$.

(b): Suppose that $a \equiv a'$ and $b \equiv b' \mod n$, so that nk = a - a' and $n\ell = b - b'$ for some $k, \ell \in \mathbb{Z}$. Then we have

$$(a + b) - (a' + b') = (a - a) + (b - b')$$

= $nk + n\ell$
= $n(k + \ell)$.

which implies that $a + b \equiv a' + b' \mod n$. And we have

$$ab - a'b' = ab - ab' + ab' - a'b'$$
$$= a(b - b') + (a - a')b'$$
$$= an\ell + nkb'$$
$$= n(a\ell + kb'),$$

which implies that $ab \equiv a'b' \mod n$.

(c): Suppose that we have $a \equiv r$ and $a \equiv r' \mod n$ for some integers $r, r' \in \mathbb{Z}$ satisfying $0 \leq r \leq n-1$ and $0 \leq r' \leq n-1$. We will show that r = r'.⁵ By assumption we have a - r = nk and $a - r' = n\ell$ for some k, ℓ , which implies that

$$nk + r = n\ell + r'$$
$$r - r' = n(\ell - k)$$

and hence $|n| \leq |r - r'|$.⁶ Now let's assume for contradiction that $r \neq r'$, so we may take r' < r without loss of generality. It follows that

$$r < n = |n| \le |r - r'| = r - r' \le r,$$

which is a contradiction.

⁴I will explain the notation $\mathbb{Z}/n\mathbb{Z}$ later.

⁵This statement is equivalent to the uniqueness of quotients and remainders for integer division.

⁶Here's a reiminder: If xy = z and $z \neq 0$ then we also have $x, y \neq 0$ and multiplying both sides of the inequality $|y| \ge 1$ by the positive number |x| gives $|z| = |x||y| \ge |x|$.

5. Some Finite Fields. In class we proved that for all $a, b, p \in \mathbb{Z}$ with p prime we have

 $p|ab \implies p|a \text{ or } p|b.$

- (a) If p is prime, use this property to prove that $\mathbb{Z}/p\mathbb{Z}$ is an integral domain. Since this set is finite, it follows from the previous homework that $\mathbb{Z}/p\mathbb{Z}$ is a field.
- (b) Since 23 is prime it follows from part (a) that the nonzero element $16 \in \mathbb{Z}/23\mathbb{Z}$ has a multiplicative inverse. Use the Vector Euclidean Algorithm to find this element. [Hint: Find some $x, y \in \mathbb{Z}$ such that 23x + 16y = 1.]
- (c) If $n \ge 1$ is not prime, prove that $\mathbb{Z}/n\mathbb{Z}$ is not an integral domain.

(a): By definition of integral domain, we want to show that

$$ab \equiv 0 \mod p \implies a \equiv 0 \mod p \text{ or } b \equiv 0 \mod p.$$

But this is just a direct translation of Euclid's lemma because $c \equiv 0 \mod p$ if and only if p|c.

(b): We are looking for an integer y such that $16y \equiv 1 \mod 23$. In other words, we are looking for an integer y such that 23|(1-16y). In other words, we are looking for integers x, y such that 23x = 1 - 16y. And we know how to find such integers using the Vector Euclidean Algorithm. To do this we consider the set of triples (x, y, z) of integers such that 23x + 16y = z. Then we combine the triples (1, 0, 23) and (0, 1, 16) to obtain a triple of the form (x, y, 1):

We conclude that y = -10 is one such integer. In other words:

$$16^{-1} \equiv -10 \equiv 13 \mod 23.$$

Check: Since $16 \cdot 13 = 208 = 23 \cdot 9 + 1$ we have $16 \cdot 13 \equiv 1 \mod 23$.

Remark: There is also a slow method. We could multiply 16 by every element of $\mathbb{Z}/23\mathbb{Z}$ until we get $1:^7$

$$16 \cdot 1 \equiv 16 \neq 1$$

$$16 \cdot 2 \equiv 32 \equiv 9 \neq 1$$

$$16 \cdot 3 \equiv 48 \equiv 2 \neq 1$$

etc.

In general, to find the inverse of a mod p might take p-1 steps using the slow method. But it takes approximately $\log_2(p)$ steps using the Euclidean Algorithm, which is much faster.

(c): We will ignore the case n = 1, since it is not important whether you want to call $\mathbb{Z}/1\mathbb{Z} = \{0\}$ a domain. If $n \ge 2$ is not prime then we can write n = ab where 1 < a < n and 1 < b < n, hence $a \not\equiv 0$ and $b \not\equiv 0 \mod n$. If $\mathbb{Z}/n\mathbb{Z}$ were a domain this would imply $ab \not\equiv 0 \mod n$. But we have

 $ab \equiv n \equiv 0 \mod n$,

hence $\mathbb{Z}/n\mathbb{Z}$ is not a domain.

⁷All computations are mod 23.