1. Units and Associates. We say that $u \in R$ is a unit if there exists $v \in R$ with $u v=1$. Let R^{\times}be the set of units. We say that $a, b \in R$ are associates if there exists a unit $u \in R^{\times}$ such that $a u=v$. We define the notation

$$
a \sim b \quad \Longleftrightarrow \quad \exists u \in R^{\times}, a u=b .
$$

(a) Prove that \sim is an equivalence relation on the set R.
(b) Prove that $\mathbb{Z}^{\times}=\{ \pm 1\}$. [Hint: Use absolute value.]
(c) Prove that $\mathbb{F}[x]^{\times}=\mathbb{F} \backslash\{0\}$. [Hint: Use degree.]
(a): Reflexive. Since 1 is a unit we have $a 1=a$ and hence $a \sim a$. Symmetric. If $a \sim b$ then we have $a u=b$ for some unit $u \in R^{\times}$, which implies that $b u^{-1}=a$. Since u^{-1} is also a unit this implies that $b \sim a$. Transitive. If $a \sim b$ and $b \sim c$ then we have $a u=b$ and $b v=c$ for some units $u, v \in R^{\times}$. But note that $u v$ is also a unit with inverse $(u v)^{-1}=v^{-1} u^{-1} \|^{1}$ Then since $c=b v=(a u) v=a(u v)$ we have $a \sim c$.
(b): First we observe that 1 and -1 are units because $1 \cdot 1=1$ and $(-1)(-1)=1$. Conversely, we want to show that any unit must be equal to 1 or -1 . So let $u \in \mathbb{Z}$ be a unit. This means that $u v=1$ for some integer $v \in \mathbb{Z}$. Since $u \neq 0$ we also have $v \neq 0$, hence $1 \leq|u|$ and $1 \leq|v|$. It follows that

$$
\begin{aligned}
1 & \leq|v| \\
|u| & \leq|u||v| \quad \text { multiply both sides by }|u| \\
|u| & \leq|u v| \\
|u| & \leq|1| \\
|u| & \leq 1 .
\end{aligned}
$$

Since $u \neq 0$ this implies that $u=1$ or $u=-1$.
(c): First we observe that nonzero constant polynomials are units. Indeed, if $f(x)=a$ for some nonzero constant $a \in \mathbb{F}$ then since \mathbb{F} is a field the inverse constant $a^{-1} \in \mathbb{F}$ exists and $f(x)^{-1}=a^{-1}$. Conversely, we want to show that any unit must be a nonzero constant. So let $f(x) \in \mathbb{F}[x]$ be a unit. This means that $f(x) g(x)=1$ for some polynomial $g(x) \in \mathbb{F}[x]$, and taking degrees gives

$$
\begin{aligned}
\operatorname{deg}(f g) & =\operatorname{deg}(1) \\
\operatorname{deg}(f)+\operatorname{deg}(g) & =0 .
\end{aligned}
$$

Since $f(x)$ and $g(x)$ are nonzero we have $\operatorname{deg}(f) \geq 0$ and $\operatorname{deg}(g) \geq 0$, hence the above equation implies that $\operatorname{deg}(f)=0$ and $\operatorname{deg}(g)=0$. In other words, $f(x)$ and $g(x)$ are nonzero constants.

2. Lemmas for the Euclidean Algorithm.

[^0](a) For elements a, b, c, x in a ring R satisfying $a=b x+c$, prove that the following sets of common divisors are equal:
$$
\operatorname{Div}(a, b)=\operatorname{Div}(b, c) .
$$
[Hint: You need to prove the inclusion in both directions.]
(b) Now let R be a Euclidean domain with size function $N: R \backslash\{0\} \rightarrow \mathbb{N}$. For any nonzero element $a \in R$, prove that
$$
d \sim a \quad \Longleftrightarrow \quad d \text { is a maximum-sized element of } \operatorname{Div}(a)
$$
[Hint: Every divisor $d \mid a$ satisfies $N(d) \leq N(a)$, so a itself is among the maximum-sized divisors of a. Use this to show that every associate of a is a maximum-sized divisor. Conversely, let $d \mid a$ be a maximum-sized divisor, i.e., with $N(d)=N(a)$. To prove $d \sim a$ you need to show $a \mid d$. Divide d by a and show that the remainder r is divisible by d. Then show that $r \neq 0$ leads to a contradiction.]
(a): Suppose that $a, b, c, x \in R$ satisfy $a=b x+c$. To see that $\operatorname{Div}(b, c) \subseteq \operatorname{Div}(a, b)$, let d be a common divisor of b and c, so that $d k=b$ and $d \ell=c$ for some $k, \ell \in R$. It follows that
$$
a=b x+c=d k x+d \ell=d(k x+\ell),
$$
so that d is also a divisor of a. Hence d is a common divisor of a and b. Conversely, to see that $\operatorname{Div}(a, b) \subseteq \operatorname{Div}(b, c)$, let d be a common divisor of a and b, so that $d k=a$ and $d \ell=b$ for some $k, \ell \in R$. It follows that
$$
c=a-b x=d k-d \ell x=d(k-\ell x),
$$
so that d is also divisor of c. Hence d is a common divisor of b and c.
(b): First we observe that $N(a)$ is the maximum size of a divisor of a. Indeed, since a divides itself there does exist a divisor with this size. Also, since $d \mid a$ implies $N(d) \leq N(a)$ we see that no divisor of a has size larger than $N(a)$.

If $d \sim a$ then we have $d \mid a$ and $a \mid d$. The first of these says that d is a divisor of a. We also have $N(d) \leq N(a)$ and $N(a) \leq N(d)$, so that $N(d)=N(a)$. It follows that d is a divisor of maximum size.

Conversely, suppose that d is a divisor of a with maximum size. That is, suppose that $d \mid a$ and $N(d)=N(a)$. If we can show that $a \mid d$ then we will be done because $d \mid a$ and $a \mid d$ imply $d \sim a$. So let us divide d by a to obtain

$$
\left\{\begin{array}{l}
d=a q+r, \\
r=0 \text { or } N(r)<N(a) .
\end{array}\right.
$$

Our goal is to show that $r=0$ so let us assume for contradiction that $r \neq 0$, so that $N(r)<N(a)$. Since $d \mid a$ we also have $d k=a$ for some $k \in R$, hence

$$
r=d-a q=d-d k q=d(1-k q) .
$$

This implies that $d \mid r$ and hence $N(a)=N(d) \leq N(r)$. Contradiction.
3. Roots are Irrational. Let $d \geq 1$ be a positive integer and let $\sqrt[n]{d}>0$ be its unique positive nth root. We will prove the following:

If $\sqrt[n]{d}$ is not an integer then $\sqrt[n]{d}$ is not a rational number.
In the proof we will use the notation $\nu_{p}(a)$ for the multiplicity of the prime p in the unique prime factorization of the integer a.
(a) Show that $\nu_{p}(a b)=\nu_{p}(a)+\nu_{p}(b)$ for all primes p and integers $a, b \in \mathbb{Z}$.
(b) Consider integers $d, n \geq 1$. Prove that d is the nth power of an integer if and only if $n \mid \nu_{p}(d)$ for all primes $p .^{2}$
(c) If $d \in \mathbb{Z}$ is not the nth power of an integer, prove that d is not the nth power of a rational number. [Hint: Assume for contradiction that $d=(a / b)^{n}$. Multiply both sides by b^{n}. Then use parts (a) and (b).]
(a): By definition we have

$$
\begin{aligned}
& a=2^{\nu_{2}(a)} 3^{\nu_{3}(a)} 5^{\nu_{5}(a)} 7^{\nu_{7}(a)} \cdots, \\
& b=2^{\nu_{2}(b)} 3^{\nu_{3}(b)} 5^{\nu_{5}(b)} 7^{\nu_{7}(b)} \cdots,
\end{aligned}
$$

so that

$$
a b=2^{\nu_{2}(a)+\nu_{2}(b)} 3^{\nu_{3}(a)+\nu_{3}(b)} 5^{\nu_{5}(a)+\nu_{5}(b)} 7^{\nu_{7}(a)+\nu_{7}(b)} \ldots .
$$

But we also have

$$
a b=2^{\nu_{2}(a b)} 3^{\nu_{3}(a b)} 5^{\nu_{5}(a b)} 7^{\nu_{7}(a b)} \ldots,
$$

hence it follows from uniqueness that $\nu_{p}(a b)=\nu_{p}(a)+\nu_{p}(b)$ for all $\left.p\right]^{3}$
(b): Suppose that $d=c^{n}$ for some $c \geq 1$. Then for any prime p, part (a) gives

$$
\nu_{p}(d)=\nu_{p}\left(c^{n}\right)=\nu_{p}(c)+\nu_{p}(c)+\cdots+\nu_{p}(c)=n \nu_{p}(c),
$$

and hence $n \mid \nu_{p}(d)$. Conversely, suppose that $n \mid \nu_{p}(d)$ for all primes p. In other words, suppose that $\nu_{p}(d)=n e_{p}$ for some integers e_{p}. Then we have

$$
\begin{aligned}
d & =2^{\nu_{2}(d)} 3^{\nu_{3}(d)} 5^{\nu_{5}(d)} 7^{\nu_{7}(d)} \cdots, \\
& =2^{n e_{2}} 3^{n e_{3}} 5^{n e_{5}} 7^{n e_{7}} \cdots, \\
& =\left(2^{e_{2}} 3^{e_{3}} 5^{e_{5}} 7^{e_{7}} \cdots\right)^{n},
\end{aligned}
$$

so that d is the nth power of an integer.
(c): We will prove the contrapositive statement. Suppose that $\sqrt[n]{d}=a / b$ for some integers a, b, so that

$$
\begin{aligned}
\sqrt[n]{d} & =a / b \\
d & =a^{n} / b^{n} \\
d b^{n} & =a^{n} .
\end{aligned}
$$

Then for any prime p we have

$$
\begin{aligned}
\nu_{p}\left(d b^{n}\right) & =\nu_{p}\left(a^{n}\right) \\
\nu_{p}(d)+n \nu_{p}(b) & =n \nu_{p}(a) \\
\nu_{p}(d) & =n\left(\nu_{p}(a)-\nu_{p}(b)\right),
\end{aligned}
$$

and hence $n \mid \nu_{p}(d)$.
4. Modular Arithmetic. Fix a positive integer $n \geq 1$. Following Gauss, we define the following notation for all $a, b \in \mathbb{Z}$, and we call this congruence modulo n :

$$
a \equiv b \quad \bmod n \quad \Longleftrightarrow \quad n \mid(a-b) .
$$

(a) Prove that congruence $\bmod n$ is an equivalence relation on the set \mathbb{Z}.

[^1](b) Prove that congruence $\bmod n$ respects addition and multiplication. In other words, if $a \equiv a^{\prime}$ and $b \equiv b^{\prime} \bmod n$, prove that $a+b \equiv a^{\prime}+b^{\prime}$ and $a b \equiv a^{\prime} b^{\prime} \bmod n$. [Hint: For the second property, consider the identity $a b-a^{\prime} b^{\prime}=a b-a b^{\prime}+a b^{\prime}-a^{\prime} b^{\prime}=a\left(b-b^{\prime}\right)+\left(a-a^{\prime}\right) b^{\prime}$.]
(c) Prove that for all $a \in \mathbb{Z}$ there exists a unique integer $r \in \mathbb{Z}$ satisfying $a \equiv r \bmod n$ and $0 \leq r \leq n-1$. [Hint: Let r be the remainder of a when divided by n. Suppose that $a \equiv r$ and $a \equiv r^{\prime} \bmod n$ for some $0 \leq r, r^{\prime} \leq n-1$. If $r \neq r^{\prime}$ then it follows that $n \mid\left(r-r^{\prime}\right)$ and hence $|n| \leq\left|r-r^{\prime}\right|$. Use this to obtain a contradiction.]
It follows that the finite set $\mathbb{Z} / n \mathbb{Z}=\{0,1,2, \ldots, n-1\}$ can be viewed as a ring ${ }^{4}$
(a): Reflexive. For all $a \in \mathbb{Z}$ we have $n 0=(a-a)$, which implies that $n \mid(a-a)$ and hence $a \equiv a \bmod n$. Symmetric. If $a \equiv b \bmod n$ then we have $n \mid(a-b)$, hence $n k=a-b$ for some $k \in \mathbb{Z}$. It follows that $n(-k)=b-a$, which implies that $n \mid(b-a)$ and hence $b \equiv a \bmod n$. Transitive. If $a \equiv b$ and $b \equiv c \bmod n$ then by definition we have $n k=a-b$ and $n \ell=b-c$ for some $k, \ell \in \mathbb{Z}$. But then we also have
$$
a-c=(a-b)+(b-c)=n k+n \ell=n(k+\ell),
$$
which implies that $a \equiv c \bmod n$.
(b): Suppose that $a \equiv a^{\prime}$ and $b \equiv b^{\prime} \bmod n$, so that $n k=a-a^{\prime}$ and $n \ell=b-b^{\prime}$ for some $k, \ell \in \mathbb{Z}$. Then we have
\[

$$
\begin{aligned}
(a+b)-\left(a^{\prime}+b^{\prime}\right) & =(a-a)+\left(b-b^{\prime}\right) \\
& =n k+n \ell \\
& =n(k+\ell),
\end{aligned}
$$
\]

which implies that $a+b \equiv a^{\prime}+b^{\prime} \bmod n$. And we have

$$
\begin{aligned}
a b-a^{\prime} b^{\prime} & =a b-a b^{\prime}+a b^{\prime}-a^{\prime} b^{\prime} \\
& =a\left(b-b^{\prime}\right)+\left(a-a^{\prime}\right) b^{\prime} \\
& =a n \ell+n k b^{\prime} \\
& =n\left(a \ell+k b^{\prime}\right),
\end{aligned}
$$

which implies that $a b \equiv a^{\prime} b^{\prime} \bmod n$.
(c): Suppose that we have $a \equiv r$ and $a \equiv r^{\prime} \bmod n$ for some integers $r, r^{\prime} \in \mathbb{Z}$ satisfying $0 \leq r \leq n-1$ and $0 \leq r^{\prime} \leq n-1$. We will show that $r=r^{\prime} 5^{5}$ By assumption we have $a-r=n k$ and $a-r^{\prime}=n \ell$ for some k, ℓ, which implies that

$$
\begin{aligned}
n k+r & =n \ell+r^{\prime} \\
r-r^{\prime} & =n(\ell-k),
\end{aligned}
$$

and hence $|n| \leq\left.\left|r-r^{\prime}\right|\right|^{6}$ Now let's assume for contradiction that $r \neq r^{\prime}$, so we may take $r^{\prime}<r$ without loss of generality. It follows that

$$
r<n=|n| \leq\left|r-r^{\prime}\right|=r-r^{\prime} \leq r,
$$

which is a contradiction.

[^2]5. Some Finite Fields. In class we proved that for all $a, b, p \in \mathbb{Z}$ with p prime we have
$$
p|a b \quad \Longrightarrow \quad p| a \text { or } p \mid b .
$$
(a) If p is prime, use this property to prove that $\mathbb{Z} / p \mathbb{Z}$ is an integral domain. Since this set is finite, it follows from the previous homework that $\mathbb{Z} / p \mathbb{Z}$ is a field.
(b) Since 23 is prime it follows from part (a) that the nonzero element $16 \in \mathbb{Z} / 23 \mathbb{Z}$ has a multiplicative inverse. Use the Vector Euclidean Algorithm to find this element. [Hint: Find some $x, y \in \mathbb{Z}$ such that $23 x+16 y=1$.]
(c) If $n \geq 1$ is not prime, prove that $\mathbb{Z} / n \mathbb{Z}$ is not an integral domain.
(a): By definition of integral domain, we want to show that
$$
a b \equiv 0 \quad \bmod p \quad \Longrightarrow \quad a \equiv 0 \bmod p \quad \text { or } \quad b \equiv 0 \bmod p .
$$

But this is just a direct translation of Euclid's lemma because $c \equiv 0 \bmod p$ if and only if $p \mid c$.
(b): We are looking for an integer y such that $16 y \equiv 1 \bmod 23$. In other words, we are looking for an integer y such that $23 \mid(1-16 y)$. In other words, we are looking for integers x, y such that $23 x=1-16 y$. And we know how to find such integers using the Vector Euclidean Algorithm. To do this we consider the set of triples (x, y, z) of integers such that $23 x+16 y=z$. Then we combine the triples $(1,0,23)$ and $(0,1,16)$ to obtain a triple of the form $(x, y, 1)$:

x	y	z
1	0	23
0	1	16
1	-1	7
-2	3	2
7	-10	1

We conclude that $y=-10$ is one such integer. In other words:

$$
16^{-1} \equiv-10 \equiv 13 \quad \bmod 23
$$

Check: Since $16 \cdot 13=208=23 \cdot 9+1$ we have $16 \cdot 13 \equiv 1 \bmod 23$.
Remark: There is also a slow method. We could multiply 16 by every element of $\mathbb{Z} / 23 \mathbb{Z}$ until we get $1 \sqrt[7]{7}$

$$
\begin{aligned}
16 \cdot 1 & \equiv 16 \not \equiv 1 \\
16 \cdot 2 & \equiv 32 \equiv 9 \not \equiv 1 \\
16 \cdot 3 & \equiv 48 \equiv 2 \not \equiv 1
\end{aligned}
$$

etc.
In general, to find the inverse of $a \bmod p$ might take $p-1$ steps using the slow method. But it takes approximately $\log _{2}(p)$ steps using the Euclidean Algorithm, which is much faster.
(c): We will ignore the case $n=1$, since it is not important whether you want to call $\mathbb{Z} / 1 \mathbb{Z}=\{0\}$ a domain. If $n \geq 2$ is not prime then we can write $n=a b$ where $1<a<n$ and $1<b<n$, hence $a \not \equiv 0$ and $b \not \equiv 0 \bmod n$. If $\mathbb{Z} / n \mathbb{Z}$ were a domain this would imply $a b \not \equiv 0$ $\bmod n$. But we have

$$
a b \equiv n \equiv 0 \quad \bmod n,
$$

hence $\mathbb{Z} / n \mathbb{Z}$ is not a domain.

[^3]
[^0]: ${ }^{1}$ I could have said $(u v)^{-1}=u^{-1} v^{-1}$ but I chose to write $(u v)^{-1}=v^{-1} u^{-1}$ because this second identity also holds in cases where the multiplication is not commutative; for example, for matrix multiplication.

[^1]: ${ }^{2}$ The version of the homework I gave you only asked for one direction of this theorem. Unfortunately, it was the wrong direction; i.e., the direction that is not useful for part (c). Oops.
 ${ }^{3}$ There are cleaner ways to do this but I think that writing out the factorizations explicitly, even though it's ugly, is the easiest proof to understand.

[^2]: ${ }^{4}$ I will explain the notation $\mathbb{Z} / n \mathbb{Z}$ later.
 ${ }^{5}$ This statement is equivalent to the uniqueness of quotients and remainders for integer division.
 ${ }^{6}$ Here's a reiminder: If $x y=z$ and $z \neq 0$ then we also have $x, y \neq 0$ and multiplying both sides of the inequality $|y| \geq 1$ by the positive number $|x|$ gives $|z|=|x||y| \geq|x|$.

[^3]: ${ }^{7}$ All computations are $\bmod 23$.

