
Math 561/661 Fall 2021
Homework 3 Drew Armstrong

1. Units and Associates. We say that u ∈ R is a unit if there exists v ∈ R with uv = 1.
Let R× be the set of units. We say that a, b ∈ R are associates if there exists a unit u ∈ R×
such that au = v. We define the notation

a ∼ b ⇐⇒ ∃u ∈ R×, au = b.

(a) Prove that ∼ is an equivalence relation on the set R.
(b) Prove that Z× = {±1}. [Hint: Use absolute value.]
(c) Prove that F[x]× = F \ {0}. [Hint: Use degree.]

(a): Reflexive. Since 1 is a unit we have a1 = a and hence a ∼ a. Symmetric. If a ∼ b then
we have au = b for some unit u ∈ R×, which implies that bu−1 = a. Since u−1 is also a unit
this implies that b ∼ a. Transitive. If a ∼ b and b ∼ c then we have au = b and bv = c for
some units u, v ∈ R×. But note that uv is also a unit with inverse (uv)−1 = v−1u−1.1 Then
since c = bv = (au)v = a(uv) we have a ∼ c.

(b): First we observe that 1 and −1 are units because 1 ·1 = 1 and (−1)(−1) = 1. Conversely,
we want to show that any unit must be equal to 1 or −1. So let u ∈ Z be a unit. This means
that uv = 1 for some integer v ∈ Z. Since u 6= 0 we also have v 6= 0, hence 1 ≤ |u| and 1 ≤ |v|.
It follows that

1 ≤ |v|
|u| ≤ |u||v| multiply both sides by |u|
|u| ≤ |uv|
|u| ≤ |1|
|u| ≤ 1.

Since u 6= 0 this implies that u = 1 or u = −1.

(c): First we observe that nonzero constant polynomials are units. Indeed, if f(x) = a for
some nonzero constant a ∈ F then since F is a field the inverse constant a−1 ∈ F exists and
f(x)−1 = a−1. Conversely, we want to show that any unit must be a nonzero constant. So let
f(x) ∈ F[x] be a unit. This means that f(x)g(x) = 1 for some polynomial g(x) ∈ F[x], and
taking degrees gives

deg(fg) = deg(1)

deg(f) + deg(g) = 0.

Since f(x) and g(x) are nonzero we have deg(f) ≥ 0 and deg(g) ≥ 0, hence the above equation
implies that deg(f) = 0 and deg(g) = 0. In other words, f(x) and g(x) are nonzero constants.

2. Lemmas for the Euclidean Algorithm.

1I could have said (uv)−1 = u−1v−1 but I chose to write (uv)−1 = v−1u−1 because this second identity also
holds in cases where the multiplication is not commutative; for example, for matrix multiplication.



(a) For elements a, b, c, x in a ring R satisfying a = bx+ c, prove that the following sets of
common divisors are equal:

Div(a, b) = Div(b, c).

[Hint: You need to prove the inclusion in both directions.]
(b) Now let R be a Euclidean domain with size function N : R\{0} → N. For any nonzero

element a ∈ R, prove that

d ∼ a ⇐⇒ d is a maximum-sized element of Div(a).

[Hint: Every divisor d|a satisfies N(d) ≤ N(a), so a itself is among the maximum-sized
divisors of a. Use this to show that every associate of a is a maximum-sized divisor.
Conversely, let d|a be a maximum-sized divisor, i.e., with N(d) = N(a). To prove
d ∼ a you need to show a|d. Divide d by a and show that the remainder r is divisible
by d. Then show that r 6= 0 leads to a contradiction.]

(a): Suppose that a, b, c, x ∈ R satisfy a = bx+ c. To see that Div(b, c) ⊆ Div(a, b), let d be a
common divisor of b and c, so that dk = b and d` = c for some k, ` ∈ R. It follows that

a = bx+ c = dkx+ d` = d(kx+ `),

so that d is also a divisor of a. Hence d is a common divisor of a and b. Conversely, to see
that Div(a, b) ⊆ Div(b, c), let d be a common divisor of a and b, so that dk = a and d` = b for
some k, ` ∈ R. It follows that

c = a− bx = dk − d`x = d(k − `x),

so that d is also divisor of c. Hence d is a common divisor of b and c.

(b): First we observe that N(a) is the maximum size of a divisor of a. Indeed, since a divides
itself there does exist a divisor with this size. Also, since d|a implies N(d) ≤ N(a) we see that
no divisor of a has size larger than N(a).

If d ∼ a then we have d|a and a|d. The first of these says that d is a divisor of a. We also
have N(d) ≤ N(a) and N(a) ≤ N(d), so that N(d) = N(a). It follows that d is a divisor of
maximum size.

Conversely, suppose that d is a divisor of a with maximum size. That is, suppose that d|a
and N(d) = N(a). If we can show that a|d then we will be done because d|a and a|d imply
d ∼ a. So let us divide d by a to obtain{

d = aq + r,
r = 0 or N(r) < N(a).

Our goal is to show that r = 0 so let us assume for contradiction that r 6= 0, so that
N(r) < N(a). Since d|a we also have dk = a for some k ∈ R, hence

r = d− aq = d− dkq = d(1− kq).
This implies that d|r and hence N(a) = N(d) ≤ N(r). Contradiction.

3. Roots are Irrational. Let d ≥ 1 be a positive integer and let n
√
d > 0 be its unique

positive nth root. We will prove the following:

If n
√
d is not an integer then n

√
d is not a rational number.

In the proof we will use the notation νp(a) for the multiplicity of the prime p in the unique
prime factorization of the integer a.

(a) Show that νp(ab) = νp(a) + νp(b) for all primes p and integers a, b ∈ Z.



(b) Consider integers d, n ≥ 1. Prove that d is the nth power of an integer if and only if
n|νp(d) for all primes p.2

(c) If d ∈ Z is not the nth power of an integer, prove that d is not the nth power of a
rational number. [Hint: Assume for contradiction that d = (a/b)n. Multiply both sides
by bn. Then use parts (a) and (b).]

(a): By definition we have

a = 2ν2(a)3ν3(a)5ν5(a)7ν7(a) · · · ,

b = 2ν2(b)3ν3(b)5ν5(b)7ν7(b) · · · ,
so that

ab = 2ν2(a)+ν2(b)3ν3(a)+ν3(b)5ν5(a)+ν5(b)7ν7(a)+ν7(b) · · · .
But we also have

ab = 2ν2(ab)3ν3(ab)5ν5(ab)7ν7(ab) · · · ,
hence it follows from uniqueness that νp(ab) = νp(a) + νp(b) for all p.3

(b): Suppose that d = cn for some c ≥ 1. Then for any prime p, part (a) gives

νp(d) = νp(c
n) = νp(c) + νp(c) + · · ·+ νp(c) = nνp(c),

and hence n|νp(d). Conversely, suppose that n|νp(d) for all primes p. In other words, suppose
that νp(d) = nep for some integers ep. Then we have

d = 2ν2(d)3ν3(d)5ν5(d)7ν7(d) · · · ,
= 2ne23ne35ne57ne7 · · · ,
= (2e23e35e57e7 · · · )n ,

so that d is the nth power of an integer.

(c): We will prove the contrapositive statement. Suppose that n
√
d = a/b for some integers

a, b, so that
n
√
d = a/b

d = an/bn

dbn = an.

Then for any prime p we have

νp(db
n) = νp(a

n)

νp(d) + nνp(b) = nνp(a)

νp(d) = n (νp(a)− νp(b)) ,
and hence n|νp(d).

4. Modular Arithmetic. Fix a positive integer n ≥ 1. Following Gauss, we define the
following notation for all a, b ∈ Z, and we call this congruence modulo n:

a ≡ b mod n ⇐⇒ n|(a− b).
(a) Prove that congruence mod n is an equivalence relation on the set Z.

2The version of the homework I gave you only asked for one direction of this theorem. Unfortunately, it was
the wrong direction; i.e., the direction that is not useful for part (c). Oops.

3There are cleaner ways to do this but I think that writing out the factorizations explicitly, even though it’s
ugly, is the easiest proof to understand.



(b) Prove that congruence mod n respects addition and multiplication. In other words, if
a ≡ a′ and b ≡ b′ mod n, prove that a+ b ≡ a′+ b′ and ab ≡ a′b′ mod n. [Hint: For the
second property, consider the identity ab−a′b′ = ab−ab′+ab′−a′b′ = a(b−b′)+(a−a′)b′.]

(c) Prove that for all a ∈ Z there exists a unique integer r ∈ Z satisfying a ≡ r mod n
and 0 ≤ r ≤ n − 1. [Hint: Let r be the remainder of a when divided by n. Suppose
that a ≡ r and a ≡ r′ mod n for some 0 ≤ r, r′ ≤ n− 1. If r 6= r′ then it follows that
n|(r − r′) and hence |n| ≤ |r − r′|. Use this to obtain a contradiction.]

It follows that the finite set Z/nZ = {0, 1, 2, . . . , n− 1} can be viewed as a ring.4

(a): Reflexive. For all a ∈ Z we have n0 = (a − a), which implies that n|(a − a) and hence
a ≡ a mod n. Symmetric. If a ≡ b mod n then we have n|(a− b), hence nk = a− b for some
k ∈ Z. It follows that n(−k) = b − a, which implies that n|(b − a) and hence b ≡ a mod n.
Transitive. If a ≡ b and b ≡ c mod n then by definition we have nk = a− b and n` = b− c
for some k, ` ∈ Z. But then we also have

a− c = (a− b) + (b− c) = nk + n` = n(k + `),

which implies that a ≡ c mod n.

(b): Suppose that a ≡ a′ and b ≡ b′ mod n, so that nk = a − a′ and n` = b − b′ for some
k, ` ∈ Z. Then we have

(a+ b)− (a′ + b′) = (a− a) + (b− b′)
= nk + n`

= n(k + `),

which implies that a+ b ≡ a′ + b′ mod n. And we have

ab− a′b′ = ab− ab′ + ab′ − a′b′

= a(b− b′) + (a− a′)b′

= an`+ nkb′

= n(a`+ kb′),

which implies that ab ≡ a′b′ mod n.

(c): Suppose that we have a ≡ r and a ≡ r′ mod n for some integers r, r′ ∈ Z satisfying
0 ≤ r ≤ n − 1 and 0 ≤ r′ ≤ n − 1. We will show that r = r′.5 By assumption we have
a− r = nk and a− r′ = n` for some k, `, which implies that

nk + r = n`+ r′

r − r′ = n(`− k),

and hence |n| ≤ |r − r′|.6 Now let’s assume for contradiction that r 6= r′, so we may take
r′ < r without loss of generality. It follows that

r < n = |n| ≤ |r − r′| = r − r′ ≤ r,

which is a contradiction.

4I will explain the notation Z/nZ later.
5This statement is equivalent to the uniqueness of quotients and remainders for integer division.
6Here’s a reiminder: If xy = z and z 6= 0 then we also have x, y 6= 0 and multiplying both sides of the

inequality |y| ≥ 1 by the positive number |x| gives |z| = |x||y| ≥ |x|.



5. Some Finite Fields. In class we proved that for all a, b, p ∈ Z with p prime we have

p|ab =⇒ p|a or p|b.
(a) If p is prime, use this property to prove that Z/pZ is an integral domain. Since this

set is finite, it follows from the previous homework that Z/pZ is a field.
(b) Since 23 is prime it follows from part (a) that the nonzero element 16 ∈ Z/23Z has a

multiplicative inverse. Use the Vector Euclidean Algorithm to find this element. [Hint:
Find some x, y ∈ Z such that 23x+ 16y = 1.]

(c) If n ≥ 1 is not prime, prove that Z/nZ is not an integral domain.

(a): By definition of integral domain, we want to show that

ab ≡ 0 mod p =⇒ a ≡ 0 mod p or b ≡ 0 mod p.

But this is just a direct translation of Euclid’s lemma because c ≡ 0 mod p if and only if p|c.

(b): We are looking for an integer y such that 16y ≡ 1 mod 23. In other words, we are looking
for an integer y such that 23|(1−16y). In other words, we are looking for integers x, y such that
23x = 1−16y. And we know how to find such integers using the Vector Euclidean Algorithm.
To do this we consider the set of triples (x, y, z) of integers such that 23x+ 16y = z. Then we
combine the triples (1, 0, 23) and (0, 1, 16) to obtain a triple of the form (x, y, 1):

x y z
1 0 23
0 1 16
1 −1 7
−2 3 2
7 −10 1

We conclude that y = −10 is one such integer. In other words:

16−1 ≡ −10 ≡ 13 mod 23.

Check: Since 16 · 13 = 208 = 23 · 9 + 1 we have 16 · 13 ≡ 1 mod 23.

Remark: There is also a slow method. We could multiply 16 by every element of Z/23Z until
we get 1:7

16 · 1 ≡ 16 6≡ 1

16 · 2 ≡ 32 ≡ 9 6≡ 1

16 · 3 ≡ 48 ≡ 2 6≡ 1

etc.

In general, to find the inverse of a mod p might take p− 1 steps using the slow method. But
it takes approximately log2(p) steps using the Euclidean Algorithm, which is much faster.

(c): We will ignore the case n = 1, since it is not important whether you want to call
Z/1Z = {0} a domain. If n ≥ 2 is not prime then we can write n = ab where 1 < a < n and
1 < b < n, hence a 6≡ 0 and b 6≡ 0 mod n. If Z/nZ were a domain this would imply ab 6≡ 0
mod n. But we have

ab ≡ n ≡ 0 mod n,

hence Z/nZ is not a domain.

7All computations are mod 23.


