1. Units and Associates. We say that $u \in R$ is a unit if there exists $v \in R$ with $u v=1$. Let R^{\times}be the set of units. We say that $a, b \in R$ are associates if there exists a unit $u \in R^{\times}$ such that $a u=v$. We define the notation

$$
a \sim b \quad \Longleftrightarrow \quad \exists u \in R^{\times}, a u=b
$$

(a) Prove that \sim is an equivalence relation on the set R.
(b) Prove that $\mathbb{Z}^{\times}=\{ \pm 1\}$. [Hint: Use absolute value.]
(c) Prove that $\mathbb{F}[x]^{\times}=\mathbb{F} \backslash\{0\}$. [Hint: Use degree.]

2. Lemmas for the Euclidean Algorithm.

(a) For elements a, b, c, x in a ring R satisfying $a=b x+c$, prove that the following sets of common divisors are equal:

$$
\operatorname{Div}(a, b)=\operatorname{Div}(b, c) .
$$

[Hint: You need to prove the inclusion in both directions.]
(b) Now let R be a Euclidean domain with size function $N: R \backslash\{0\} \rightarrow \mathbb{N}$. For any nonzero element $a \in R$, prove that

$$
d \sim a \quad \Longleftrightarrow \quad d \text { is a maximum-sized element of } \operatorname{Div}(a)
$$

[Hint: Every divisor $d \mid a$ satisfies $N(d) \leq N(a)$, so a itself is among the maximum-sized divisors of a. Use this to show that every associate of a is a maximum-sized divisor. Conversely, let $d \mid a$ be a maximum-sized divisor, i.e., with $N(d)=N(a)$. To prove $d \sim a$ you need to show $a \mid d$. Divide d by a and show that the remainder r is divisible by d. Then show that $r \neq 0$ leads to a contradiction.]
3. Roots are Irrational. Let $d \geq 1$ be a positive integer and let $\sqrt[n]{d}>0$ be its unique positive nth root. We will prove the following:

If $\sqrt[n]{d}$ is not an integer then $\sqrt[n]{d}$ is not a rational number.
In the proof we will use the notation $\nu_{p}(a)$ for the multiplicity of the prime p in the unique prime factorization of the integer a.
(a) Show that $\nu_{p}(a b)=\nu_{p}(a)+\nu_{p}(b)$ for all primes p and integers $a, b \in \mathbb{Z}$.
(b) Given $a, n \in \mathbb{Z}$, show that $n \mid \nu_{p}\left(a^{n}\right)$ for all primes p. If $d \in \mathbb{Z}$ is not the nth power of an integer then it follows that there exists a prime p with $n \nmid \nu_{p}(d)$.
(c) If $d \in \mathbb{Z}$ is not the nth power of an integer, prove that it is not the nth power of a rational number. [Hint: Assume for contradiction that $d=(a / b)^{n}$. Multiply both sides by b^{n}. Then use parts (a) and (b).]
4. Modular Arithmetic. Fix a positive integer $n \geq 1$. Following Gauss, we define the following notation for all $a, b \in \mathbb{Z}$, and we call this congruence modulo n :

$$
a \equiv b \quad \bmod n \quad \Longleftrightarrow \quad n \mid(a-b) .
$$

(a) Prove that congruence $\bmod n$ is an equivalence relation on the set \mathbb{Z}.
(b) Prove that congruence $\bmod n$ respects addition and multiplication. In other words, if $a \equiv a^{\prime}$ and $b \equiv b^{\prime} \bmod n$, prove that $a+b \equiv a^{\prime}+b^{\prime}$ and $a b \equiv a^{\prime} b^{\prime} \bmod n$. [Hint: For the second property, consider the identity $a b-a^{\prime} b^{\prime}=a b-a b^{\prime}+a b^{\prime}-a^{\prime} b^{\prime}=a\left(b-b^{\prime}\right)+\left(a-a^{\prime}\right) b^{\prime}$.]
(c) Prove that for all $a \in \mathbb{Z}$ there exists a unique integer $r \in \mathbb{Z}$ satisfying $a \equiv r \bmod n$ and $0 \leq r \leq n-1$. [Hint: Let r be the remainder of a when divided by n. Suppose that $a \equiv r$ and $a \equiv r^{\prime} \bmod n$ for some $0 \leq r, r^{\prime} \leq n-1$. If $r \neq r^{\prime}$ then it follows that $n \mid\left(r-r^{\prime}\right)$ and hence $|n| \leq\left|r-r^{\prime}\right|$. Use this to obtain a contradiction.]
It follows that the finite set $\mathbb{Z} / n \mathbb{Z}=\{0,1,2, \ldots, n-1\}$ can be viewed as a ring ${ }^{1}$
5. Some Finite Fields. In class we proved that for all $a, b, p \in \mathbb{Z}$ with p prime we have

$$
p|a b \quad \Longrightarrow \quad p| a \text { or } p \mid b .
$$

(a) If p is prime, use this property to prove that $\mathbb{Z} / p \mathbb{Z}$ is an integral domain. Since this set is finite, it follows from the previous homework that $\mathbb{Z} / p \mathbb{Z}$ is a field.
(b) Since 23 is prime it follows from part (a) that the nonzero element $16 \in \mathbb{Z} / 23 \mathbb{Z}$ has a multiplicative inverse. Use the Vector Euclidean Algorithm to find this element. [Hint: Find some $x, y \in \mathbb{Z}$ such that $23 x+16 y=1$.]
(c) If $n \geq 1$ is not prime, prove that $\mathbb{Z} / n \mathbb{Z}$ is not an integral domain.

[^0]
[^0]: ${ }^{1}$ I will explain the notation $\mathbb{Z} / n \mathbb{Z}$ later.

