1. Units and Associates. We say that $u \in R$ is a *unit* if there exists $v \in R$ with uv = 1. Let R^{\times} be the set of units. We say that $a, b \in R$ are *associates* if there exists a unit $u \in R^{\times}$ such that au = v. We define the notation

$$a \sim b \quad \Longleftrightarrow \quad \exists u \in R^{\times}, au = b$$

- (a) Prove that \sim is an equivalence relation on the set R.
- (b) Prove that $\mathbb{Z}^{\times} = \{\pm 1\}$. [Hint: Use absolute value.]
- (c) Prove that $\mathbb{F}[x]^{\times} = \mathbb{F} \setminus \{0\}$. [Hint: Use degree.]

2. Lemmas for the Euclidean Algorithm.

(a) For elements a, b, c, x in a ring R satisfying a = bx + c, prove that the following sets of common divisors are equal:

$$\operatorname{Div}(a, b) = \operatorname{Div}(b, c).$$

[Hint: You need to prove the inclusion in both directions.]

(b) Now let R be a Euclidean domain with size function $N : R \setminus \{0\} \to \mathbb{N}$. For any nonzero element $a \in R$, prove that

 $d \sim a \iff d$ is a maximum-sized element of Div(a).

[Hint: Every divisor d|a satisfies $N(d) \leq N(a)$, so a itself is among the maximum-sized divisors of a. Use this to show that every associate of a is a maximum-sized divisor. Conversely, let d|a be a maximum-sized divisor, i.e., with N(d) = N(a). To prove $d \sim a$ you need to show a|d. Divide d by a and show that the remainder r is divisible by d. Then show that $r \neq 0$ leads to a contradiction.]

3. Roots are Irrational. Let $d \ge 1$ be a positive integer and let $\sqrt[n]{d} > 0$ be its unique positive *n*th root. We will prove the following:

If $\sqrt[n]{d}$ is not an integer then $\sqrt[n]{d}$ is not a rational number.

In the proof we will use the notation $\nu_p(a)$ for the *multiplicity* of the prime p in the unique prime factorization of the integer a.

- (a) Show that $\nu_p(ab) = \nu_p(a) + \nu_p(b)$ for all primes p and integers $a, b \in \mathbb{Z}$.
- (b) Given $a, n \in \mathbb{Z}$, show that $n | \nu_p(a^n)$ for all primes p. If $d \in \mathbb{Z}$ is not the *n*th power of an integer then it follows that there exists a prime p with $n \nmid \nu_p(d)$.
- (c) If $d \in \mathbb{Z}$ is not the *n*th power of an integer, prove that it is not the *n*th power of a rational number. [Hint: Assume for contradiction that $d = (a/b)^n$. Multiply both sides by b^n . Then use parts (a) and (b).]

4. Modular Arithmetic. Fix a positive integer $n \ge 1$. Following Gauss, we define the following notation for all $a, b \in \mathbb{Z}$, and we call this *congruence modulo* n:

$$a \equiv b \mod n \iff n \mid (a-b).$$

- (a) Prove that congruence mod n is an equivalence relation on the set \mathbb{Z} .
- (b) Prove that congruence mod n respects addition and multiplication. In other words, if $a \equiv a'$ and $b \equiv b' \mod n$, prove that $a + b \equiv a' + b'$ and $ab \equiv a'b' \mod n$. [Hint: For the second property, consider the identity ab-a'b' = ab-ab'+ab'-a'b' = a(b-b')+(a-a')b'.]

- (c) Prove that for all $a \in \mathbb{Z}$ there exists a unique integer $r \in \mathbb{Z}$ satisfying $a \equiv r \mod n$ and $0 \leq r \leq n-1$. [Hint: Let r be the remainder of a when divided by n. Suppose that $a \equiv r$ and $a \equiv r' \mod n$ for some $0 \leq r, r' \leq n-1$. If $r \neq r'$ then it follows that n|(r-r') and hence $|n| \leq |r-r'|$. Use this to obtain a contradiction.]
- It follows that the finite set $\mathbb{Z}/n\mathbb{Z} = \{0, 1, 2, \dots, n-1\}$ can be viewed as a ring.¹
- **5.** Some Finite Fields. In class we proved that for all $a, b, p \in \mathbb{Z}$ with p prime we have

$$p|ab \implies p|a \text{ or } p|b.$$

- (a) If p is prime, use this property to prove that $\mathbb{Z}/p\mathbb{Z}$ is an integral domain. Since this set is finite, it follows from the previous homework that $\mathbb{Z}/p\mathbb{Z}$ is a field.
- (b) Since 23 is prime it follows from part (a) that the nonzero element $16 \in \mathbb{Z}/23\mathbb{Z}$ has a multiplicative inverse. Use the Vector Euclidean Algorithm to find this element. [Hint: Find some $x, y \in \mathbb{Z}$ such that 23x + 16y = 1.]
- (c) If $n \ge 1$ is not prime, prove that $\mathbb{Z}/n\mathbb{Z}$ is not an integral domain.

¹I will explain the notation $\mathbb{Z}/n\mathbb{Z}$ later.