1. Cancellation in an Integral Domain. A ring $(R, +, \cdot, 0, 1)$ is called an *integral domain* if it satisfies the following additional axiom:

(ID) For all $a, b \in R$, ab = 0 implies that a = 0 or b = 0.

Important examples are the ring of integers \mathbb{Z} and the ring of polynomials over a field $\mathbb{F}[x]$.

- (a) Prove that every field is an integral domain.
- (b) If R is an integral domain with $a, b, c \in R$, prove that

$$ac = bc \text{ and } c \neq 0 \implies a = b.$$

(c) Prove that a **finite** integral domain R must be a field. [Hint: Given a nonzero element $c \in R$, consider the function $R \to R$ defined by $a \mapsto ac$. Use part (b) to show that this function is *injective* (one-to-one). Then use the finiteness of R to show that this function is *surjective* (onto). Now what?]

(a): Suppose that ac = bc for some elements $a, b, c \in R$ with $c \neq 0$. If R is a field then c has a multiplicative inverse $c^{-1} \in R$ and we obtain

$$ac = bc$$
$$acc^{-1} = bcc^{-1}$$
$$a = b.$$

(b): Suppose that ac = bc for some elements $a, b, c \in R$ with $c \neq 0$. If R is an integral domain then we obtain

$$ac = bc$$

$$ac - bc = 0$$

$$(a - b)c = 0$$

$$a - b = 0.$$
 because $c \neq 0$

(c): Let $c \in R$ be a nonzero element of a finite integral domain. Consider the "multiplication by c" function $\mu_c := R \to R$ defined by $\mu_c(a) = ac$. Since R is a domain, we know from part (b) that $\mu_c(a) = \mu_c(b)$ implies a = b. In other words, μ_c is injective. Since R is finite this implies that

$$#R = #\{\mu_c(a) : a \in R\} = #\{ac : a \in R\}.$$

Then since $\{ac : a \in R\}$ is a subset of R with the same size as R we must have

$$\{ac: a \in R\} = R.$$

Finally, since $1 \in \{ac : a \in R\}$ we have ac = 1 for some $a \in R$, which shows that c has a multiplicative inverse.

2. Uniqueness of Quotient and Remainder. We proved in class that for any polynomials $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$ there exist some polynomials $q(x), r(x) \in \mathbb{F}[x]$ satisfying¹

$$\begin{cases} f(x) = g(x)q(x) + r(x), \\ \deg(r) < \deg(g). \end{cases}$$
(*)

In this problem you will show that the polynomials q(x), r(x) are unique.

¹The condition $\deg(r) < \deg(g)$ includes the possibility that r(x) = 0.

- (a) For all polynomials $\varphi(x), \gamma(x) \in \mathbb{F}[x]$, show that $\deg(\varphi \pm \gamma) \leq \max\{\deg(\varphi), \deg(\gamma)\}$.
- (b) Suppose that the pairs $q_1(x), r_1(x)$ and $q_2(x), r_2(x)$ both satisfy the properties (*). Prove that we must have $r_1(x) = r_2(x)$. [Hint: We must have $[q_1(x) - q_2(x)] = g(x)[r_2(x) - r_1(x)]$. If $r_1(x) \neq r_2(x)$, show that the properties of degree, including part (a), lead to a contradiction.]
- (c) Following from (b), use Problem 1 to conclude that $q_1(x) = q_2(x)$.

(a): My goal for this problem was for you to observe that this is true, and for me to write a formal proof. I did not necessarily expect you to write a formal proof. Here it is.

If $\varphi(x) = 0$ or $\gamma(x) = 0$ then there is nothing to show. So let us suppose that $\deg(\varphi) = m \ge 0$ and $\deg(\gamma) = n \ge 0$. To specific, let $\varphi(x) = \sum_k a_k x^k$ and $\gamma(x) = \sum_k b_k x^k$ where $a_m, b_n \ne 0$ and $a_{m'}, b_{n'} = 0$ for all m' > m and n' > n. If $r > \max\{m, n\}$ then we must have r > m and r > n, which implies that the *r*th coefficient of $\varphi(x) \pm \gamma(x)$ is zero:

$$a_r \pm b_r = 0 \pm 0 = 0.$$

In other words, the degree of $\varphi(x) \pm \gamma(x)$ is $\leq \max\{\deg(\varphi), \deg(\gamma)\}$.

(b): Given $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$, let us suppose that

$$\begin{cases} f(x) = g(x)q_1(x) + r_1(x), \\ \deg(r_1) < \deg(g), \end{cases} \text{ and } \begin{cases} f(x) = g(x)q_2(x) + r_2(x), \\ \deg(r_2) < \deg(g). \end{cases}$$

Comparing the two expressions for f(x) gives

$$g(x)q_1(x) + r_1(x) = g(x)q_2(x) + r_2(x)$$

$$g(x) [q_1(x) - q_2(x)] = r_2(x) - r_1(x).$$

Now let us assume for contradiction that $r_2(x) \neq r_1(x)$ and hence $r_2(x) - r_1(x) \neq 0$. Since $g(x) \neq 0$, the above equation and Problem 1(b) imply that $q_1(x) - q_2(x) \neq 0$. Then the additivity of degree gives

$$\deg(r_2 - r_1) = \deg(g(q_1 - q_2)) = \deg(g) + \deg(q_1 - q_2) \ge \deg(g).$$

On the other hand, since $\deg(r_1) < \deg(g)$ and $\deg(r_2) < \deg(g)$, part (a) gives

$$\deg(r_2 - r_1) \le \max\{\deg(r_2), \deg(r_1)\} < \deg(g),\$$

which is a contradiction. Hence $r_1(x) = r_2(x)$.

(c): From part (b) we have

$$g(x) [q_1(x) - q_2(x)] = r_1(x) - r_2(x) = 0.$$

Since $g(x) \neq 0$, Problem 1(b) implies that $q_1(x) - q_2(x) = 0$ and hence $q_1(x) = q_2(x)$.

3. Factorization of $x^n - 1$ over \mathbb{R} . For any integer $n \ge 1$, we proved in class that

$$x^{n} - 1 = (x - 1)(x - \omega)(x - \omega^{2}) \cdots (x - \omega^{n-1}).$$

(a) Show that $\omega^k = \omega^{n-k}$ for all k and use this to prove that

$$x^{n} - 1 = \begin{cases} (x - 1)(x + 1) \prod_{k=1}^{(n-2)/2} (x - \omega^{k})(x - \omega^{-k}) & \text{if } n \text{ is even,} \\ (x - 1) \prod_{k=1}^{(n-1)/2} (x - \omega^{k})(x - \omega^{-k}) & \text{if } n \text{ is odd.} \end{cases}$$

(b) Show that $\omega^{-k} = (\omega^k)^*$ and hence $\omega^k + \omega^{-k} = 2\cos(2\pi k/n)$ for all k. Use this and part (b) to completely factor $x^n - 1$ over the real numbers.

(a): Let $\omega = e^{2\pi i/n}$, so that

$$\omega^n = (e^{2\pi i/n})^n = e^{2\pi i} = \cos(2\pi) + i\sin(2\pi) = 1.$$

Then for any integer $k \in \mathbb{Z}$ we have

$$\omega^{n-k} = \omega^n \omega^{-k} = 1 \omega^{-k} = \omega^{-k}$$

In particular, we can rewrite the nth roots of unity as follows:

$$\sqrt[n]{1} = \begin{cases} 1, \omega, \omega^{-1}, \omega^{2}, \omega^{-2}, \dots, \omega^{(n-1)/2}, \omega^{-(n-1)/2} & \text{if } n \text{ is odd,} \\ 1, \omega, \omega^{-1}, \omega^{2}, \omega^{-2}, \dots, \omega^{(n-2)/2} \omega^{-(n-2)/2}, -1 & \text{if } n \text{ is even.} \end{cases}$$

The desired factorizations follow.

(c): Since
$$|\omega|^2 = \cos^2(2\pi/n) + \sin^2(2\pi/n) = 1$$
 we have

$$\omega\omega^* = |\omega|^2 = 1,$$

which implies that $\omega^{-1} = \omega^* = \cos(2\pi/n) - i\sin(2\pi/n)$. Since * preserves multiplication we have $(\alpha^*)^k = (\alpha^k)^*$ for all positive integers k. In particular, we have

$$\omega^{-k} = (\omega^{-1})^k = (\omega^*)^k = (\omega^k)^* = \cos(2\pi k/n) - i\sin(2\pi k/n),$$

which implies that

$$\omega^{k} + \omega^{-k} = \left[\cos(2\pi k/n) + i\sin(2\pi k/n)\right] + \left[\cos(2\pi k/n) - i\sin(2\pi k/n)\right]$$

= 2 \cos(2\pi k/n),

and hence

$$(x - \omega^{k})(x - \omega^{-k}) = x^{2} - (\omega^{k} + \omega^{-k})x + \omega^{k}\omega^{-k}$$
$$= x^{2} - 2\cos(2\pi k/n)x + 1.$$

Finally, we combine this with part (b) to obtain the complete factorization of $x^n - 1$ over the real numbers. When n is odd we get

$$x^{n} - 1 = (x - 1) \prod_{k=1}^{(n-1)/2} (x^{2} - 2\cos(2\pi k/n)x + 1),$$

and when n is even we get

$$x^{n} - 1 = (x - 1)(x + 1) \prod_{k=1}^{(n-2)/2} (x^{2} - 2\cos(2\pi k/n)x + 1).$$

Remark: This factorization was first obtained by Roger Cotes in 1714, without the use of complex numbers. Cotes is known for preparing the second edition of Isaac Newton's *Principia*. Upon his early death in 1716 at the age of 33, Newton said: "If he had lived we would have known something."

4. The Regular Pentagon. If $\omega = e^{2\pi i/5}$ then we know from Problem 3 that

$$x^{5} - 1 = (x - \omega^{2})(x - \omega)(x - 1)(x - \omega^{-1})(x - \omega^{-2})$$

- (a) Use this to show that $\omega^2 + \omega + 1 + \omega^{-1} + \omega^{-2} = 0$. [Hint: Compare coefficients.]
- (a) Use this to block that ω + ω + μ + μ + μ = 1 = 2 cos(2π/5) to find an explicit formula for the number cos(2π/5). [Hint: Note that z² = (ω + ω⁻¹)² = ω² + 2 + ω⁻². Use this to show that z satisfies a quadratic equation with real coefficients. Solve it.]

(c) Combine parts (a) and (b) to obtain an expression for $\cos(4\pi/5)$. Then use Problem 4 to obtain the complete factorization of $x^5 - 1$ over the real numbers.

(a): I will prove this for general n. There are three ways to do this. First we can expand the factorization of $x^n - 1$ to obtain

$$x^n - 1 = (x - 1)(x - \omega) \cdots (x - \omega^{n-1})$$

$$x^{n} + 0x^{n-1} + \text{lower terms} = x^{n} - (1 + \omega + \dots + \omega^{n-1})x^{n-1} + \text{lower terms}$$

Then comparing the coefficients of x^{n-1} gives

$$0 = 1 + \omega + \omega^2 + \dots + \omega^{n-1}.$$

Second, we can use the factorization²

$$x^{n} - 1 = (x - 1)(1 + x + x^{2} + \dots + x^{n-1}).$$

Substituting $x = \omega$ and using the facts that $\omega^n = 1$ and $\omega \neq 1$ gives

$$\omega^n - 1 = (\omega - 1)(1 + \omega + \omega^2 + \dots + \omega^{n-1})$$
$$0 = (\omega - 1)(1 + \omega + \omega^2 + \dots + \omega^{n-1})$$
$$0 = 1 + \omega + \omega^2 + \dots + \omega^{n-1}.$$

Third, we can use geometry. Recall that the numbers $\omega^k = \cos(2\pi k/n) + i \sin(2\pi k/n)$ are the vertices of a regular *n*-gon in the complex plane, centered at the origin. Using the formula for the centroid of points in a vector space gives

$$\frac{1+\omega+\omega^2+\cdots+\omega^{n-1}}{n}=0,$$

and the result follows.

In the case n = 5 we can rewrite the roots of unity to obtain

$$\omega^{2} + \omega + 1 + \omega^{-1} + \omega^{-2} = \omega^{2} + \omega + 1 + \omega^{4} + \omega^{3} = 0.$$

(b): Let $\omega = e^{2\pi i/5}$. From Problem 3(b) we know that

$$\omega^k + \omega^{-k} = 2\cos(2\pi k/5)$$
 for any integer $k \in \mathbb{Z}$.

We will use this fact and part (a) to obtain an explicit formula for $\cos(2\pi/5)$. First we write $z = \omega + \omega^{-1} = 2\cos(2\pi/5)$ and observe that

$$z^{2} = (\omega + \omega^{-1}) = \omega^{2} + 2\omega\omega^{-1} + \omega^{-2} = \omega^{2} + 2 + \omega^{-2}.$$

It follows that

$$z^{2} + z = (\omega^{2} + 2 + \omega^{-2}) + (\omega + \omega^{-1})$$

= $(\omega^{2} + \omega + 1 + \omega^{-1} + \omega^{-2}) + 1$
= $0 + 1$
= 1 .

²This factorization can be easily checked. You may have used it in calculus to prove that $1 + x + x^2 + \cdots = 1/(1-x)$ when |x| < 1. To see this, use the fact that $x^n \to 0$ as $n \to \infty$.

Solving the quadratic equation $z^2 + z - 1$ gives

$$2\cos(2\pi/5) = z = \frac{-1 \pm \sqrt{5}}{2},$$

Since $\cos(2\pi/5) > 0$ we choose the plus sign to obtain

$$\cos\left(\frac{2\pi}{5}\right) = \frac{-1 + \sqrt{5}}{4}$$

(c): To obtain a formula for $\cos(4\pi/5)$ we use parts (b) and 3(b) see that³

$$\begin{aligned} \omega^2 + \omega + 1 + \omega^{-1} + \omega^{-2} &= 0\\ \omega^2 + \omega^{-2} &= -1 - (\omega + \omega^{-1})\\ 2\cos(4\pi/5) &= -1 - 2\cos(2\pi/5)\\ 2\cos(4\pi/5) &= -1 - (-1 + \sqrt{5})/2\\ 2\cos(4\pi/5) &= (-1 - \sqrt{5})/2\\ \cos\left(\frac{4\pi}{5}\right) &= \frac{-1 - \sqrt{5}}{4}. \end{aligned}$$

The following formulas are also true:⁴

$$\cos\left(\frac{2\pi}{5}\right) = \frac{\sqrt{3-\sqrt{5}}}{2\sqrt{2}}$$
 and $\cos\left(\frac{4\pi}{5}\right) = -\frac{\sqrt{3+\sqrt{5}}}{2\sqrt{2}},$

But I don't like these so much because of the nested square roots.

Finally, by combining our formulas for $\cos(2\pi/5)$ and $\cos(4\pi/5)$ we obtain an explicit factorization for $x^5 - 1$ in terms of polynomials with real coefficients:

$$\begin{aligned} x^5 - 1 &= (x - 1) \left[(x - \omega)(x - \omega^{-1}) \right] \left[(x - \omega^2)(x - \omega^{-2}) \right] \\ &= (x - 1)(x^2 - 2\cos(2\pi/5)x + 1)(x^2 - 2\cos(4\pi/5)x + 1) \\ &= (x - 1) \left(x^2 - \frac{-1 + \sqrt{5}}{2}x + 1 \right) \left(x^2 - \frac{-1 - \sqrt{5}}{2}x + 1 \right) \\ &= (x - 1) \left(x^2 + \frac{1 - \sqrt{5}}{2}x + 1 \right) \left(x^2 + \frac{1 + \sqrt{5}}{2}x + 1 \right) \end{aligned}$$

Imagine trying to find this factorization without using complex numbers!

5. The Splitting Field of $x^2 - 2$. Consider the following set of real numbers:

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\} \subseteq \mathbb{R}.$$

One can check that this set is a subring⁵ of \mathbb{R} . You can check this yourself if you want but it's pretty boring.

³Alternatively, you could define $u = \omega^2 + \omega^{-2} = 2\cos(4\pi/5)$ and check that the same equation holds: $u^2 + u - 1 = 0$. Thus $2\cos(4\pi/5)$ is the other root of the quadratic equation from part (a).

⁴This formula for $\cos(2\pi/5)$ can be found by writing the equation $z^2 + z - 1$ as $z = \sqrt{1-z}$.

⁵If $(R, +, \cdot, 0, 1)$ is a ring, we say that a subset $S \subseteq R$ is a *subring* if $0, 1 \in S$ and if $a, b \in S$ implies that $a + b, ab \in S$.

(a) For all $a, b, c, d \in \mathbb{Q}$, prove that

 $a + b\sqrt{2} = c + d\sqrt{2} \quad \iff \quad a = c \text{ and } b = d.$

- (b) For all $a, b \in \mathbb{Q}$, prove that $a^2 2b^2 = 0$ if and only if $a + b\sqrt{2} = 0$. Use this result to prove that every nonzero element of $\mathbb{Q}(\sqrt{2})$ has a multiplicative inverse. [Hint: Rationalize the denominator.]
- (c) Prove that $\sqrt{3}$ is not an element of $\mathbb{Q}(\sqrt{2})$, and hence that $\mathbb{Q}(\sqrt{2})$ is not equal to \mathbb{R} .
- (d) Finally, suppose that $x^2 2$ splits over a field \mathbb{E} where $\mathbb{Q} \subseteq \mathbb{E} \subseteq \mathbb{Q}(\sqrt{2})$. In this case, show that we must have $\mathbb{E} = \mathbb{Q}(\sqrt{2})$. [Hint: Suppose that $x^2 2 = (x r_1)(x r_2)$ for some $r_1, r_2 \in \mathbb{E}$. Now substitute $x = \sqrt{2}$.]

[Hint: You may assume that the real numbers $\sqrt{2}$ and $\sqrt{3}$ are not in \mathbb{Q} , i.e., they are irrational. More generally, for any positive integer $d \geq 1$ that is not a perfect square, the square roots of d are irrational. You may have seen a proof of this result before. If not, you will see one later in this class.]

(a): If a = c and b = d then clearly $a + b\sqrt{2} = c + d\sqrt{2}$. Conversely, suppose that $a + b\sqrt{2} = c + d\sqrt{2}$ for some $a, b, c, d \in \mathbb{Q}$. If b = d then we also have a = c, so let us assume for contradiction that $b \neq d$. Then we get

$$a + b\sqrt{2} = c + d\sqrt{2}$$
$$\sqrt{2} = (a - c)/(d - b)$$

which contradicts the fact that $\sqrt{2}$ is irrational.

Remark: We have just proved that $\mathbb{Q}(\sqrt{2})$ is a **two-dimensional vector space over** \mathbb{Q} with standard basis $1, \sqrt{2}$.

(b): If $a + b\sqrt{2} = 0$ then we have $a = -b\sqrt{2}$ and squaring both sides gives $a^2 = 2b^2$, hence $a^2 - 2b^2 = 0$. Conversely, suppose that we have $a^2 - 2b^2 = 0$ for some $a, b \in \mathbb{Q}$. If b = 0 then we also have a = 0, and hence $a + b\sqrt{2} = 0$. So let us assume for contradiction that $b \neq 0$. Then we get

$$a^2 - 2b^2 = 0$$
$$a^2 = 2b^2$$
$$(a/b)^2 = 2,$$

which contradicts the fact that $\sqrt{2}$ is irrational.

It follows that for any $a, b \in \mathbb{Q}$ with $a + b\sqrt{2} \neq 0$ we can write⁶

$$\frac{1}{a+b\sqrt{2}} = \frac{1}{a+b\sqrt{2}} \cdot \frac{a-b\sqrt{2}}{a-b\sqrt{2}}$$
$$= \frac{a-b\sqrt{2}}{a^2-2b^2}$$
$$= \left(\frac{a}{a^2-2b^2}\right) + \left(\frac{-b}{a^2-2b^2}\right)\sqrt{2}$$

where $a/(a^2 - 2b^2)$ and $-b/(a^2 - 2b^2)$ are rational numbers.

⁶Technically speaking, this derivation uses the fact that $a - b\sqrt{2} \neq 0$. This can be shown by observing that $(a + b\sqrt{2})(a - b\sqrt{2}) = a^2 - 2b^2$ and $a^2 - 2b^2 \neq 0$.

(c): Suppose for contradiction that $\sqrt{3} = a + b\sqrt{2}$ for some $a, b \in \mathbb{Q}$. If b = 0 then we obtain $\sqrt{3} = a$, which contradicts the fact that $\sqrt{3}$ is irrational. So let us suppose that $b \neq 0$. If a = 0 then we have

$$\sqrt{3} = b\sqrt{2}$$
$$\sqrt{3}\sqrt{2} = 2b$$
$$\sqrt{6} = 2b,$$

which contradicts the fact that $\sqrt{6}$ is irrational. [Oops, I should have told you to assume this as well.] Finally, if $b \neq 0$ and $a \neq 0$ then we have $2ab \neq 0$ and hence

$$\sqrt{3} = a + b\sqrt{2}$$

$$3 = (a + b\sqrt{2})^2$$

$$3 = a^2 + 2b^2 + 2ab\sqrt{2}$$

$$\frac{3 - a^2 - 2b^2}{2ab} = \sqrt{2},$$

which contradicts the fact that $\sqrt{2}$ is irrational.

Remark: Wow, that was tricky. And we still haven't proved that $\sqrt{2}, \sqrt{3}, \sqrt{6}$ are irrational. This will be much easier to do once we have discussed unique prime factorization.

(d): We have seen that $\mathbb{Q}(\sqrt{2})$ is a proper subfield of \mathbb{R} over which the polynomial $x^2 - 2$ splits. I claim that $\mathbb{Q}(\sqrt{2})$ is the splitting field. To see this, consider any field $\mathbb{Q} \subseteq \mathbb{E} \subseteq \mathbb{Q}(\sqrt{2})$ and suppose that $x^2 - 2$ splits over \mathbb{E} . In other words, suppose that we have $x^2 - 2 = (x - r_1)(x - r_2)$ for some $r_1, r_2 \in \mathbb{E}$. Then substituting $x = \sqrt{2}$ gives

$$(\sqrt{2} - r_1)(\sqrt{2} - r_2) = (\sqrt{2})^2 - 2 = 0,$$

which implies that $r_1 = \sqrt{2}$ or $r_2 = \sqrt{2}$. In either case, we find that $\sqrt{2} \in \mathbb{E}$. Finally, we conclude that $\mathbb{E} = \mathbb{Q}(\sqrt{2})$ since for any $a, b \in \mathbb{Q}$ we have $a, b, \sqrt{2} \in \mathbb{E}$ and hence $a + b\sqrt{2} \in \mathbb{E}$.

Remark: It will turn out later that the solvability of a polynomial in terms of radicals is related to the symmetries of its splitting field. A symmetry of a field extension $\mathbb{E} \supseteq \mathbb{F}$ is an invertible function $\sigma : \mathbb{E} \to \mathbb{E}$ satisfying

- $\sigma(a) = a$ for all $a \in \mathbb{F}$,
- $\sigma(a+b) = \sigma(a) + \sigma(b)$ for all $a, b \in \mathbb{E}$,
- $\sigma(ab) = \sigma(a)\sigma(b)$ for all $a, b \in \mathbb{E}$.

For example, complex conjugation is a symmetry of the field extension $\mathbb{C} \supseteq \mathbb{R}$ and the map $a + b\sqrt{2} \mapsto a - b\sqrt{2}$ is a symmetry of the field extension $\mathbb{Q}(\sqrt{2}) \supseteq \mathbb{Q}$.