
Math 561/661 Fall 2021
Homework 2 Drew Armstrong

1. Cancellation in an Integral Domain. A ring (R,+, ·, 0, 1) is called an integral domain
if it satisfies the following additional axiom:

(ID) For all a, b ∈ R, ab = 0 implies that a = 0 or b = 0.

Important examples are the ring of integers Z and the ring of polynomials over a field F[x].

(a) Prove that every field is an integral domain.
(b) If R is an integral domain with a, b, c ∈ R, prove that

ac = bc and c 6= 0 =⇒ a = b.

(c) Prove that a finite integral domain R must be a field. [Hint: Given a nonzero element
c ∈ R, consider the function R → R defined by a 7→ ac. Use part (b) to show that
this function is injective (one-to-one). Then use the finiteness of R to show that this
function is surjective (onto). Now what?]

(a): Suppose that ac = bc for some elements a, b, c ∈ R with c 6= 0. If R is a field then c has
a multiplicative inverse c−1 ∈ R and we obtain

ac = bc

acc−1 = bcc−1

a = b.

(b): Suppose that ac = bc for some elements a, b, c ∈ R with c 6= 0. If R is an integral domain
then we obtain

ac = bc

ac− bc = 0

(a− b)c = 0

a− b = 0. because c 6= 0

(c): Let c ∈ R be a nonzero element of a finite integral domain. Consider the “multiplication
by c” function µc := R → R defined by µc(a) = ac. Since R is a domain, we know from part
(b) that µc(a) = µc(b) implies a = b. In other words, µc is injective. Since R is finite this
implies that

#R = #{µc(a) : a ∈ R} = #{ac : a ∈ R}.
Then since {ac : a ∈ R} is a subset of R with the same size as R we must have

{ac : a ∈ R} = R.

Finally, since 1 ∈ {ac : a ∈ R} we have ac = 1 for some a ∈ R, which shows that c has a
multiplicative inverse.

2. Uniqueness of Quotient and Remainder. We proved in class that for any polynomials
f(x), g(x) ∈ F[x] with g(x) 6= 0 there exist some polynomials q(x), r(x) ∈ F[x] satisfying1{

f(x) = g(x)q(x) + r(x),
deg(r) < deg(g).

(∗)

In this problem you will show that the polynomials q(x), r(x) are unique.

1The condition deg(r) < deg(g) includes the possibility that r(x) = 0.



(a) For all polynomials ϕ(x), γ(x) ∈ F[x], show that deg(ϕ± γ) ≤ max{deg(ϕ), deg(γ)}.
(b) Suppose that the pairs q1(x), r1(x) and q2(x), r2(x) both satisfy the properties (∗).

Prove that we must have r1(x) = r2(x). [Hint: We must have [q1(x) − q2(x)] =
g(x)[r2(x)− r1(x)]. If r1(x) 6= r2(x), show that the properties of degree, including part
(a), lead to a contradiction.]

(c) Following from (b), use Problem 1 to conclude that q1(x) = q2(x).

(a): My goal for this problem was for you to observe that this is true, and for me to write a
formal proof. I did not necessarily expect you to write a formal proof. Here it is.

If ϕ(x) = 0 or γ(x) = 0 then there is nothing to show. So let us suppose that deg(ϕ) = m ≥ 0
and deg(γ) = n ≥ 0. To specific, let ϕ(x) =

∑
k akx

k and γ(x) =
∑

k bkx
k where am, bn 6= 0

and am′ , bn′ = 0 for all m′ > m and n′ > n. If r > max{m,n} then we must have r > m and
r > n, which implies that the rth coefficient of ϕ(x)± γ(x) is zero:

ar ± br = 0± 0 = 0.

In other words, the degree of ϕ(x)± γ(x) is ≤ max{deg(ϕ), deg(γ)}.

(b): Given f(x), g(x) ∈ F[x] with g(x) 6= 0, let us suppose that{
f(x) = g(x)q1(x) + r1(x),
deg(r1) < deg(g),

and

{
f(x) = g(x)q2(x) + r2(x),
deg(r2) < deg(g).

Comparing the two expressions for f(x) gives

g(x)q1(x) + r1(x) = g(x)q2(x) + r2(x)

g(x) [q1(x)− q2(x)] = r2(x)− r1(x).

Now let us assume for contradiction that r2(x) 6= r1(x) and hence r2(x) − r1(x) 6= 0. Since
g(x) 6= 0, the above equation and Problem 1(b) imply that q1(x) − q2(x) 6= 0. Then the
additivity of degree gives

deg(r2 − r1) = deg(g(q1 − q2)) = deg(g) + deg(q1 − q2) ≥ deg(g).

On the other hand, since deg(r1) < deg(g) and deg(r2) < deg(g), part (a) gives

deg(r2 − r1) ≤ max{deg(r2),deg(r1)} < deg(g),

which is a contradiction. Hence r1(x) = r2(x).

(c): From part (b) we have

g(x) [q1(x)− q2(x)] = r1(x)− r2(x) = 0.

Since g(x) 6= 0, Problem 1(b) implies that q1(x)− q2(x) = 0 and hence q1(x) = q2(x).

3. Factorization of xn − 1 over R. For any integer n ≥ 1, we proved in class that

xn − 1 = (x− 1)(x− ω)(x− ω2) · · · (x− ωn−1).

(a) Show that ωk = ωn−k for all k and use this to prove that

xn − 1 =

{
(x− 1)(x+ 1)

∏(n−2)/2
k=1 (x− ωk)(x− ω−k) if n is even,

(x− 1)
∏(n−1)/2
k=1 (x− ωk)(x− ω−k) if n is odd.

(b) Show that ω−k = (ωk)∗ and hence ωk + ω−k = 2 cos(2πk/n) for all k. Use this and
part (b) to completely factor xn − 1 over the real numbers.



(a): Let ω = e2πi/n, so that

ωn = (e2πi/n)n = e2πi = cos(2π) + i sin(2π) = 1.

Then for any integer k ∈ Z we have

ωn−k = ωnω−k = 1ω−k = ω−k.

In particular, we can rewrite the nth roots of unity as follows:

n
√

1 =

{
1, ω, ω−1, ω2, ω−2, . . . , ω(n−1)/2, ω−(n−1)/2 if n is odd,

1, ω, ω−1, ω2, ω−2, . . . , ω(n−2)/2ω−(n−2)/2,−1 if n is even.

The desired factorizations follow.

(c): Since |ω|2 = cos2(2π/n) + sin2(2π/n) = 1 we have

ωω∗ = |ω|2 = 1,

which implies that ω−1 = ω∗ = cos(2π/n) − i sin(2π/n). Since ∗ preserves multiplication we
have (α∗)k = (αk)∗ for all positive integers k. In particular, we have

ω−k = (ω−1)k = (ω∗)k = (ωk)∗ = cos(2πk/n)− i sin(2πk/n),

which implies that

ωk + ω−k = [cos(2πk/n) + i sin(2πk/n)] + [cos(2πk/n)− i sin(2πk/n)]

= 2 cos(2πk/n),

and hence

(x− ωk)(x− ω−k) = x2 − (ωk + ω−k)x+ ωkω−k

= x2 − 2 cos(2πk/n)x+ 1.

Finally, we combine this with part (b) to obtain the complete factorization of xn − 1 over the
real numbers. When n is odd we get

xn − 1 = (x− 1)

(n−1)/2∏
k=1

(x2 − 2 cos(2πk/n)x+ 1),

and when n is even we get

xn − 1 = (x− 1)(x+ 1)

(n−2)/2∏
k=1

(x2 − 2 cos(2πk/n)x+ 1).

Remark: This factorization was first obtained by Roger Cotes in 1714, without the use of
complex numbers. Cotes is known for preparing the second edition of Isaac Newton’s Principia.
Upon his early death in 1716 at the age of 33, Newton said: “If he had lived we would have
known something.”

4. The Regular Pentagon. If ω = e2πi/5 then we know from Problem 3 that

x5 − 1 = (x− ω2)(x− ω)(x− 1)(x− ω−1)(x− ω−2).
(a) Use this to show that ω2 + ω + 1 + ω−1 + ω−2 = 0. [Hint: Compare coefficients.]
(b) Use part (a) and the fact that z := ω + ω−1 = 2 cos(2π/5) to find an explicit formula

for the number cos(2π/5). [Hint: Note that z2 = (ω+ ω−1)2 = ω2 + 2 + ω−2. Use this
to show that z satisfies a quadratic equation with real coefficients. Solve it.]



(c) Combine parts (a) and (b) to obtain an expression for cos(4π/5). Then use Problem 4
to obtain the complete factorization of x5 − 1 over the real numbers.

(a): I will prove this for general n. There are three ways to do this. First we can expand the
factorization of xn − 1 to obtain

xn − 1 = (x− 1)(x− ω) · · · (x− ωn−1)
xn + 0xn−1 + lower terms = xn − (1 + ω + · · ·+ ωn−1)xn−1 + lower terms.

Then comparing the coefficients of xn−1 gives

0 = 1 + ω + ω2 + · · ·+ ωn−1.

Second, we can use the factorization2

xn − 1 = (x− 1)(1 + x+ x2 + · · ·+ xn−1).

Substituting x = ω and using the facts that ωn = 1 and ω 6= 1 gives

ωn − 1 = (ω − 1)(1 + ω + ω2 + · · ·+ ωn−1)

0 = (ω − 1)(1 + ω + ω2 + · · ·+ ωn−1)

0 = 1 + ω + ω2 + · · ·+ ωn−1.

Third, we can use geometry. Recall that the numbers ωk = cos(2πk/n) + i sin(2πk/n) are the
vertices of a regular n-gon in the complex plane, centered at the origin. Using the formula for
the centroid of points in a vector space gives

1 + ω + ω2 + · · ·+ ωn−1

n
= 0,

and the result follows.

In the case n = 5 we can rewrite the roots of unity to obtain

ω2 + ω + 1 + ω−1 + ω−2 = ω2 + ω + 1 + ω4 + ω3 = 0.

(b): Let ω = e2πi/5. From Problem 3(b) we know that

ωk + ω−k = 2 cos(2πk/5) for any integer k ∈ Z.

We will use this fact and part (a) to obtain an explicit formula for cos(2π/5). First we write
z = ω + ω−1 = 2 cos(2π/5) and observe that

z2 = (ω + ω−1) = ω2 + 2ωω−1 + ω−2 = ω2 + 2 + ω−2.

It follows that

z2 + z = (ω2 + 2 + ω−2) + (ω + ω−1)

= (ω2 + ω + 1 + ω−1 + ω−2) + 1

= 0 + 1

= 1.

2This factorization can be easily checked. You may have used it in calculus to prove that 1 + x+ x2 + · · · =
1/(1− x) when |x| < 1. To see this, use the fact that xn → 0 as n→∞.



Solving the quadratic equation z2 + z − 1 gives

2 cos(2π/5) = z =
−1±

√
5

2
,

Since cos(2π/5) > 0 we choose the plus sign to obtain

cos

(
2π

5

)
=
−1 +

√
5

4
.

(c): To obtain a formula for cos(4π/5) we use parts (b) and 3(b) see that3

ω2 + ω + 1 + ω−1 + ω−2 = 0

ω2 + ω−2 = −1− (ω + ω−1)

2 cos(4π/5) = −1− 2 cos(2π/5)

2 cos(4π/5) = −1− (−1 +
√

5)/2

2 cos(4π/5) = (−1−
√

5)/2

cos

(
4π

5

)
=
−1−

√
5

4
.

The following formulas are also true:4

cos

(
2π

5

)
=

√
3−
√

5

2
√

2
and cos

(
4π

5

)
= −

√
3 +
√

5

2
√

2
,

But I don’t like these so much because of the nested square roots.

Finally, by combining our formulas for cos(2π/5) and cos(4π/5) we obtain an explicit factor-
ization for x5 − 1 in terms of polynomials with real coefficients:

x5 − 1 = (x− 1)
[
(x− ω)(x− ω−1)

] [
(x− ω2)(x− ω−2)

]
= (x− 1)(x2 − 2 cos(2π/5)x+ 1)(x2 − 2 cos(4π/5)x+ 1)

= (x− 1)

(
x2 − −1 +

√
5

2
x+ 1

)(
x2 − −1−

√
5

2
x+ 1

)

= (x− 1)

(
x2 +

1−
√

5

2
x+ 1

)(
x2 +

1 +
√

5

2
x+ 1

)
Imagine trying to find this factorization without using complex numbers!

5. The Splitting Field of x2 − 2. Consider the following set of real numbers:

Q(
√

2) = {a+ b
√

2 : a, b ∈ Q} ⊆ R.

One can check that this set is a subring5 of R. You can check this yourself if you want but
it’s pretty boring.

3Alternatively, you could define u = ω2 + ω−2 = 2 cos(4π/5) and check that the same equation holds:
u2 + u− 1 = 0. Thus 2 cos(4π/5) is the other root of the quadratic equation from part (a).

4This formula for cos(2π/5) can be found by writing the equation z2 + z − 1 as z =
√

1− z.
5If (R,+, ·, 0, 1) is a ring, we say that a subset S ⊆ R is a subring if 0, 1 ∈ S and if a, b ∈ S implies that

a+ b, ab ∈ S.



(a) For all a, b, c, d ∈ Q, prove that

a+ b
√

2 = c+ d
√

2 ⇐⇒ a = c and b = d.

(b) For all a, b ∈ Q, prove that a2 − 2b2 = 0 if and only if a + b
√

2 = 0. Use this result
to prove that every nonzero element of Q(

√
2) has a multiplicative inverse. [Hint:

Rationalize the denominator.]
(c) Prove that

√
3 is not an element of Q(

√
2), and hence that Q(

√
2) is not equal to R.

(d) Finally, suppose that x2 − 2 splits over a field E where Q ⊆ E ⊆ Q(
√

2). In this case,
show that we must have E = Q(

√
2). [Hint: Suppose that x2− 2 = (x− r1)(x− r2) for

some r1, r2 ∈ E. Now substitute x =
√

2.]

[Hint: You may assume that the real numbers
√

2 and
√

3 are not in Q, i.e., they are irrational.
More generally, for any positive integer d ≥ 1 that is not a perfect square, the square roots of
d are irrational. You may have seen a proof of this result before. If not, you will see one later
in this class.]

(a): If a = c and b = d then clearly a+ b
√

2 = c+ d
√

2. Conversely, suppose that a+ b
√

2 =
c + d

√
2 for some a, b, c, d ∈ Q. If b = d then we also have a = c, so let us assume for

contradiction that b 6= d. Then we get

a+ b
√

2 = c+ d
√

2
√

2 = (a− c)/(d− b),

which contradicts the fact that
√

2 is irrational.

Remark: We have just proved that Q(
√

2) is a two-dimensional vector space over Q with
standard basis 1,

√
2.

(b): If a + b
√

2 = 0 then we have a = −b
√

2 and squaring both sides gives a2 = 2b2, hence
a2 − 2b2 = 0. Conversely, suppose that we have a2 − 2b2 = 0 for some a, b ∈ Q. If b = 0 then
we also have a = 0, and hence a + b

√
2 = 0. So let us assume for contradiction that b 6= 0.

Then we get

a2 − 2b2 = 0

a2 = 2b2

(a/b)2 = 2,

which contradicts the fact that
√

2 is irrational.

It follows that for any a, b ∈ Q with a+ b
√

2 6= 0 we can write6

1

a+ b
√

2
=

1

a+ b
√

2
· a− b

√
2

a− b
√

2

=
a− b

√
2

a2 − 2b2

=

(
a

a2 − 2b2

)
+

(
−b

a2 − 2b2

)√
2,

where a/(a2 − 2b2) and −b/(a2 − 2b2) are rational numbers.

6Technically speaking, this derivation uses the fact that a− b
√

2 6= 0. This can be shown by observing that
(a+ b

√
2)(a− b

√
2) = a2 − 2b2 and a2 − 2b2 6= 0.



(c): Suppose for contradiction that
√

3 = a+ b
√

2 for some a, b ∈ Q. If b = 0 then we obtain√
3 = a, which contradicts the fact that

√
3 is irrational. So let us suppose that b 6= 0. If

a = 0 then we have
√

3 = b
√

2
√

3
√

2 = 2b
√

6 = 2b,

which contradicts the fact that
√

6 is irrational. [Oops, I should have told you to assume this
as well.] Finally, if b 6= 0 and a 6= 0 then we have 2ab 6= 0 and hence

√
3 = a+ b

√
2

3 = (a+ b
√

2)2

3 = a2 + 2b2 + 2ab
√

2

3− a2 − 2b2

2ab
=
√

2,

which contradicts the fact that
√

2 is irrational.

Remark: Wow, that was tricky. And we still haven’t proved that
√

2,
√

3,
√

6 are irrational.
This will be much easier to do once we have discussed unique prime factorization.

(d): We have seen that Q(
√

2) is a proper subfield of R over which the polynomial x2−2 splits.
I claim that Q(

√
2) is the splitting field. To see this, consider any field Q ⊆ E ⊆ Q(

√
2) and

suppose that x2−2 splits over E. In other words, suppose that we have x2−2 = (x−r1)(x−r2)
for some r1, r2 ∈ E. Then substituting x =

√
2 gives

(
√

2− r1)(
√

2− r2) = (
√

2)2 − 2 = 0,

which implies that r1 =
√

2 or r2 =
√

2. In either case, we find that
√

2 ∈ E. Finally, we
conclude that E = Q(

√
2) since for any a, b ∈ Q we have a, b,

√
2 ∈ E and hence a+ b

√
2 ∈ E.

Remark: It will turn out later that the solvability of a polynomial in terms of radicals is
related to the symmetries of its splitting field. A symmetry of a field extension E ⊇ F is an
invertible function σ : E→ E satisfying

• σ(a) = a for all a ∈ F,
• σ(a+ b) = σ(a) + σ(b) for all a, b ∈ E,
• σ(ab) = σ(a)σ(b) for all a, b ∈ E.

For example, complex conjugation is a symmetry of the field extension C ⊇ R and the map
a+ b

√
2 7→ a− b

√
2 is a symmetry of the field extension Q(

√
2) ⊇ Q.


