1. Cancellation in an Integral Domain. A ring $(R,+, \cdot, 0,1)$ is called an integral domain if it satisfies the following additional axiom:
(ID) For all $a, b \in R, a b=0$ implies that $a=0$ or $b=0$.
Important examples are the ring of integers \mathbb{Z} and the ring of polynomials over a field $\mathbb{F}[x]$.
(a) Prove that every field is an integral domain.
(b) If R is an integral domain with $a, b, c \in R$, prove that

$$
a c=b c \text { and } c \neq 0 \quad \Longrightarrow \quad a=b .
$$

(c) Prove that a finite integral domain R must be a field. [Hint: Given a nonzero element $c \in R$, consider the function $R \rightarrow R$ defined by $a \mapsto a c$. Use part (b) to show that this function is injective (one-to-one). Then use the finiteness of R to show that this function is surjective (onto). Now what?]
(a): Suppose that $a c=b c$ for some elements $a, b, c \in R$ with $c \neq 0$. If R is a field then c has a multiplicative inverse $c^{-1} \in R$ and we obtain

$$
\begin{aligned}
a c & =b c \\
a c c^{-1} & =b c c^{-1} \\
a & =b .
\end{aligned}
$$

(b): Suppose that $a c=b c$ for some elements $a, b, c \in R$ with $c \neq 0$. If R is an integral domain then we obtain

$$
\begin{aligned}
a c & =b c \\
a c-b c & =0 \\
(a-b) c & =0
\end{aligned}
$$

$$
a-b=0 . \quad \text { because } c \neq 0
$$

(c): Let $c \in R$ be a nonzero element of a finite integral domain. Consider the "multiplication by c " function $\mu_{c}:=R \rightarrow R$ defined by $\mu_{c}(a)=a c$. Since R is a domain, we know from part (b) that $\mu_{c}(a)=\mu_{c}(b)$ implies $a=b$. In other words, μ_{c} is injective. Since R is finite this implies that

$$
\# R=\#\left\{\mu_{c}(a): a \in R\right\}=\#\{a c: a \in R\} .
$$

Then since $\{a c: a \in R\}$ is a subset of R with the same size as R we must have

$$
\{a c: a \in R\}=R .
$$

Finally, since $1 \in\{a c: a \in R\}$ we have $a c=1$ for some $a \in R$, which shows that c has a multiplicative inverse.
2. Uniqueness of Quotient and Remainder. We proved in class that for any polynomials $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$ there exist some polynomials $q(x), r(x) \in \mathbb{F}[x]$ satisfying ${ }^{11}$

$$
\left\{\begin{array}{l}
f(x)=g(x) q(x)+r(x) \tag{*}\\
\operatorname{deg}(r)<\operatorname{deg}(g)
\end{array}\right.
$$

In this problem you will show that the polynomials $q(x), r(x)$ are unique.

[^0](a) For all polynomials $\varphi(x), \gamma(x) \in \mathbb{F}[x]$, show that $\operatorname{deg}(\varphi \pm \gamma) \leq \max \{\operatorname{deg}(\varphi), \operatorname{deg}(\gamma)\}$.
(b) Suppose that the pairs $q_{1}(x), r_{1}(x)$ and $q_{2}(x), r_{2}(x)$ both satisfy the properties $(*)$. Prove that we must have $r_{1}(x)=r_{2}(x)$. [Hint: We must have $\left[q_{1}(x)-q_{2}(x)\right]=$ $g(x)\left[r_{2}(x)-r_{1}(x)\right]$. If $r_{1}(x) \neq r_{2}(x)$, show that the properties of degree, including part (a), lead to a contradiction.]
(c) Following from (b), use Problem 1 to conclude that $q_{1}(x)=q_{2}(x)$.
(a): My goal for this problem was for you to observe that this is true, and for me to write a formal proof. I did not necessarily expect you to write a formal proof. Here it is.

If $\varphi(x)=0$ or $\gamma(x)=0$ then there is nothing to show. So let us suppose that $\operatorname{deg}(\varphi)=m \geq 0$ and $\operatorname{deg}(\gamma)=n \geq 0$. To specific, let $\varphi(x)=\sum_{k} a_{k} x^{k}$ and $\gamma(x)=\sum_{k} b_{k} x^{k}$ where $a_{m}, b_{n} \neq 0$ and $a_{m^{\prime}}, b_{n^{\prime}}=0$ for all $m^{\prime}>m$ and $n^{\prime}>n$. If $r>\max \{m, n\}$ then we must have $r>m$ and $r>n$, which implies that the r th coefficient of $\varphi(x) \pm \gamma(x)$ is zero:

$$
a_{r} \pm b_{r}=0 \pm 0=0
$$

In other words, the degree of $\varphi(x) \pm \gamma(x)$ is $\leq \max \{\operatorname{deg}(\varphi), \operatorname{deg}(\gamma)\}$.
(b): Given $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$, let us suppose that

$$
\left\{\begin{array} { l }
{ f (x) = g (x) q _ { 1 } (x) + r _ { 1 } (x) , } \\
{ \operatorname { d e g } (r _ { 1 }) < \operatorname { d e g } (g) , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
f(x)=g(x) q_{2}(x)+r_{2}(x), \\
\operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(g) .
\end{array}\right.\right.
$$

Comparing the two expressions for $f(x)$ gives

$$
\begin{aligned}
g(x) q_{1}(x)+r_{1}(x) & =g(x) q_{2}(x)+r_{2}(x) \\
g(x)\left[q_{1}(x)-q_{2}(x)\right] & =r_{2}(x)-r_{1}(x) .
\end{aligned}
$$

Now let us assume for contradiction that $r_{2}(x) \neq r_{1}(x)$ and hence $r_{2}(x)-r_{1}(x) \neq 0$. Since $g(x) \neq 0$, the above equation and Problem 1(b) imply that $q_{1}(x)-q_{2}(x) \neq 0$. Then the additivity of degree gives

$$
\operatorname{deg}\left(r_{2}-r_{1}\right)=\operatorname{deg}\left(g\left(q_{1}-q_{2}\right)\right)=\operatorname{deg}(g)+\operatorname{deg}\left(q_{1}-q_{2}\right) \geq \operatorname{deg}(g) .
$$

On the other hand, since $\operatorname{deg}\left(r_{1}\right)<\operatorname{deg}(g)$ and $\operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(g)$, part (a) gives

$$
\operatorname{deg}\left(r_{2}-r_{1}\right) \leq \max \left\{\operatorname{deg}\left(r_{2}\right), \operatorname{deg}\left(r_{1}\right)\right\}<\operatorname{deg}(g),
$$

which is a contradiction. Hence $r_{1}(x)=r_{2}(x)$.
(c): From part (b) we have

$$
g(x)\left[q_{1}(x)-q_{2}(x)\right]=r_{1}(x)-r_{2}(x)=0 .
$$

Since $g(x) \neq 0$, Problem 1(b) implies that $q_{1}(x)-q_{2}(x)=0$ and hence $q_{1}(x)=q_{2}(x)$.
3. Factorization of $x^{n}-1$ over \mathbb{R}. For any integer $n \geq 1$, we proved in class that

$$
x^{n}-1=(x-1)(x-\omega)\left(x-\omega^{2}\right) \cdots\left(x-\omega^{n-1}\right) .
$$

(a) Show that $\omega^{k}=\omega^{n-k}$ for all k and use this to prove that

$$
x^{n}-1= \begin{cases}(x-1)(x+1) \prod_{k=1}^{(n-2) / 2}\left(x-\omega^{k}\right)\left(x-\omega^{-k}\right) & \text { if } n \text { is even } \\ (x-1) \prod_{k=1}^{(n-1) / 2}\left(x-\omega^{k}\right)\left(x-\omega^{-k}\right) & \text { if } n \text { is odd }\end{cases}
$$

(b) Show that $\omega^{-k}=\left(\omega^{k}\right)^{*}$ and hence $\omega^{k}+\omega^{-k}=2 \cos (2 \pi k / n)$ for all k. Use this and part (b) to completely factor $x^{n}-1$ over the real numbers.
(a): Let $\omega=e^{2 \pi i / n}$, so that

$$
\omega^{n}=\left(e^{2 \pi i / n}\right)^{n}=e^{2 \pi i}=\cos (2 \pi)+i \sin (2 \pi)=1 .
$$

Then for any integer $k \in \mathbb{Z}$ we have

$$
\omega^{n-k}=\omega^{n} \omega^{-k}=1 \omega^{-k}=\omega^{-k}
$$

In particular, we can rewrite the nth roots of unity as follows:

$$
\sqrt[n]{1}= \begin{cases}1, \omega, \omega^{-1}, \omega^{2}, \omega^{-2}, \ldots, \omega^{(n-1) / 2}, \omega^{-(n-1) / 2} & \text { if } n \text { is odd } \\ 1, \omega, \omega^{-1}, \omega^{2}, \omega^{-2}, \ldots, \omega^{(n-2) / 2} \omega^{-(n-2) / 2},-1 & \text { if } n \text { is even. }\end{cases}
$$

The desired factorizations follow.
(c): Since $|\omega|^{2}=\cos ^{2}(2 \pi / n)+\sin ^{2}(2 \pi / n)=1$ we have

$$
\omega \omega^{*}=|\omega|^{2}=1
$$

which implies that $\omega^{-1}=\omega^{*}=\cos (2 \pi / n)-i \sin (2 \pi / n)$. Since $*$ preserves multiplication we have $\left(\alpha^{*}\right)^{k}=\left(\alpha^{k}\right)^{*}$ for all positive integers k. In particular, we have

$$
\omega^{-k}=\left(\omega^{-1}\right)^{k}=\left(\omega^{*}\right)^{k}=\left(\omega^{k}\right)^{*}=\cos (2 \pi k / n)-i \sin (2 \pi k / n),
$$

which implies that

$$
\begin{aligned}
\omega^{k}+\omega^{-k} & =[\cos (2 \pi k / n)+i \sin (2 \pi k / n)]+[\cos (2 \pi k / n)-i \sin (2 \pi k / n)] \\
& =2 \cos (2 \pi k / n),
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left(x-\omega^{k}\right)\left(x-\omega^{-k}\right) & =x^{2}-\left(\omega^{k}+\omega^{-k}\right) x+\omega^{k} \omega^{-k} \\
& =x^{2}-2 \cos (2 \pi k / n) x+1 .
\end{aligned}
$$

Finally, we combine this with part (b) to obtain the complete factorization of $x^{n}-1$ over the real numbers. When n is odd we get

$$
x^{n}-1=(x-1) \prod_{k=1}^{(n-1) / 2}\left(x^{2}-2 \cos (2 \pi k / n) x+1\right)
$$

and when n is even we get

$$
x^{n}-1=(x-1)(x+1) \prod_{k=1}^{(n-2) / 2}\left(x^{2}-2 \cos (2 \pi k / n) x+1\right) .
$$

Remark: This factorization was first obtained by Roger Cotes in 1714, without the use of complex numbers. Cotes is known for preparing the second edition of Isaac Newton's Principia. Upon his early death in 1716 at the age of 33, Newton said: "If he had lived we would have known something."
4. The Regular Pentagon. If $\omega=e^{2 \pi i / 5}$ then we know from Problem 3 that

$$
x^{5}-1=\left(x-\omega^{2}\right)(x-\omega)(x-1)\left(x-\omega^{-1}\right)\left(x-\omega^{-2}\right) .
$$

(a) Use this to show that $\omega^{2}+\omega+1+\omega^{-1}+\omega^{-2}=0$. [Hint: Compare coefficients.]
(b) Use part (a) and the fact that $z:=\omega+\omega^{-1}=2 \cos (2 \pi / 5)$ to find an explicit formula for the number $\cos (2 \pi / 5)$. [Hint: Note that $z^{2}=\left(\omega+\omega^{-1}\right)^{2}=\omega^{2}+2+\omega^{-2}$. Use this to show that z satisfies a quadratic equation with real coefficients. Solve it.]
(c) Combine parts (a) and (b) to obtain an expression for $\cos (4 \pi / 5)$. Then use Problem 4 to obtain the complete factorization of $x^{5}-1$ over the real numbers.
(a): I will prove this for general n. There are three ways to do this. First we can expand the factorization of $x^{n}-1$ to obtain

$$
\begin{aligned}
x^{n}-1 & =(x-1)(x-\omega) \cdots\left(x-\omega^{n-1}\right) \\
x^{n}+0 x^{n-1}+\text { lower terms } & =x^{n}-\left(1+\omega+\cdots+\omega^{n-1}\right) x^{n-1}+\text { lower terms } .
\end{aligned}
$$

Then comparing the coefficients of x^{n-1} gives

$$
0=1+\omega+\omega^{2}+\cdots+\omega^{n-1} .
$$

Second, we can use the factorization ${ }^{2}$

$$
x^{n}-1=(x-1)\left(1+x+x^{2}+\cdots+x^{n-1}\right) .
$$

Substituting $x=\omega$ and using the facts that $\omega^{n}=1$ and $\omega \neq 1$ gives

$$
\begin{aligned}
\omega^{n}-1 & =(\omega-1)\left(1+\omega+\omega^{2}+\cdots+\omega^{n-1}\right) \\
0 & =(\omega-1)\left(1+\omega+\omega^{2}+\cdots+\omega^{n-1}\right) \\
0 & =1+\omega+\omega^{2}+\cdots+\omega^{n-1} .
\end{aligned}
$$

Third, we can use geometry. Recall that the numbers $\omega^{k}=\cos (2 \pi k / n)+i \sin (2 \pi k / n)$ are the vertices of a regular n-gon in the complex plane, centered at the origin. Using the formula for the centroid of points in a vector space gives

$$
\frac{1+\omega+\omega^{2}+\cdots+\omega^{n-1}}{n}=0,
$$

and the result follows.
In the case $n=5$ we can rewrite the roots of unity to obtain

$$
\omega^{2}+\omega+1+\omega^{-1}+\omega^{-2}=\omega^{2}+\omega+1+\omega^{4}+\omega^{3}=0 .
$$

(b): Let $\omega=e^{2 \pi i / 5}$. From Problem 3(b) we know that

$$
\omega^{k}+\omega^{-k}=2 \cos (2 \pi k / 5) \text { for any integer } k \in \mathbb{Z} .
$$

We will use this fact and part (a) to obtain an explicit formula for $\cos (2 \pi / 5)$. First we write $z=\omega+\omega^{-1}=2 \cos (2 \pi / 5)$ and observe that

$$
z^{2}=\left(\omega+\omega^{-1}\right)=\omega^{2}+2 \omega \omega^{-1}+\omega^{-2}=\omega^{2}+2+\omega^{-2}
$$

It follows that

$$
\begin{aligned}
z^{2}+z & =\left(\omega^{2}+2+\omega^{-2}\right)+\left(\omega+\omega^{-1}\right) \\
& =\left(\omega^{2}+\omega+1+\omega^{-1}+\omega^{-2}\right)+1 \\
& =0+1 \\
& =1 .
\end{aligned}
$$

[^1]Solving the quadratic equation $z^{2}+z-1$ gives

$$
2 \cos (2 \pi / 5)=z=\frac{-1 \pm \sqrt{5}}{2},
$$

Since $\cos (2 \pi / 5)>0$ we choose the plus sign to obtain

$$
\cos \left(\frac{2 \pi}{5}\right)=\frac{-1+\sqrt{5}}{4} .
$$

(c): To obtain a formula for $\cos (4 \pi / 5)$ we use parts (b) and $3(\mathrm{~b})$ see that ${ }^{3}$

$$
\begin{aligned}
\omega^{2}+\omega+1+\omega^{-1}+\omega^{-2} & =0 \\
\omega^{2}+\omega^{-2} & =-1-\left(\omega+\omega^{-1}\right) \\
2 \cos (4 \pi / 5) & =-1-2 \cos (2 \pi / 5) \\
2 \cos (4 \pi / 5) & =-1-(-1+\sqrt{5}) / 2 \\
2 \cos (4 \pi / 5) & =(-1-\sqrt{5}) / 2 \\
\cos \left(\frac{4 \pi}{5}\right) & =\frac{-1-\sqrt{5}}{4}
\end{aligned}
$$

The following formulas are also true $\sqrt{\sqrt[4]{4}}$

$$
\cos \left(\frac{2 \pi}{5}\right)=\frac{\sqrt{3-\sqrt{5}}}{2 \sqrt{2}} \quad \text { and } \quad \cos \left(\frac{4 \pi}{5}\right)=-\frac{\sqrt{3+\sqrt{5}}}{2 \sqrt{2}}
$$

But I don't like these so much because of the nested square roots.
Finally, by combining our formulas for $\cos (2 \pi / 5)$ and $\cos (4 \pi / 5)$ we obtain an explicit factorization for $x^{5}-1$ in terms of polynomials with real coefficients:

$$
\begin{aligned}
x^{5}-1 & =(x-1)\left[(x-\omega)\left(x-\omega^{-1}\right)\right]\left[\left(x-\omega^{2}\right)\left(x-\omega^{-2}\right)\right] \\
& =(x-1)\left(x^{2}-2 \cos (2 \pi / 5) x+1\right)\left(x^{2}-2 \cos (4 \pi / 5) x+1\right) \\
& =(x-1)\left(x^{2}-\frac{-1+\sqrt{5}}{2} x+1\right)\left(x^{2}-\frac{-1-\sqrt{5}}{2} x+1\right) \\
& =(x-1)\left(x^{2}+\frac{1-\sqrt{5}}{2} x+1\right)\left(x^{2}+\frac{1+\sqrt{5}}{2} x+1\right)
\end{aligned}
$$

Imagine trying to find this factorization without using complex numbers!
5. The Splitting Field of $x^{2}-2$. Consider the following set of real numbers:

$$
\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\} \subseteq \mathbb{R} .
$$

One can check that this set is a subring ${ }^{[5]}$ of \mathbb{R}. You can check this yourself if you want but it's pretty boring.

[^2](a) For all $a, b, c, d \in \mathbb{Q}$, prove that
$$
a+b \sqrt{2}=c+d \sqrt{2} \quad \Longleftrightarrow \quad a=c \text { and } b=d
$$
(b) For all $a, b \in \mathbb{Q}$, prove that $a^{2}-2 b^{2}=0$ if and only if $a+b \sqrt{2}=0$. Use this result to prove that every nonzero element of $\mathbb{Q}(\sqrt{2})$ has a multiplicative inverse. [Hint: Rationalize the denominator.]
(c) Prove that $\sqrt{3}$ is not an element of $\mathbb{Q}(\sqrt{2})$, and hence that $\mathbb{Q}(\sqrt{2})$ is not equal to \mathbb{R}.
(d) Finally, suppose that $x^{2}-2$ splits over a field \mathbb{E} where $\mathbb{Q} \subseteq \mathbb{E} \subseteq \mathbb{Q}(\sqrt{2})$. In this case, show that we must have $\mathbb{E}=\mathbb{Q}(\sqrt{2})$. [Hint: Suppose that $x^{2}-2=\left(x-r_{1}\right)\left(x-r_{2}\right)$ for some $r_{1}, r_{2} \in \mathbb{E}$. Now substitute $x=\sqrt{2}$.]
[Hint: You may assume that the real numbers $\sqrt{2}$ and $\sqrt{3}$ are not in \mathbb{Q}, i.e., they are irrational. More generally, for any positive integer $d \geq 1$ that is not a perfect square, the square roots of d are irrational. You may have seen a proof of this result before. If not, you will see one later in this class.]
(a): If $a=c$ and $b=d$ then clearly $a+b \sqrt{2}=c+d \sqrt{2}$. Conversely, suppose that $a+b \sqrt{2}=$ $c+d \sqrt{2}$ for some $a, b, c, d \in \mathbb{Q}$. If $b=d$ then we also have $a=c$, so let us assume for contradiction that $b \neq d$. Then we get
\[

$$
\begin{aligned}
a+b \sqrt{2} & =c+d \sqrt{2} \\
\sqrt{2} & =(a-c) /(d-b),
\end{aligned}
$$
\]

which contradicts the fact that $\sqrt{2}$ is irrational.
Remark: We have just proved that $\mathbb{Q}(\sqrt{2})$ is a two-dimensional vector space over \mathbb{Q} with standard basis $1, \sqrt{2}$.
(b): If $a+b \sqrt{2}=0$ then we have $a=-b \sqrt{2}$ and squaring both sides gives $a^{2}=2 b^{2}$, hence $a^{2}-2 b^{2}=0$. Conversely, suppose that we have $a^{2}-2 b^{2}=0$ for some $a, b \in \mathbb{Q}$. If $b=0$ then we also have $a=0$, and hence $a+b \sqrt{2}=0$. So let us assume for contradiction that $b \neq 0$. Then we get

$$
\begin{aligned}
a^{2}-2 b^{2} & =0 \\
a^{2} & =2 b^{2} \\
(a / b)^{2} & =2,
\end{aligned}
$$

which contradicts the fact that $\sqrt{2}$ is irrational.
It follows that for any $a, b \in \mathbb{Q}$ with $a+b \sqrt{2} \neq 0$ we can writ $\underbrace{6}$

$$
\begin{aligned}
\frac{1}{a+b \sqrt{2}} & =\frac{1}{a+b \sqrt{2}} \cdot \frac{a-b \sqrt{2}}{a-b \sqrt{2}} \\
& =\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}} \\
& =\left(\frac{a}{a^{2}-2 b^{2}}\right)+\left(\frac{-b}{a^{2}-2 b^{2}}\right) \sqrt{2},
\end{aligned}
$$

where $a /\left(a^{2}-2 b^{2}\right)$ and $-b /\left(a^{2}-2 b^{2}\right)$ are rational numbers.

[^3](c): Suppose for contradiction that $\sqrt{3}=a+b \sqrt{2}$ for some $a, b \in \mathbb{Q}$. If $b=0$ then we obtain $\sqrt{3}=a$, which contradicts the fact that $\sqrt{3}$ is irrational. So let us suppose that $b \neq 0$. If $a=0$ then we have
\[

$$
\begin{aligned}
\sqrt{3} & =b \sqrt{2} \\
\sqrt{3} \sqrt{2} & =2 b \\
\sqrt{6} & =2 b
\end{aligned}
$$
\]

which contradicts the fact that $\sqrt{6}$ is irrational. [Oops, I should have told you to assume this as well.] Finally, if $b \neq 0$ and $a \neq 0$ then we have $2 a b \neq 0$ and hence

$$
\begin{aligned}
\sqrt{3} & =a+b \sqrt{2} \\
3 & =(a+b \sqrt{2})^{2} \\
3 & =a^{2}+2 b^{2}+2 a b \sqrt{2} \\
\frac{3-a^{2}-2 b^{2}}{2 a b} & =\sqrt{2}
\end{aligned}
$$

which contradicts the fact that $\sqrt{2}$ is irrational.
Remark: Wow, that was tricky. And we still haven't proved that $\sqrt{2}, \sqrt{3}, \sqrt{6}$ are irrational. This will be much easier to do once we have discussed unique prime factorization.
(d): We have seen that $\mathbb{Q}(\sqrt{2})$ is a proper subfield of \mathbb{R} over which the polynomial $x^{2}-2$ splits. I claim that $\mathbb{Q}(\sqrt{2})$ is the splitting field. To see this, consider any field $\mathbb{Q} \subseteq \mathbb{E} \subseteq \mathbb{Q}(\sqrt{2})$ and suppose that $x^{2}-2$ splits over \mathbb{E}. In other words, suppose that we have $x^{2}-2=\left(x-r_{1}\right)\left(x-r_{2}\right)$ for some $r_{1}, r_{2} \in \mathbb{E}$. Then substituting $x=\sqrt{2}$ gives

$$
\left(\sqrt{2}-r_{1}\right)\left(\sqrt{2}-r_{2}\right)=(\sqrt{2})^{2}-2=0
$$

which implies that $r_{1}=\sqrt{2}$ or $r_{2}=\sqrt{2}$. In either case, we find that $\sqrt{2} \in \mathbb{E}$. Finally, we conclude that $\mathbb{E}=\mathbb{Q}(\sqrt{2})$ since for any $a, b \in \mathbb{Q}$ we have $a, b, \sqrt{2} \in \mathbb{E}$ and hence $a+b \sqrt{2} \in \mathbb{E}$.

Remark: It will turn out later that the solvability of a polynomial in terms of radicals is related to the symmetries of its splitting field. A symmetry of a field extension $\mathbb{E} \supseteq \mathbb{F}$ is an invertible function $\sigma: \mathbb{E} \rightarrow \mathbb{E}$ satisfying

- $\sigma(a)=a$ for all $a \in \mathbb{F}$,
- $\sigma(a+b)=\sigma(a)+\sigma(b)$ for all $a, b \in \mathbb{E}$,
- $\sigma(a b)=\sigma(a) \sigma(b)$ for all $a, b \in \mathbb{E}$.

For example, complex conjugation is a symmetry of the field extension $\mathbb{C} \supseteq \mathbb{R}$ and the map $a+b \sqrt{2} \mapsto a-b \sqrt{2}$ is a symmetry of the field extension $\mathbb{Q}(\sqrt{2}) \supseteq \mathbb{Q}$.

[^0]: ${ }^{1}$ The condition $\operatorname{deg}(r)<\operatorname{deg}(g)$ includes the possibility that $r(x)=0$.

[^1]: ${ }^{2}$ This factorization can be easily checked. You may have used it in calculus to prove that $1+x+x^{2}+\cdots=$ $1 /(1-x)$ when $|x|<1$. To see this, use the fact that $x^{n} \rightarrow 0$ as $n \rightarrow \infty$.

[^2]: ${ }^{3}$ Alternatively, you could define $u=\omega^{2}+\omega^{-2}=2 \cos (4 \pi / 5)$ and check that the same equation holds: $u^{2}+u-1=0$. Thus $2 \cos (4 \pi / 5)$ is the other root of the quadratic equation from part (a).
 ${ }^{4}$ This formula for $\cos (2 \pi / 5)$ can be found by writing the equation $z^{2}+z-1$ as $z=\sqrt{1-z}$.
 ${ }^{5}$ If $(R,+, \cdot, 0,1)$ is a ring, we say that a subset $S \subseteq R$ is a subring if $0,1 \in S$ and if $a, b \in S$ implies that $a+b, a b \in S$.

[^3]: ${ }^{6}$ Technically speaking, this derivation uses the fact that $a-b \sqrt{2} \neq 0$. This can be shown by observing that $(a+b \sqrt{2})(a-b \sqrt{2})=a^{2}-2 b^{2}$ and $a^{2}-2 b^{2} \neq 0$.

