1. Cancellation in an Integral Domain. A ring $(R, +, \cdot, 0, 1)$ is called an *integral domain* if it satisfies the following additional axiom:

(ID) For all $a, b \in R$, ab = 0 implies that a = 0 or b = 0.

Important examples are the ring of integers \mathbb{Z} and the ring of polynomials over a field $\mathbb{F}[x]$.

- (a) Prove that every field is an integral domain.
- (b) If R is an integral domain with $a, b, c \in R$, prove that

$$ac = bc \text{ and } c \neq 0 \implies a = b.$$

(c) Prove that a **finite** integral domain R must be a field. [Hint: Given a nonzero element $c \in R$, consider the function $R \to R$ defined by $a \mapsto ac$. Use part (b) to show that this function is *injective* (one-to-one). Then use the finiteness of R to show that this function is *surjective* (onto). Now what?]

2. Uniqueness of Quotient and Remainder. We proved in class that for any polynomials $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$ there exist some polynomials $q(x), r(x) \in \mathbb{F}[x]$ satisfying¹

$$\begin{cases} f(x) = g(x)q(x) + r(x), \\ \deg(r) < \deg(g). \end{cases}$$
(*)

In this problem you will show that the polynomials q(x), r(x) are unique.

- (a) For all polynomials $\phi(x), \mu(x) \in \mathbb{F}[x]$, show that $\deg(\phi \pm \mu) \leq \max\{\deg(\phi), \deg(\mu)\}$.
- (b) Suppose that the pairs $q_1(x), r_1(x)$ and $q_2(x), r_2(x)$ both satisfy the properties (*). Prove that we must have $r_1(x) = r_2(x)$. [Hint: We must have $[r_2(x) - r_1(x)] = g(x)[q_1(x) - q_2(x)]$. If $r_1(x) \neq r_2(x)$, show that the properties of degree, including part (a), lead to a contradiction.]
- (c) Following from (b), use Problem 1(b) to conclude that $q_1(x) = q_2(x)$.
- **3. Factorization of** $x^n 1$ over \mathbb{R} . For any integer $n \ge 1$, we proved in class that

$$x^n - 1 = (x - 1)(x - \omega)(x - \omega^2) \cdots (x - \omega^{n-1}).$$

(a) Show that $\omega^k = \omega^{n-k}$ for all k and use this to prove that

$$x^{n} - 1 = \begin{cases} (x - 1)(x + 1) \prod_{k=1}^{(n-2)/2} (x - \omega^{k})(x - \omega^{-k}) & \text{if } n \text{ is even,} \\ (x - 1) \prod_{k=1}^{(n-1)/2} (x - \omega^{k})(x - \omega^{-k}) & \text{if } n \text{ is odd.} \end{cases}$$

- (b) Show that $\omega^{-k} = (\omega^k)^*$ and hence $\omega^k + \omega^{-k} = 2\cos(2\pi k/n)$ for all k. Use this and part (b) to completely factor $x^n 1$ over the real numbers.
- 4. The Regular Pentagon. If $\omega = e^{2\pi i/5}$ then we know from Problem 3 that

$$x^{5} - 1 = (x - \omega^{2})(x - \omega)(x - 1)(x - \omega^{-1})(x - \omega^{-2}).$$

- (a) Use this to show that $\omega^2 + \omega + 1 + \omega^{-1} + \omega^{-2} = 0$. [Hint: Compare coefficients.]
- (b) Use part (a) and the fact that $z := \omega + \omega^{-1} = 2\cos(2\pi/5)$ to find an explicit formula for the number $\cos(2\pi/5)$. [Hint: Note that $z^2 = (\omega + \omega^{-1})^2 = \omega^2 + 2 + \omega^{-2}$. Use this to show that z satisfies a quadratic equation with real coefficients. Solve it.]

¹The condition $\deg(r) < \deg(g)$ includes the possibility that r(x) = 0.

- (c) Combine parts (a) and (b) to obtain an expression for $\cos(4\pi/5)$. Then use Problem 4 to obtain the complete factorization of $x^5 1$ over the real numbers.
- 5. The Splitting Field of $x^2 2$. Consider the following set of real numbers:

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\} \subseteq \mathbb{R}.$$

One can check that this set is a subring² of \mathbb{R} . You can check this yourself if you want but it's pretty boring.

(a) For all $a, b, c, d \in \mathbb{Q}$, prove that

$$a + b\sqrt{2} = c + d\sqrt{2} \quad \iff \quad a = c \text{ and } b = d.$$

- (b) For all $a, b \in \mathbb{Q}$, prove that $a^2 2b^2 = 0$ if and only if $a + b\sqrt{2} = 0$. Use this result to prove that every nonzero element of $\mathbb{Q}(\sqrt{2})$ has a multiplicative inverse. [Hint: Rationalize the denominator.]
- (c) Prove that $\sqrt{3}$ is not an element of $\mathbb{Q}(\sqrt{2})$, and hence that $\mathbb{Q}(\sqrt{2})$ is not equal to \mathbb{R} .
- (d) Finally, suppose that $x^2 2$ splits over a field \mathbb{E} where $\mathbb{Q} \subseteq \mathbb{E} \subseteq \mathbb{Q}(\sqrt{2})$. In this case, show that we must have $\mathbb{E} = \mathbb{Q}(\sqrt{2})$. [Hint: Suppose that $x^2 2 = (x r_1)(x r_2)$ for some $r_1, r_2 \in \mathbb{E}$. Now substitute $x = \sqrt{2}$.]

[Hint: You may assume that the real numbers $\sqrt{2}$ and $\sqrt{3}$ are not in \mathbb{Q} , i.e., they are irrational. More generally, for any positive integer $d \geq 1$ that is not a perfect square, the square roots of d are irrational. You may have seen a proof of this result before. If not, you will see one later in this class.]

²If $(R, +, \cdot, 0, 1)$ is a ring, we say that a subset $S \subseteq R$ is a *subring* if $0, 1 \in S$ and if $a, b \in S$ implies that $a + b, ab \in S$.