
Math 561/661 Fall 2021
Homework 1 Drew Armstrong

1. Working with Ring Axioms. Let (R,+, ·, 0, 1) be a ring.1 Recall that for any element
a ∈ R there exists a unique element −a ∈ R such that a+ (−a) = 0.

(a) Show that 0a = 0. [Hint: Multiply both sides of 0 + 0 = 0 by a.]
(b) Show that −(−a) = a. [Hint: Uniqueness.]
(c) Show that a(−b) = (−a)b = −(ab). [Hint: Multiply both sides of b+ (−b) = 0 by a.]
(d) Show that (−a)(−b) = ab. [Hint: Combine parts (b) and (c).]

(a): From the definition of 0 we have 0 + 0 = 0. Multiplying both sides by a and using the
distributive axiom gives

0 + 0 = 0

(0 + 0)a = 0a

0a+ 0a = 0a.

Then we add the element −0a to both sides to obtain

0a+ 0a = 0a

(0a+ 0a) + (−0a) = 0a+ (−0a)

0a+ [0a+ (−0a)] = 0

0a+ 0 = 0

0a = 0.

(b): By definition we have a + (−a) = 0 and rearranging gives (−a) + a = 0. But we know
that there exists a unique element b ∈ R such that (−a) + b = 0 and this element is called
−(−a). Since a is one such element then by uniqueness we must have −(−a) = a.2

(c): We multiply both sides of the equation b+ (−b) = 0 by a to obtain

b+ (−b) = 0

a[b+ (−b)] = 0a

ab+ a(−b) = 0. 0a = 0 from part (a)

Then from the uniqueness of additive inverses it follows that a(−b) = −(ab). The identity
(−a)b = −(ab) follows by reversing the roles of a and b.

(d): By combining parts (b) and (c) we obtain

(−a)(−b) = −[a(−b)] part (c)

= −[−(ab)] part (c)

= ab. part (b)

[Remark: We could have taken these basic properties as axioms, but we didn’t because it’s not
necessary. There is a general principle when it comes to axioms that we should use the minimum
possible. I was very careful in this proof because this is the first homework problem of the course.
As we go along I will not attempt to reduce every proof to the axioms.]

1We always assume that a ring has commutative multiplication.
2Full Details: −(−a) = −(−a) + 0 = −(−a) + [(−a) + a] = [−(−a) + (−a)] + a = 0 + a = a.



2. Complex Conjugation. Given a complex number α = a+ bi ∈ C we define the complex
conjugate by α∗ = a− bi.

(a) For all α ∈ C show that α∗ = α if and only if α ∈ R.
(b) For all α, β ∈ C show that (α+ β)∗ = α∗ + β∗ and (αβ)∗ = α∗β∗.
(c) If f(x) ∈ R[x] is a polynomial with real coefficients, show that the non-real complex

roots of f come in conjugate pairs. [Hint: For all α ∈ C show that f(α)∗ = f(α∗).]
(d) For any α ∈ C, show that the polynomial (x− α)(x− α∗) has real coefficients.

(a): In class we showed that a+ bi = c+ di implies that a = c and b = d.3 If α = a+ bi and
α = α∗ then we have a+ bi = a− bi, which implies that a = a and b = −b. The first of these
equations tells us nothing; the second equation tells us that 2b = 0 and hence b = 0. It follows
that α = a+ 0i is real. Conversely, if α = a+ 0i is real then α∗ = a− 0i = a+ 0i = α.

(b): Let α = a+ bi and β = c+ di. Then we have

(α+ β)∗ = [(a+ bi) + (c+ di)]∗

= [(a+ c) + (b+ d)i]∗

= (a+ c)− (b+ d)i

= (a− bi) + (c− di)
= α∗ + β∗

and

α∗β∗ = (a− bi)(c− di)
= (ac− bd)− (ad+ bc)i

= [(ac− bd) + (ad+ bc)i]∗

= [(a+ bi)(c+ di)]∗]]

= (αβ)∗.

(c): Consider a polynomial f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 with real coefficients
a0, . . . , an ∈ R. For any α ∈ C we want to show that f(α) = 0 if and only if f(α∗) = 0. In
order to show this we first observe that for any α ∈ C we have4

f(α)∗ = (anα
n + an−1α

n−1 + · · ·+ a1α+ a0)
∗

= a∗n(α∗)n + a∗n−1(α
∗)n−1 + · · ·+ a∗1α

∗ + a∗0 part (b)

= an(α∗)n + an−1(α
∗)n−1 + · · ·+ a1α

∗ + a0 part (a)

= f(α∗).

If f(α) = 0 then this implies that f(α∗) = f(α)∗ = 0∗ = 0 and if f(α∗) = 0 then this implies
that f(α) = [f(α)∗]∗ = f(α∗)∗ = 0∗ = 0.

(d): This problem was not assigned. I added it in the solutions because it is relevant for
Problem 7. First we observe that

(x− α)(x− α∗) = x2 − (α+ α∗)x+ αα∗.

3Proof: If b 6= d then i = (c− a)/(b− d) is real, which is a contradiction.
4Strictly speaking, we should use induction on top of part (b) to see that (αn)∗ = (α∗)n.



There are two ways to show that these coefficients are real. Direct Proof: If α = a + bi then
we have

α+ α∗ = (a+ bi) + (a− bi) = 2a+ 0i ∈ R
and

αα∗ = (a+ bi)(a− bi) = (a2 + b2) + 0i ∈ R.
Elegant Proof: From part (b) we have

(α+ α∗)∗ = α∗α∗∗ = α∗ + α = α+ α∗

and
(αα∗) = α∗α∗∗ = α∗α = αα∗,

hence from part (a) we have α+ α∗ ∈ R and αα∗ ∈ R.

3. Absolute Value of Complex Numbers. Given a complex number α = a + bi ∈ C we
define the absolute value by |α| = +

√
a2 + b2.

(a) Show that α = 0 if and only if |α| = 0. [Hint: For all a ∈ R we have a2 ≥ 0.]
(b) Show that αα∗ = |α|2.
(c) For all α, β ∈ C show that |αβ| = |α||β|. [Hint: Part (b) gives a shortcut.]
(d) For all α, β ∈ C show that αβ = 0 implies α = 0 or β = 0. [Hint: Use parts (a,c).]

(a): If α = 0 + 0i then |α|2 = 02 + 02 = 0 and hence |α| = 0. Conversely, let α = a + bi. If
|α| = 0 then 0 = |α|2 = a2 + b2, which implies that a2 = −b2. If a 6= 0 then since a, b are real
this shows that a strictly positive number a2 is equal to a non-negative number −b2, which is
a contradiction. It follows that a = 0 hence also b2 = −a2 = −02 = 0 and b = 0. We conclude
that α = 0 + 0i as desired.

(b): If α = a+ bi then we have

αα∗ = (a+ bi)(a− bi) = (a2 + b2) + 0i = |α|2.

(c): For all α, β ∈ C, part (b) and 2(b) imply that

|αβ|2 = (αβ)(αβ)∗ = αβα∗β∗ = (αα∗)(ββ∗) = |α|2|β|2.
Then taking positive real square roots gives |αβ| = |α||β|.

(d): The hint that I gave for this problem is a bit silly because we already know from class
that C is a field. Here is the proof using the hint: Suppose that αβ = 0 so from part (c) we
have that |α||β| = |αβ| = 0. Since |α| and |β| are real numbers this implies that |α| = 0 or
|β| = 0, which from part (a) shows that α = 0 or β = 0. And here is the proof using the
fact that C is a field: Suppose that αβ = 0. If β 6= 0 then there exists β−1 ∈ C such that
ββ−1 = 1, and it follows that

αβ = 0

αββ−1 = 0β

α = 0.

If α 6= 0 then a similar argument shows that β = 0. Hence we must have α = 0 or β = 0.5

4. Descartes’ Factor Theorem. Let F be a field and let F[x] be the ring of polynomials

F[x] = {a0 + a1x+ · · ·+ anx
n : a0, . . . , an ∈ F, n ≥ 0}.

5The key observation I want to make is that this property is not obvious from the definition of C. It relies
on properties of complex conjugation and absolute value.



If f(x) = a0 + a1x+ · · ·+ anx
n with an 6= 0 then we write deg(f) = n. The zero polynomial

does not have a degree.

(a) Show that deg(fg) = deg(f) + deg(g) for all nonzero polynomials f(x), g(x) ∈ F[x].
(b) Suppose that a nonzero polynomial f(x) ∈ F[x] satisfies f(α) = 0 for some α ∈ F.

In this case prove that we have f(x) = (x − α)g(x) for some polynomial g(x) with
deg(g) = deg(f)− 1. [Hint: By long division there exist polynomials q(x), r(x) ∈ F[x]
with f(x) = (x− α)q(x) + r(x), such that r(x) is a constant.]

(c) Use part (b) to prove that a polynomial f(x) ∈ F[x] of degree n has at most n distinct
roots in F. [Hint: If f(α) = 0 then f(x) = (x−α)g(x) for some polynomial of degree
n− 1. What happens if f(β) = 0 for some β 6= α? Use induction.]

(a): Suppose that deg(f) = m and deg(g) = n so that

f(x) = amx
m + · · ·+ a1x+ a0,

g(x) = bnx
n + · · ·+ b1x+ b0,

for some coefficients a0, . . . , am, b0, . . . , bn ∈ F with am 6= 0 and bn 6= 0. By definition of
polynomial multiplication we have6

f(x)g(x) = ambnx
m+n + lower degree terms.

Then since am 6= 0 and bn 6= 0 we have ambn 6= 0 which implies that

deg(fg) = m+ n = deg(f) + deg(g).

(b): Consider a polynomial f(x) ∈ F[x] and a constant α ∈ F. If f(x) = (x− α)g(x) for some
polynomial g(x) ∈ F[x] then we must have

f(α) = (α− α)g(α) = 0g(α) = 0.

Conversely, let us suppose that f(α) = 0. First we apply long division to obtain a quotient
and remainder q(x), r(x) ∈ F[x] such that f(x) = (x − α)q(x) + r(x), where either r(x) = 0
or r(x) has degree strictly less than (x− α). Since x− α has degree 1 this implies that either
r(x) = 0 or r(x) has degree zero, i.e., is a non-zero constant. In either case we have r(x) = c
for some c ∈ F. Now we substitute x = α to obtain

0 = f(α) = (α− α)q(α) + c = c,

so that f(x) = (x− α)q(x) as desired. The fact that deg(q) = deg(f)− 1 follows from (a).

(c): Theorem: Any polynomial f(x) ∈ F[x] of degree n ≥ 0 has at most n distinct roots in F.
Proof by Induction: If n = 0 then f(x) = c for some nonzero constant c ∈ F, which implies
that f(x) has no roots, as desired. So let us suppose that n ≥ 1 and assume for induction
that every polynomial of degree n− 1 has at most n− 1 roots in F. If f(x) has no roots then
we are done. Otherwise, we may suppose that f(α) = 0 for some α ∈ F, so from part (b) we
have f(x) = (x− α)g(x) for some g(x) ∈ F[x] of degree n− 1. If β ∈ F is any other root of
f(x) (i.e., if f(β) = 0 and β 6= α) then substituting gives

f(β) = (β − α)g(β)

0 = ����(β − α)g(β)

0 = g(β),

which implies that β is a root of g(x). But g(x) has at most n− 1 roots in F. Therefore f(x)
has at most 1 + (n− 1) = n roots in F �

6It is possible to be more precise about this but I don’t want to.



[Remark: This theorem goes back to Descartes’ Geometry (1631) and is one of the most funda-
mental results in algebra. I’m sure you’ve seen it before but you may not have seen a proof.]

5. Leibniz’ Mistake. In 1702 Gottfried Leibniz claimed that the polynomial x4 + 1 cannot
be factored as a product of smaller polynomials with real coefficients.

(a) Use the polar form to find all of the complex 4th roots of −1.
(b) Use this to factor the polynomial x4 + 1 and show that Leibniz was wrong. [Hint:

Group the four roots into complex conjugate pairs.]

[Remark: It follows from Problem 4 that a complex number can have at most four 4th roots
in C. If we can find four distinct complex 4th roots then we will have all of them.]

(a): First note that α := −1 = reiθ with r = 1 > 0 and θ = π. Note that 1 is the

unique positive 4th root of 1. Thus the “principal” 4th roof of α is α′ := 1eiθ/4 = eiπ/4. If
ω = e2πi/4 = eπi/2 then I claim that the 4th roots of −1 are7

α′ = eπi/4 = cos(π/4) + i sin(π/4) = (1 + i)/
√

2,

α′ω = e3πi/4 = cos(3π/4) + i sin(3π/4) = (−1 + i)/
√

2,

α′ω2 = e5πi/4 = cos(5π/4) + i sin(5π/4) = (−1− i)/
√

2,

α′ω3 = e7πi/4 = cos(7π/4) + i sin(7π/4) = (1− i)/
√

2.

Indeed, since (α′)n = α and ω4 = e2πi = 1 we have

(α′ωk)n = (α′)n(ωn)k = α · 1k = α for any integer k.

We have four four distinct 4roots of −1, and hence all of them.

(b): From Descartes’ Theorem we may use these fourth roots to factor the polynomial over
the complex numbers:

x4 + 1 =

(
x− 1 + i√

2

)(
x− −1 + i√

2

)(
x− −1− i√

2

)(
x− 1− i√

2

)
.

We observe that these roots come in complex-conjugate pairs, as predicted by Problem 2(c).
By grouping these pairs and expanding, we obtain a factorization of x4 + 1 over the real
numbers:8

x4 + 1 =

[(
x− 1 + i√

2

)(
x− 1− i√

2

)][(
x− −1 + i√

2

)(
x− −1− i√

2

)]
= (x2 −

√
2x+ 1)(x2 +

√
2x+ 1).

[Remark: Leibniz (1702) did not find this factorization because he did not have a geometric
understanding of the complex numbers.]

7Geometrically, these four points in the complex plane form a square centered at the origin.
8For any complex number α ∈ C we observe that the polynomial (x − α)(x − α∗) = x2 − (α + α∗)x + αα∗

has real coefficients because α+ α∗ and αα∗ are real.


