1. Working with Ring Axioms. Let $(R, +, \cdot, 0, 1)$ be a ring.¹ Recall that for any element $a \in R$ there exists a unique element $-a \in R$ such that a + (-a) = 0.

- (a) Show that 0a = 0. [Hint: Multiply both sides of 0 + 0 = 0 by a.]
- (b) Show that -(-a) = a. [Hint: Uniqueness.]
- (c) Show that a(-b) = (-a)b = -(ab). [Hint: Multiply both sides of b + (-b) = 0 by a.]
- (d) Show that (-a)(-b) = ab. [Hint: Combine parts (b) and (c).]

(a): From the definition of 0 we have 0 + 0 = 0. Multiplying both sides by a and using the distributive axiom gives

$$0 + 0 = 0$$
$$(0 + 0)a = 0a$$
$$0a + 0a = 0a.$$

Then we add the element -0a to both sides to obtain

$$0a + 0a = 0a$$

$$(0a + 0a) + (-0a) = 0a + (-0a)$$

$$0a + [0a + (-0a)] = 0$$

$$0a + 0 = 0$$

$$0a = 0.$$

(b): By definition we have a + (-a) = 0 and rearranging gives (-a) + a = 0. But we know that there exists a unique element $b \in R$ such that (-a) + b = 0 and this element is called -(-a). Since a is one such element then by uniqueness we must have $-(-a) = a^2$.

(c): We multiply both sides of the equation b + (-b) = 0 by a to obtain

$$b + (-b) = 0$$

 $a[b + (-b)] = 0a$
 $ab + a(-b) = 0.$ $0a = 0$ from part (a)

Then from the uniqueness of additive inverses it follows that a(-b) = -(ab). The identity (-a)b = -(ab) follows by reversing the roles of a and b.

(d): By combining parts (b) and (c) we obtain

$$(-a)(-b) = -[a(-b)]$$
 part (c)
= -[-(ab)] part (c)

$$= ab.$$
 part (b)

[Remark: We could have taken these basic properties as axioms, but we didn't because it's not necessary. There is a general principle when it comes to axioms that we should use the minimum possible. I was very careful in this proof because this is the first homework problem of the course. As we go along I will not attempt to reduce every proof to the axioms.]

 $^{^{1}}$ We always assume that a ring has commutative multiplication.

²Full Details: -(-a) = -(-a) + 0 = -(-a) + [(-a) + a] = [-(-a) + (-a)] + a = 0 + a = a.

2. Complex Conjugation. Given a complex number $\alpha = a + bi \in \mathbb{C}$ we define the complex conjugate by $\alpha^* = a - bi$.

- (a) For all $\alpha \in \mathbb{C}$ show that $\alpha^* = \alpha$ if and only if $\alpha \in \mathbb{R}$.
- (b) For all $\alpha, \beta \in \mathbb{C}$ show that $(\alpha + \beta)^* = \alpha^* + \beta^*$ and $(\alpha\beta)^* = \alpha^*\beta^*$.
- (c) If $f(x) \in \mathbb{R}[x]$ is a polynomial with real coefficients, show that the non-real complex roots of f come in conjugate pairs. [Hint: For all $\alpha \in \mathbb{C}$ show that $f(\alpha)^* = f(\alpha^*)$.]
- (d) For any $\alpha \in \mathbb{C}$, show that the polynomial $(x \alpha)(x \alpha^*)$ has real coefficients.

(a): In class we showed that a + bi = c + di implies that a = c and b = d.³ If $\alpha = a + bi$ and $\alpha = \alpha^*$ then we have a + bi = a - bi, which implies that a = a and b = -b. The first of these equations tells us nothing; the second equation tells us that 2b = 0 and hence b = 0. It follows that $\alpha = a + 0i$ is real. Conversely, if $\alpha = a + 0i$ is real then $\alpha^* = a - 0i = a + 0i = \alpha$.

(b): Let $\alpha = a + bi$ and $\beta = c + di$. Then we have

$$(\alpha + \beta)^* = [(a + bi) + (c + di)]^*$$

= [(a + c) + (b + d)i]*
= (a + c) - (b + d)i
= (a - bi) + (c - di)
= \alpha^* + \beta^*

and

$$\begin{aligned} \alpha^* \beta^* &= (a - bi)(c - di) \\ &= (ac - bd) - (ad + bc)i \\ &= [(ac - bd) + (ad + bc)i]^* \\ &= [(a + bi)(c + di)]^*]] \\ &= (\alpha \beta)^*. \end{aligned}$$

(c): Consider a polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ with real coefficients $a_0, \ldots, a_n \in \mathbb{R}$. For any $\alpha \in \mathbb{C}$ we want to show that $f(\alpha) = 0$ if and only if $f(\alpha^*) = 0$. In order to show this we first observe that for any $\alpha \in \mathbb{C}$ we have⁴

$$f(\alpha)^* = (a_n \alpha^n + a_{n-1} \alpha^{n-1} + \dots + a_1 \alpha + a_0)^*$$

= $a_n^* (\alpha^*)^n + a_{n-1}^* (\alpha^*)^{n-1} + \dots + a_1^* \alpha^* + a_0^*$ part (b)
= $a_n (\alpha^*)^n + a_{n-1} (\alpha^*)^{n-1} + \dots + a_1 \alpha^* + a_0$ part (a)
= $f(\alpha^*)$.

If $f(\alpha) = 0$ then this implies that $f(\alpha^*) = f(\alpha)^* = 0^* = 0$ and if $f(\alpha^*) = 0$ then this implies that $f(\alpha) = [f(\alpha)^*]^* = f(\alpha^*)^* = 0^* = 0$.

(d): This problem was not assigned. I added it in the solutions because it is relevant for Problem 7. First we observe that

$$(x - \alpha)(x - \alpha^*) = x^2 - (\alpha + \alpha^*)x + \alpha\alpha^*.$$

³Proof: If $b \neq d$ then i = (c - a)/(b - d) is real, which is a contradiction.

⁴Strictly speaking, we should use induction on top of part (b) to see that $(\alpha^n)^* = (\alpha^*)^n$.

There are two ways to show that these coefficients are real. Direct Proof: If $\alpha = a + bi$ then we have

$$\alpha + \alpha^* = (a + bi) + (a - bi) = 2a + 0i \in \mathbb{R}$$

and

$$\alpha \alpha^* = (a+bi)(a-bi) = (a^2+b^2) + 0i \in \mathbb{R}$$

Elegant Proof: From part (b) we have

$$(\alpha + \alpha^*)^* = \alpha^* \alpha^{**} = \alpha^* + \alpha = \alpha + \alpha^*$$

and

$$(\alpha \alpha^*) = \alpha^* \alpha^{**} = \alpha^* \alpha = \alpha \alpha^*,$$

hence from part (a) we have $\alpha + \alpha^* \in \mathbb{R}$ and $\alpha \alpha^* \in \mathbb{R}$.

3. Absolute Value of Complex Numbers. Given a complex number $\alpha = a + bi \in \mathbb{C}$ we define the absolute value by $|\alpha| = +\sqrt{a^2 + b^2}$.

- (a) Show that $\alpha = 0$ if and only if $|\alpha| = 0$. [Hint: For all $a \in \mathbb{R}$ we have $a^2 \ge 0$.]
- (b) Show that $\alpha \alpha^* = |\alpha|^2$.
- (c) For all $\alpha, \beta \in \mathbb{C}$ show that $|\alpha\beta| = |\alpha||\beta|$. [Hint: Part (b) gives a shortcut.]
- (d) For all $\alpha, \beta \in \mathbb{C}$ show that $\alpha\beta = 0$ implies $\alpha = 0$ or $\beta = 0$. [Hint: Use parts (a,c).]

(a): If $\alpha = 0 + 0i$ then $|\alpha|^2 = 0^2 + 0^2 = 0$ and hence $|\alpha| = 0$. Conversely, let $\alpha = a + bi$. If $|\alpha| = 0$ then $0 = |\alpha|^2 = a^2 + b^2$, which implies that $a^2 = -b^2$. If $a \neq 0$ then since a, b are real this shows that a strictly positive number a^2 is equal to a non-negative number $-b^2$, which is a contradiction. It follows that a = 0 hence also $b^2 = -a^2 = -0^2 = 0$ and b = 0. We conclude that $\alpha = 0 + 0i$ as desired.

(b): If $\alpha = a + bi$ then we have

$$\alpha \alpha^* = (a+bi)(a-bi) = (a^2+b^2) + 0i = |\alpha|^2.$$

(c): For all $\alpha, \beta \in \mathbb{C}$, part (b) and 2(b) imply that

$$|\alpha\beta|^2 = (\alpha\beta)(\alpha\beta)^* = \alpha\beta\alpha^*\beta^* = (\alpha\alpha^*)(\beta\beta^*) = |\alpha|^2|\beta|^2.$$

Then taking positive real square roots gives $|\alpha\beta| = |\alpha||\beta|$.

(d): The hint that I gave for this problem is a bit silly because we already know from class that \mathbb{C} is a field. Here is the proof using the hint: Suppose that $\alpha\beta = 0$ so from part (c) we have that $|\alpha||\beta| = |\alpha\beta| = 0$. Since $|\alpha|$ and $|\beta|$ are real numbers this implies that $|\alpha| = 0$ or $|\beta| = 0$, which from part (a) shows that $\alpha = 0$ or $\beta = 0$. And here is the proof using the fact that \mathbb{C} is a field: Suppose that $\alpha\beta = 0$. If $\beta \neq 0$ then there exists $\beta^{-1} \in \mathbb{C}$ such that $\beta\beta^{-1} = 1$, and it follows that

$$\begin{aligned} \alpha\beta &= 0\\ \alpha\beta\beta^{-1} &= 0\beta\\ \alpha &= 0. \end{aligned}$$

If $\alpha \neq 0$ then a similar argument shows that $\beta = 0$. Hence we must have $\alpha = 0$ or $\beta = 0.5$

4. Descartes' Factor Theorem. Let \mathbb{F} be a field and let $\mathbb{F}[x]$ be the ring of polynomials

$$\mathbb{F}[x] = \{a_0 + a_1 x + \dots + a_n x^n : a_0, \dots, a_n \in \mathbb{F}, n \ge 0\}.$$

⁵The key observation I want to make is that this property is not obvious from the definition of \mathbb{C} . It relies on properties of complex conjugation and absolute value.

If $f(x) = a_0 + a_1 x + \dots + a_n x^n$ with $a_n \neq 0$ then we write $\deg(f) = n$. The zero polynomial does not have a degree.

- (a) Show that $\deg(fg) = \deg(f) + \deg(g)$ for all nonzero polynomials $f(x), g(x) \in \mathbb{F}[x]$.
- (b) Suppose that a nonzero polynomial $f(x) \in \mathbb{F}[x]$ satisfies $f(\alpha) = 0$ for some $\alpha \in \mathbb{F}$. In this case prove that we have $f(x) = (x - \alpha)g(x)$ for some polynomial g(x) with $\deg(g) = \deg(f) - 1$. [Hint: By long division there exist polynomials $q(x), r(x) \in \mathbb{F}[x]$ with $f(x) = (x - \alpha)q(x) + r(x)$, such that r(x) is a constant.]
- (c) Use part (b) to prove that a polynomial $f(x) \in \mathbb{F}[x]$ of degree *n* has **at most** *n* **distinct roots in** \mathbb{F} . [Hint: If $f(\alpha) = 0$ then $f(x) = (x \alpha)g(x)$ for some polynomial of degree n 1. What happens if $f(\beta) = 0$ for some $\beta \neq \alpha$? Use induction.]

(a): Suppose that $\deg(f) = m$ and $\deg(g) = n$ so that

$$f(x) = a_m x^m + \dots + a_1 x + a_0, g(x) = b_n x^n + \dots + b_1 x + b_0,$$

for some coefficients $a_0, \ldots, a_m, b_0, \ldots, b_n \in \mathbb{F}$ with $a_m \neq 0$ and $b_n \neq 0$. By definition of polynomial multiplication we have⁶

 $f(x)g(x) = a_m b_n x^{m+n} +$ lower degree terms.

Then since $a_m \neq 0$ and $b_n \neq 0$ we have $a_m b_n \neq 0$ which implies that

$$\deg(fg) = m + n = \deg(f) + \deg(g).$$

(b): Consider a polynomial $f(x) \in \mathbb{F}[x]$ and a constant $\alpha \in \mathbb{F}$. If $f(x) = (x - \alpha)g(x)$ for some polynomial $g(x) \in \mathbb{F}[x]$ then we must have

$$f(\alpha) = (\alpha - \alpha)g(\alpha) = 0g(\alpha) = 0.$$

Conversely, let us suppose that $f(\alpha) = 0$. First we apply long division to obtain a quotient and remainder $q(x), r(x) \in \mathbb{F}[x]$ such that $f(x) = (x - \alpha)q(x) + r(x)$, where either r(x) = 0or r(x) has degree strictly less than $(x - \alpha)$. Since $x - \alpha$ has degree 1 this implies that either r(x) = 0 or r(x) has degree zero, i.e., is a non-zero constant. In either case we have r(x) = cfor some $c \in \mathbb{F}$. Now we substitute $x = \alpha$ to obtain

$$0 = f(\alpha) = (\alpha - \alpha)q(\alpha) + c = c,$$

so that $f(x) = (x - \alpha)q(x)$ as desired. The fact that $\deg(q) = \deg(f) - 1$ follows from (a).

(c): **Theorem:** Any polynomial $f(x) \in \mathbb{F}[x]$ of degree $n \ge 0$ has at most n distinct roots in \mathbb{F} . **Proof by Induction:** If n = 0 then f(x) = c for some nonzero constant $c \in \mathbb{F}$, which implies that f(x) has no roots, as desired. So let us suppose that $n \ge 1$ and assume for induction that every polynomial of degree n - 1 has at most n - 1 roots in \mathbb{F} . If f(x) has no roots then we are done. Otherwise, we may suppose that $f(\alpha) = 0$ for some $\alpha \in \mathbb{F}$, so from part (b) we have $f(x) = (x - \alpha)g(x)$ for some $g(x) \in \mathbb{F}[x]$ of degree n - 1. If $\beta \in \mathbb{F}$ is **any other root** of f(x) (i.e., if $f(\beta) = 0$ and $\beta \neq \alpha$) then substituting gives

$$f(\beta) = (\beta - \alpha)g(\beta)$$
$$0 = (\beta - \alpha)g(\beta)$$
$$0 = g(\beta),$$

which implies that β is a root of g(x). But g(x) has at most n-1 roots in \mathbb{F} . Therefore f(x) has at most 1 + (n-1) = n roots in \mathbb{F}

 $^{^{6}}$ It is possible to be more precise about this but I don't want to.

[Remark: This theorem goes back to Descartes' *Geometry* (1631) and is one of the most fundamental results in algebra. I'm sure you've seen it before but you may not have seen a proof.]

5. Leibniz' Mistake. In 1702 Gottfried Leibniz claimed that the polynomial $x^4 + 1$ cannot be factored as a product of smaller polynomials with real coefficients.

- (a) Use the polar form to find all of the complex 4th roots of -1.
- (b) Use this to factor the polynomial $x^4 + 1$ and show that Leibniz was wrong. [Hint: Group the four roots into complex conjugate pairs.]

[Remark: It follows from Problem 4 that a complex number can have at most four 4th roots in \mathbb{C} . If we can find four distinct complex 4th roots then we will have all of them.]

(a): First note that $\alpha := -1 = re^{i\theta}$ with r = 1 > 0 and $\theta = \pi$. Note that 1 is the unique positive 4th root of 1. Thus the "principal" 4th roof of α is $\alpha' := 1e^{i\theta/4} = e^{i\pi/4}$. If $\omega = e^{2\pi i/4} = e^{\pi i/2}$ then I claim that the 4th roots of -1 are⁷

$$\begin{array}{rcl} \alpha' &=& e^{\pi i/4} &=& \cos(\pi/4) + i\sin(\pi/4) &=& (1+i)/\sqrt{2}, \\ \alpha'\omega &=& e^{3\pi i/4} &=& \cos(3\pi/4) + i\sin(3\pi/4) &=& (-1+i)/\sqrt{2}, \\ \alpha'\omega^2 &=& e^{5\pi i/4} &=& \cos(5\pi/4) + i\sin(5\pi/4) &=& (-1-i)/\sqrt{2}, \\ \alpha'\omega^3 &=& e^{7\pi i/4} &=& \cos(7\pi/4) + i\sin(7\pi/4) &=& (1-i)/\sqrt{2}. \end{array}$$

Indeed, since $(\alpha')^n = \alpha$ and $\omega^4 = e^{2\pi i} = 1$ we have

 $(\alpha' \omega^k)^n = (\alpha')^n (\omega^n)^k = \alpha \cdot 1^k = \alpha \quad \text{ for any integer } k.$

We have four four distinct 4roots of -1, and hence all of them.

(b): From Descartes' Theorem we may use these fourth roots to factor the polynomial over the complex numbers:

$$x^{4} + 1 = \left(x - \frac{1+i}{\sqrt{2}}\right)\left(x - \frac{-1+i}{\sqrt{2}}\right)\left(x - \frac{-1-i}{\sqrt{2}}\right)\left(x - \frac{1-i}{\sqrt{2}}\right).$$

We observe that these roots come in complex-conjugate pairs, as predicted by Problem 2(c). By grouping these pairs and expanding, we obtain a factorization of $x^4 + 1$ over the **real** numbers:⁸

$$x^{4} + 1 = \left[\left(x - \frac{1+i}{\sqrt{2}} \right) \left(x - \frac{1-i}{\sqrt{2}} \right) \right] \left[\left(x - \frac{-1+i}{\sqrt{2}} \right) \left(x - \frac{-1-i}{\sqrt{2}} \right) \right]$$
$$= (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1).$$

[Remark: Leibniz (1702) did not find this factorization because he did not have a geometric understanding of the complex numbers.]

⁷Geometrically, these four points in the complex plane form a square centered at the origin.

⁸For any complex number $\alpha \in \mathbb{C}$ we observe that the polynomial $(x - \alpha)(x - \alpha^*) = x^2 - (\alpha + \alpha^*)x + \alpha\alpha^*$ has real coefficients because $\alpha + \alpha^*$ and $\alpha\alpha^*$ are real.