Math 561/661 Fall 2021
Homework 1 Drew Armstrong

1. Working with Ring Axioms. Let (R,+,-,0,1) be a ringH Recall that for any element
a € R there exists a unique element —a € R such that a + (—a) = 0.

(a) Show that Oa = 0. [Hint: Multiply both sides of 0 +0 = 0 by a.]

(b) Show that —(—a) = a. [Hint: Uniqueness.]

¢) Show that a(—b) = (—a)b = —(ab). [Hint: Multiply both sides of b+ (—b) = 0 by a.]
(d) Show that (—a)(—b) = ab. [Hint: Combine parts (b) and (c).]

(a): From the definition of 0 we have 0 + 0 = 0. Multiplying both sides by a and using the
distributive axiom gives

0+0=0
(04 0)a = 0a
Oa + Oa = Oa.
Then we add the element —0a to both sides to obtain
Oa 4+ 0a = Oa

(0a + 0a) + (—0a) = O0a + (—0a)
Oa + [0a + (—0a)] =0
O0a+0=0
O0a = 0.
(b): By definition we have a + (—a) = 0 and rearranging gives (—a) + a = 0. But we know

that there exists a unique element b € R such that (—a) + b = 0 and this element is called
—(—a). Since a is one such element then by uniqueness we must have —(—a) = aEI

(¢): We multiply both sides of the equation b+ (—b) = 0 by a to obtain

b+ (=b)=0
alb+ (=b)] = 0a
ab+ a(—b) = 0. 0a = 0 from part (a)
Then from the uniqueness of additive inverses it follows that a(—b) = —(ab). The identity

(—a)b = —(ab) follows by reversing the roles of a and b.

(d): By combining parts (b) and (c) we obtain
(—a)(=b) = —[a(-b)] part (c)
= —[—(ab)] part (c)
= ab. part (b)

[Remark: We could have taken these basic properties as axioms, but we didn't because it's not
necessary. There is a general principle when it comes to axioms that we should use the minimum
possible. | was very careful in this proof because this is the first homework problem of the course.
As we go along | will not attempt to reduce every proof to the axioms.]

Iwe always assume that a ring has commutative multiplication.
2Full Details: —(—a) = —(—a) +0 = —(—a) 4 [(—a) + a] = [~(—a) + (—a)] +a=0+a = a.



2. Complex Conjugation. Given a complex number a = a + bi € C we define the complex
conjugate by a* = a — bi.
(a) For all a € C show that a* = « if and only if o € R.
(b) For all «, 8 € C show that (a + 58)* = a* + * and (af)* = o**.
(c) If f(z) € R[z] is a polynomial with real coefficients, show that the non-real complex
roots of f come in conjugate pairs. [Hint: For all o € C show that f(a)* = f(a*).]
(d) For any « € C, show that the polynomial (x — «)(x — *) has real coefficients.

(a): In class we showed that a + bi = ¢ + di implies that a = ¢ and b = dE| If « =a+bi and
a = o then we have a + bi = a — bi, which implies that a = a and b = —b. The first of these
equations tells us nothing; the second equation tells us that 2b = 0 and hence b = 0. It follows
that @ = a 4 07 is real. Conversely, if &« = a + 07 is real then a* =a — 0i = a4+ 0i = .

(b): Let « = a + bi and = ¢+ di. Then we have

(a+B) =[(a+bi)+ (c+ di)]*

[(a+c)+ (b+d)i]*

=(a+c)—(b+d)i

= (a—bi)+ (c — di)
o + B

and

= (a — bi)(c — di)

= (ac — bd) — (ad + be)i
= [(ac — bd) + (ad + bc)i]*
— [(a+bi)(e + di)]"]

= (afB)".

(c): Consider a polynomial f(z) = ap,z™ + ap_12" 1 + -+ + a1z + ap with real coefficients
ag, . ..,an € R. For any o € C we want to show that f(«) = 0 if and only if f(a*) = 0. In
order to show this we first observe that for any o € C we havi

fla)* = (apa™ + 1"Vt aja+ ap)”

= ap ()" +ap_y ()" - +aja’ +af part (b)
= a, ()" + ap_1(*)" 1+ +ara* + ag part (a)
= f(a).

If f(ar) = 0 then this implies that f(a*) = f(a)* = 0" = 0 and if f(a*) = 0 then this implies
that f(a) = [f(a)']" = f(a®)* = 0" = 0.

(d): This problem was not assigned. I added it in the solutions because it is relevant for
Problem 7. First we observe that
(x —a)(z —a*) = 2% — (a4 o)z + aa*.

3Proof: If b # d then i = (¢ — a)/(b — d) is real, which is a contradiction.
4Strictly speaking, we should use induction on top of part (b) to see that ()" = (a*)".



There are two ways to show that these coefficients are real. Direct Proof. If &« = a + bi then
we have

a+a*=(a+bi)+(a—bi)=2a+0i R
and

aa’ = (a+bi)(a—bi) = (a®> + %) +0i € R,
FElegant Proof: From part (b) we have

(a+a)* =a’a™=a"+a=a+a"
and
(™) = oo™ = oo = aa”,

hence from part (a) we have o + o* € R and aa™® € R.

3. Absolute Value of Complex Numbers. Given a complex number o = a + bi € C we
define the absolute value by |a| = +va? + b2

(a) Show that a = 0 if and only if || = 0. [Hint: For all @ € R we have a® > 0.]

(b) Show that aa* = |a|?.

(c) For all o, B € C show that |af| = |a||3]. [Hint: Part (b) gives a shortcut.]

(d) For all a, 5 € C show that af = 0 implies @ = 0 or § = 0. [Hint: Use parts (a,c).]

(a): If @ = 0 + 0i then |a|?> = 02 4+ 0% = 0 and hence |a| = 0. Conversely, let a = a + bi. If

|a| = 0 then 0 = |a|? = a? + b%, which implies that a? = —b%. If a # 0 then since a, b are real
this shows that a strictly positive number a? is equal to a non-negative number —b%, which is
a contradiction. It follows that a = 0 hence also b?> = —a? = —0%2 = 0 and b = 0. We conclude

that o« = 0 + 07 as desired.

(b): If & = @ + bi then we have
ao® = (a+ bi)(a — bi) = (a® + b?) + 0i = |a|?.

(c): For all o, 8 € C, part (b) and 2(b) imply that
laB” = (aB)(@B)* = afa”B* = (aa®)(B5") = |al?|BI.

Then taking positive real square roots gives |af| = |«||].

(d): The hint that I gave for this problem is a bit silly because we already know from class
that C is a field. Here is the proof using the hint: Suppose that a5 = 0 so from part (c) we
have that |a||8| = |aB] = 0. Since |a| and |5] are real numbers this implies that |a| = 0 or
|| = 0, which from part (a) shows that &« = 0 or 5 = 0. And here is the proof using the
fact that C is a field: Suppose that a3 = 0. If § # 0 then there exists 37! € C such that
BB~1 =1, and it follows that

af =0
aBpt =08
a=0.

If & # 0 then a similar argument shows that 8 = 0. Hence we must have a =0 or g = OH

4. Descartes’ Factor Theorem. Let F be a field and let F[z]| be the ring of polynomials
Flzx] = {ap + a1z + -+ + anx" : ag,...,a, € F,n > 0}.

5The key observation I want to make is that this property is not obvious from the definition of C. It relies
on properties of complex conjugation and absolute value.



If f(z) =a9+ a1z + - + apa™ with a, # 0 then we write deg(f) = n. The zero polynomial
does not have a degree.
(a) Show that deg(fg) = deg(f) + deg(g) for all nonzero polynomials f(z),g(x) € F[x].
(b) Suppose that a nonzero polynomial f(z) € Flz] satisfies f(a) = 0 for some o € F.
In this case prove that we have f(z) = (x — a)g(z) for some polynomial g(z) with
deg(g) = deg(f) — 1. [Hint: By long division there exist polynomials ¢(z),r(z) € F[z]
with f(z) = (x — a)q(z) + r(x), such that r(x) is a constant.]
(c) Use part (b) to prove that a polynomial f(z) € F[z] of degree n has at most n distinct
roots in F. [Hint: If f(«) = 0 then f(z) = (z — a)g(x) for some polynomial of degree
n — 1. What happens if f(8) = 0 for some 8 # «? Use induction.]

(a): Suppose that deg(f) = m and deg(g) = n so that
£(@) = ana™ + -+ a1 + o,
9(2) = bua™ + -+ by + b,
for some coefficients ag,...,am,bo,...,b, € F with a,, # 0 and b, # 0. By definition of
polynomial multiplication we hav
f(2)g(x) = ambyz™t™ + lower degree terms.

Then since a,, # 0 and b, # 0 we have a,,b, # 0 which implies that
deg(fg) = m +n = deg(f) + deg(9).

(b): Consider a polynomial f(z) € Flz| and a constant a € F. If f(z) = (z — a)g(x) for some
polynomial g(x) € Flz| then we must have

fla) = (a —a)g(a) = 0g(a) = 0.
Conversely, let us suppose that f(a) = 0. First we apply long division to obtain a quotient
and remainder ¢(z),r(z) € F[x] such that f(z) = (x — a)q(x) + r(x), where either r(x) = 0
or r(x) has degree strictly less than (z — «v). Since x — « has degree 1 this implies that either
r(z) = 0 or r(x) has degree zero, i.e., is a non-zero constant. In either case we have r(z) = ¢
for some c € F. Now we substitute z = a to obtain

0=fla) = (@ —a)g(a) +c=c,
so that f(x) = (z — a)q(z) as desired. The fact that deg(q) = deg(f) — 1 follows from (a).

(c): Theorem: Any polynomial f(z) € F[z] of degree n > 0 has at most n distinct roots in F.
Proof by Induction: If n = 0 then f(z) = ¢ for some nonzero constant ¢ € F, which implies
that f(x) has no roots, as desired. So let us suppose that n > 1 and assume for induction
that every polynomial of degree n — 1 has at most n — 1 roots in F. If f(x) has no roots then
we are done. Otherwise, we may suppose that f(a) = 0 for some a € F, so from part (b) we
have f(z) = (x — a)g(x) for some g(z) € Flx] of degree n — 1. If § € F is any other root of
f(z) (ie., if f(B) =0 and 5 # «) then substituting gives

f(B)=(B—a)g(B)
0= (3—a)g(B)
0=g(8),
which implies that g is a root of g(x). But g(x) has at most n — 1 roots in F. Therefore f(z)
has at most 1 + (n — 1) = n roots in F O

61t is possible to be more precise about this but I don’t want to.



[Remark: This theorem goes back to Descartes’ Geometry (1631) and is one of the most funda-
mental results in algebra. I'm sure you've seen it before but you may not have seen a proof.]

5. Leibniz’ Mistake. In 1702 Gottfried Leibniz claimed that the polynomial 2 4+ 1 cannot
be factored as a product of smaller polynomials with real coefficients.
(a) Use the polar form to find all of the complex 4th roots of —1.
(b) Use this to factor the polynomial z* + 1 and show that Leibniz was wrong. [Hint:
Group the four roots into complex conjugate pairs.]

[Remark: It follows from Problem 4 that a complex number can have at most four 4th roots
in C. If we can find four distinct complex 4th roots then we will have all of them.]

(a): First note that a := —1 = re? with » = 1 > 0 and § = 7. Note that 1 is the
unique positive 4th root of 1. Thus the “principal” 4th roof of a is o := 1ei?/4 = ¢i™/4 If
w = e2™/% — ¢™i/2 then T claim that the 4th roots of —1 ar

of = e/t = cos(m/4)+ isin(r/4) (1414)/V2,
O/w = 637”;/4 = COS(37‘[‘/4) + ZSln(37T/4) = (_1 + Z)/ﬂa
odw? = e57ri/4 = COS(57T/4) + iSiIl(57T/4) = (—1 - 2)/\/57
dwd = T4 — cos(7Tm/4) +isin(Tr/4) = (1—1)/V2.
Indeed, since (/)" = a and w* = €>™ = 1 we have

(w®) = (/)" (W) =a-1¥ =a  for any integer k.

We have four four distinct 4roots of —1, and hence all of them.

(b): From Descartes’ Theorem we may use these fourth roots to factor the polynomial over
the complex numbers:

- (-1 (-4 -2 (- 13)

We observe that these roots come in complex-conjugate pairs, as predicted by Problem 2(c).
By grouping these pairs and expanding, we obtain a factorization of z* 4+ 1 over the real
numbers

o= () ) )

= (2% = V2z 4+ 1)(2® + V2z + 1).

[Remark: Leibniz (1702) did not find this factorization because he did not have a geometric
understanding of the complex numbers.]

7Geometrically, these four points in the complex plane form a square centered at the origin.
8For any complex number a € C we observe that the polynomial (z — a)(z — a*) = 2° — (. + a*)z + aa*
has real coefficients because a + o* and aa™ are real.



