1. Working with Ring Axioms. Let $(R,+, \cdot, 0,1)$ be a ring ${ }^{1}$ Recall that for any element $a \in R$ there exists a unique element $-a \in R$ such that $a+(-a)=0$.
(a) Show that $0 a=0$. [Hint: Multiply both sides of $0+0=0$ by a.]
(b) Show that $-(-a)=a$. [Hint: Uniqueness.]
(c) Show that $a(-b)=(-a) b=-(a b)$. [Hint: Multiply both sides of $b+(-b)=0$ by a.]
(d) Show that $(-a)(-b)=a b$. [Hint: Combine parts (b) and (c).]
2. Complex Conjugation. Given a complex number $\alpha=a+b i \in \mathbb{C}$ we define the complex conjugate by $\alpha^{*}=a-b i$.
(a) For all $\alpha \in \mathbb{C}$ show that $\alpha^{*}=\alpha$ if and only if $\alpha \in \mathbb{R}$.
(b) For all $\alpha, \beta \in \mathbb{C}$ show that $(\alpha+\beta)^{*}=\alpha^{*}+\beta^{*}$ and $(\alpha \beta)^{*}=\alpha^{*} \beta^{*}$.
(c) If $f(x) \in \mathbb{R}[x]$ is a polynomial with real coefficients, show that the non-real complex roots of f come in conjugate pairs. [Hint: For all $\alpha \in \mathbb{C}$ show that $f(\alpha)^{*}=f\left(\alpha^{*}\right)$.]
3. Absolute Value of Complex Numbers. Given a complex number $\alpha=a+b i \in \mathbb{C}$ we define the absolute value by $|\alpha|=+\sqrt{a^{2}+b^{2}}$.
(a) Show that $\alpha=0$ if and only if $|\alpha|=0$. [Hint: For all $a \in \mathbb{R}$ we have $a^{2} \geq 0$.]
(b) Show that $\alpha \alpha^{*}=|\alpha|^{2}$.
(c) For all $\alpha, \beta \in \mathbb{C}$ show that $|\alpha \beta|=|\alpha||\beta|$. [Hint: Part (b) gives a shortcut.]
(d) For all $\alpha, \beta \in \mathbb{C}$ show that $\alpha \beta=0$ implies $\alpha=0$ or $\beta=0$. [Hint: Use parts (a,c).]
4. Descartes' Factor Theorem. Let \mathbb{F} be a field and let $\mathbb{F}[x]$ be the ring of polynomials

$$
\mathbb{F}[x]=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}: a_{0}, \ldots, a_{n} \in \mathbb{F}, n \geq 0\right\}
$$

If $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ with $a_{n} \neq 0$ then we write $\operatorname{deg}(f)=n$. The zero polynomial does not have a degree.
(a) Show that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ for all nonzero polynomials $f(x), g(x) \in \mathbb{F}[x]$.
(b) Suppose that a nonzero polynomial $f(x) \in \mathbb{F}[x]$ satisfies $f(\alpha)=0$ for some $\alpha \in \mathbb{F}$. In this case prove that we have $f(x)=(x-\alpha) g(x)$ for some polynomial $g(x)$ with $\operatorname{deg}(g)=\operatorname{deg}(f)-1$. [Hint: By long division there exist polynomials $q(x), r(x) \in \mathbb{F}[x]$ with $f(x)=(x-\alpha) q(x)+r(x)$, such that $r(x)$ is a constant.]
(c) Use part (b) to prove that a polynomial $f(x) \in \mathbb{F}[x]$ of degree n has at most n distinct roots in \mathbb{F}. [Hint: If $f(\alpha)=0$ then $f(x)=(x-\alpha) g(x)$ for some polynomial of degree $n-1$. What happens if $f(\beta)=0$ for some $\beta \neq \alpha$? Use induction.]
5. Leibniz' Mistake. In 1702 Gottfried Leibniz claimed that the polynomial $x^{4}+1$ cannot be factored as a product of smaller polynomials with real coefficients.
(a) Use the polar form to find all of the complex 4th roots of -1 .
(b) Use this to factor the polynomial $x^{4}+1$ and show that Leibniz was wrong. [Hint: Group the four roots into complex conjugate pairs.]

[^0]
[^0]: ${ }^{1}$ We always assume that a ring has commutative multiplication.

