1. Working with Ring Axioms. Let $(R, +, \cdot, 0, 1)$ be a ring.¹ Recall that for any element $a \in R$ there exists a unique element $-a \in R$ such that a + (-a) = 0.

- (a) Show that 0a = 0. [Hint: Multiply both sides of 0 + 0 = 0 by a.]
- (b) Show that -(-a) = a. [Hint: Uniqueness.]
- (c) Show that a(-b) = (-a)b = -(ab). [Hint: Multiply both sides of b + (-b) = 0 by a.]
- (d) Show that (-a)(-b) = ab. [Hint: Combine parts (b) and (c).]

2. Complex Conjugation. Given a complex number $\alpha = a + bi \in \mathbb{C}$ we define the complex conjugate by $\alpha^* = a - bi$.

- (a) For all $\alpha \in \mathbb{C}$ show that $\alpha^* = \alpha$ if and only if $\alpha \in \mathbb{R}$.
- (b) For all $\alpha, \beta \in \mathbb{C}$ show that $(\alpha + \beta)^* = \alpha^* + \beta^*$ and $(\alpha\beta)^* = \alpha^*\beta^*$.
- (c) If $f(x) \in \mathbb{R}[x]$ is a polynomial with real coefficients, show that the non-real complex roots of f come in conjugate pairs. [Hint: For all $\alpha \in \mathbb{C}$ show that $f(\alpha)^* = f(\alpha^*)$.]

3. Absolute Value of Complex Numbers. Given a complex number $\alpha = a + bi \in \mathbb{C}$ we define the absolute value by $|\alpha| = +\sqrt{a^2 + b^2}$.

- (a) Show that $\alpha = 0$ if and only if $|\alpha| = 0$. [Hint: For all $a \in \mathbb{R}$ we have $a^2 \ge 0$.]
- (b) Show that $\alpha \alpha^* = |\alpha|^2$.
- (c) For all $\alpha, \beta \in \mathbb{C}$ show that $|\alpha\beta| = |\alpha||\beta|$. [Hint: Part (b) gives a shortcut.]
- (d) For all $\alpha, \beta \in \mathbb{C}$ show that $\alpha\beta = 0$ implies $\alpha = 0$ or $\beta = 0$. [Hint: Use parts (a,c).]
- 4. Descartes' Factor Theorem. Let \mathbb{F} be a field and let $\mathbb{F}[x]$ be the ring of polynomials

 $\mathbb{F}[x] = \{a_0 + a_1x + \dots + a_nx^n : a_0, \dots, a_n \in \mathbb{F}, n \ge 0\}.$

If $f(x) = a_0 + a_1 x + \dots + a_n x^n$ with $a_n \neq 0$ then we write $\deg(f) = n$. The zero polynomial does not have a degree.

- (a) Show that $\deg(fg) = \deg(f) + \deg(g)$ for all nonzero polynomials $f(x), g(x) \in \mathbb{F}[x]$.
- (b) Suppose that a nonzero polynomial $f(x) \in \mathbb{F}[x]$ satisfies $f(\alpha) = 0$ for some $\alpha \in \mathbb{F}$. In this case prove that we have $f(x) = (x - \alpha)g(x)$ for some polynomial g(x) with $\deg(g) = \deg(f) - 1$. [Hint: By long division there exist polynomials $q(x), r(x) \in \mathbb{F}[x]$ with $f(x) = (x - \alpha)q(x) + r(x)$, such that r(x) is a constant.]
- (c) Use part (b) to prove that a polynomial $f(x) \in \mathbb{F}[x]$ of degree *n* has **at most** *n* **distinct roots in** \mathbb{F} . [Hint: If $f(\alpha) = 0$ then $f(x) = (x \alpha)g(x)$ for some polynomial of degree n 1. What happens if $f(\beta) = 0$ for some $\beta \neq \alpha$? Use induction.]

5. Leibniz' Mistake. In 1702 Gottfried Leibniz claimed that the polynomial $x^4 + 1$ cannot be factored as a product of smaller polynomials with real coefficients.

- (a) Use the polar form to find all of the complex 4th roots of -1.
- (b) Use this to factor the polynomial $x^4 + 1$ and show that Leibniz was wrong. [Hint: Group the four roots into complex conjugate pairs.]

¹We always assume that a ring has commutative multiplication.