
Math 561/661 Fall 2021
Exam 3 Wed Dec 8

Problem 1. Chinese Remainder Theorem. Let m,n ≥ 1 and consider the function

ϕ : Z/mnZ → Z/mZ× Z/nZ
a mod mn 7→ (a mod m, a mod n).

This is well defined because a ≡ a′ mod mn implies that a ≡ a′ mod m and a ≡ a′ mod n.

(a) If gcd(m,n) = 1, prove for all c ∈ Z that m|c and n|c imply (mn)|c.

If gcd(m,n) = 1 then there exist x, y ∈ Z satisfying mx + ny = 1. Now suppose
that m|c and n|c for some c ∈ Z. By definition this means that mk = c and n` = c
for some k, ` ∈ Z. It follows that

mx+ ny = 1

(mx+ ny)c = c

mxc+ nyc = c

mx(n`) + ny(mk) = c

mn(x`+ yk) = c,

and hence (mn)|c.

(b) If gcd(m,n) = 1, use part (a) to prove that ϕ is injective.

Suppose that gcd(m,n) = 1. Our goal is to show for all a, a′ ∈ Z/mnZ that
φ(a) = φ(a′) in Z/mZ× Z/nZ implies a = a′ in Z/mnZ. In other words, we must
show for all a, a′ ∈ Z that a ≡ a′ mod m and a ≡ a′ mod n imply a ≡ a′ mod mn.

So let us suppose that a ≡ a′ mod m and a ≡ a′ mod n. By definition this means
that m|(a − a′) and n|(a − a′). Then since gcd(m,n) = 1 it follows from part (a)
that (mn)|(a− a′) and hence a ≡ a′ mod mn, as desired.

(c) Since the domain and codomain have the same size, it follows from (b) that there
exists an inverse function ϕ−1. If mx+ ny = 1, prove that

ϕ−1(a mod m, b mod n) = any + bmx mod mn.

It suffices to show that ϕ(any + bmx) = (a, b), i.e., that any + bmx ≡ a mod m
and any + bmx ≡ b mod n. For the first statement, note that m ≡ 0 mod m and
ny = 1−mx ≡ 1 mod m, so that

any + bmx ≡ any + 0 ≡ a · 1 ≡ a mod m.

The second statement follows by symmetry. Or we can give the details: Since n ≡ 0
mod n and m = 1− ny ≡ 1 mod n we have

any + bmx ≡ 0 + bmx ≡ b · 1 ≡ b mod n.



(d) Use part (c) to find all c ∈ Z such that c ≡ 3 mod 5 and c ≡ 4 mod 11.

From the definition of ϕ we have c ≡ a mod m and c ≡ b mod n if and only if
ϕ(c) = (a, b). If gcd(m,n) = 1 then since ϕ is invertible we have ϕ(c) = (a, b) if
and only if c = ϕ−1(a, b), i.e., if and only if c ≡ any + bmx mod mn.

In our case we have (m,n) = (5, 11) and (a, b) = (3, 4). Then by inspection we
have 5(−2) + 11(1) = 1, so we may take (x, y) = (−2, 1). Finally, we have

c ≡ any + bmx

≡ 3 · 11(1) + 4 · 5(−2)

≡ 33− 40

≡ −7

≡ 48 mod 55.

Problem 2. Fractions. Let R be an integral domain. A “fraction” is an abstract symbol
a/b with a, b ∈ R and b 6= 0.

(a) State the definition of a/b = a′/b′.

a

b
=
a′

b′
⇐⇒ ab′ = a′b.

(b) State the definition of a/b+ c/d.

a

b
+
c

d
=
ad+ bc

bd
.

(c) If a/b = a′/b′ and c/d = c′/d′, prove that a/b+ c/d = a′/b′ + c′/d′.

By assumption we have ab′ = a′b and cd′ = c′d, which implies that

(ad+ bc)(b′d′) = (ad)(b′d′) + (bc)(b′d′)

= (ab′)(dd′) + (cd′)(bb′)

= (a′b)(dd′) + (c′d)(bb′)

= (a′d′)(bd) + (b′c′)(bd)

= (a′d′ + b′c′)(bd).

Problem 3. FTA Stuff. Let f(x) = g(x)q(x)+r(x) for some polynomials f, g, q, r ∈ C[x]
with g(x) 6= 0, such that r(x) = 0 or deg(r) < deg(g).

(a) If f(x) and g(x) have real coefficients, prove that q(x) and r(x) have real coefficients.
[Hint: Divide f(x) by g(x) in the ring R[x].]

Since f(x), g(x) ∈ R[x] and g(x) 6= 0, the Division Theorem says that there exist
q′(x), r′(x) ∈ R[x] satisfying f(x) = g(x)q′(x) + r′(x) with r′(x) = 0 or deg(r′) <
deg(g). Then it follows from the uniqueness of quotient and remainder in the ring
C[x] that q(x) = q′(x) ∈ R[x] and r(x) = r′(x) ∈ R.



Optional Details: We have gq + r = gq′ + r′. If r = r′ = 0 then gq = gq′ implies
g(q − q′) = 0. Then since g 6= 0 we have q − q′ = 0, hence q = q′. So let us assume
that r, r′ are not both zero. Without loss of generality, let’s say that r 6= 0. Now
assume for contradiction that r − r 6= 0, which since g(q − q′) = r − r′ implies
q − q′ 6= 0. But then we have

deg(g) ≤ deg(g) + deg(q − q′) = deg(g(q − q′)) = deg(r − r′) ≤ deg(r),

which contradicts the fact that deg(r) < deg(g). We have shown that g(q − q′) =
r − r′ = 0, which since g 6= 0 also implies that q − q′ = 0. In other words, we have
shown that q = q′ and r = r′.

(b) If f(x) ∈ R[x] and f(α) = 0 for some α ∈ C \ R, use Descartes’ Theorem and part
(a) to prove that f(x) = (x2 − (α+ α∗)x+ αα∗)q(x) for some q(x) ∈ R[x].

First we apply Descartes’ Theorem in the ring C[x] to obtain

f(x) = (x− α)g(x)

for some g(x) ∈ C[x]. Since f(x) has real coefficients we also have f(α∗) = 0, hence

0 = f(α∗) = (α∗ − α)g(α∗).

Since α∗ − α 6= 0 (because α 6∈ R) this implies that g(α∗) and then applying
Descartes’ Theorem again gives

g(x) = (x− α∗)h(x)

for some h(x) ∈ C[x]. Putting these together gives

f(x) = (x− α)g(x)

= (x− α)(x− α∗)h(x)

= (x2 − (α+ α∗)x+ αα∗)h(x).

Finally, since α+ α∗ ∈ R and αα∗ ∈ R, part (a) tells us that h(x) ∈ R[x].


