Math 561/661 Fall 2021
Exam 3 Wed Dec 8

Problem 1. Chinese Remainder Theorem. Let m,n > 1 and consider the function
v: Z/mnZ — Z]mZ x L/nZ

a mod mn + (a mod m,a mod n).

This is well defined because a = a’ mod mn implies that a = o’ mod m and a = @’ mod n.

(a) If ged(m,n) = 1, prove for all ¢ € Z that m|c and n|c imply (mn)|c.

If ged(m,n) = 1 then there exist z,y € Z satisfying ma + ny = 1. Now suppose
that m/|c and n|c for some ¢ € Z. By definition this means that mk = c and nl = ¢
for some k, /¢ € Z. It follows that

ma +ny =1

(mz +ny)c=c

mxc + nyc = c
mx(nl) + ny(mk) = ¢
mn(xl + yk) = ¢,

and hence (mn)]c.
(b) If ged(m,n) = 1, use part (a) to prove that ¢ is injective.

Suppose that ged(m,n) = 1. Our goal is to show for all a,a’ € Z/mnZ that
¢(a) = ¢(d’) in Z/mZ x Z/nZ implies a = a’ in Z/mnZ. In other words, we must
show for all a,d’ € Z that a = @’ mod m and a = ¢’ mod n imply a = a’ mod mn.

So let us suppose that a = a’ mod m and a = o’ mod n. By definition this means
that m|(a — a’) and n|(a — @’). Then since ged(m,n) = 1 it follows from part (a)
that (mn)|(a — a’) and hence a = @’ mod mn, as desired.

(c) Since the domain and codomain have the same size, it follows from (b) that there
exists an inverse function ¢ ~1. If mz 4+ ny = 1, prove that

¢ 1(a mod m,b mod n) = any + bma mod mn.

It suffices to show that ¢(any + bmx) = (a,b), i.e., that any + bmx = a mod m
and any 4+ bmx = b mod n. For the first statement, note that m = 0 mod m and
ny =1 —mz =1 mod m, so that

any +bmxr =any+0=a-1=amod m.

The second statement follows by symmetry. Or we can give the details: Since n = 0
mod n and m =1 —ny =1 mod n we have

any +bmx =0+ bmx=b-1=b mod n.



(d) Use part (c) to find all ¢ € Z such that ¢ =3 mod 5 and ¢ =4 mod 11.

From the definition of ¢ we have ¢ = @ mod m and ¢ = b mod n if and only if
o(c) = (a,b). If gecd(m,n) = 1 then since ¢ is invertible we have ¢(c) = (a,b) if
and only if ¢ = p~1(a, b), i.e., if and only if ¢ = any + bmax mod mn.

b) = (3,4). Then by inspection we

In our case we have (m,n) = (5,11) and (a,b) =
(—2,1). Finally, we have

have 5(—2) + 11(1) = 1, so we may take (z,y)
c=any+bmx
=3.11(1) +4-5(—2)

=33—-40
= -7
= 48 mod 55.

Problem 2. Fractions. Let R be an integral domain. A “fraction” is an abstract symbol
a/b with a,b € R and b # 0.

(a) State the definition of a/b = d'/V'.

(b) State the definition of a/b+ ¢/d.

_ad+bc

LC
d  bd

¢
b

(c) If a/b=d'/b and ¢/d = ¢'/d’, prove that a/b+c/d=d /b + ' /d.

By assumption we have ab’ = a’b and cd’ = ¢/d, which implies that
(ad + be)(V'd) = (ad)(b'd’) + (bc) (V' d)

= (ab')(dd') + (cd')(bb")

= (a'b)(dd’) + (c'd)(bb")

= (d'd’)(bd) + (V') (bd)

= (d'd +b')(bd).

Problem 3. FTA Stuff. Let f(x) = g(x)q(x)+r(x) for some polynomials f, g, q,r € Clx]
with g(x) # 0, such that r(z) = 0 or deg(r) < deg(g).

(a) If f(z) and g(x) have real coefficients, prove that g(x) and r(x) have real coefficients.
[Hint: Divide f(z) by g(x) in the ring R[z].]

Since f(x),g(x) € R[z] and g(z) # 0, the Division Theorem says that there exist
¢ (x),r"(x) € Rlz] satisfying f(z) = g(z)q (x) + r'(z) with 7'(z) = 0 or deg(r’) <

deg(g). Then it follows from the uniqueness of quotient and remainder in the ring

C[z] that q(z) = ¢'(z) € R[z] and r(z) = r'(z) € R.



Optional Details: We have gq +1r = g¢' +r'. If r = v’ = 0 then gq = gq’ implies
g9(q—¢') = 0. Then since g # 0 we have ¢ — ¢’ = 0, hence ¢ = ¢’. So let us assume
that 7,7’ are not both zero. Without loss of generality, let’s say that r # 0. Now
assume for contradiction that r — r # 0, which since g(q — ¢’) = r — ' implies
q — ¢ # 0. But then we have

deg(g) < deg(g) + deg(q — ¢') = deg(g(q — ¢)) = deg(r — 1) < deg(r),
which contradicts the fact that deg(r) < deg(g). We have shown that g(¢ — ¢') =

r — 1’ = 0, which since g # 0 also implies that ¢ — ¢’ = 0. In other words, we have
shown that ¢ = ¢/ and r = r’.

If f(x) € Rlz] and f(a) = 0 for some o € C\ R, use Descartes’ Theorem and part
(a) to prove that f(x) = (22 — (a + a*)x + aa*)q(x) for some ¢(z) € R[z].

First we apply Descartes’ Theorem in the ring C[z| to obtain
f(z) = (z = a)g(z)
for some g(x) € C[z]. Since f(x) has real coefficients we also have f(a*) = 0, hence
0= f(a®) = (" = a)g(a”).

Since a* — a # 0 (because a ¢ R) this implies that g(a*) and then applying
Descartes” Theorem again gives

g9(x) = (z — a®)h(x)
for some h(z) € C[z]. Putting these together gives
f(z) = (z = a)g(x)
= (z — a)(z — a")h(x)
= (2% — (a4 o)z + aa®)h(z).
Finally, since o + o* € R and aa™ € R, part (a) tells us that h(z) € R[z].



