Problem 1. Chinese Remainder Theorem. Let $m, n \ge 1$ and consider the function

 $\varphi: \quad \mathbb{Z}/mn\mathbb{Z} \quad \to \quad \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ $a \mod mn \quad \mapsto \quad (a \mod m, a \mod n).$

This is well defined because $a \equiv a' \mod mn$ implies that $a \equiv a' \mod m$ and $a \equiv a' \mod n$.

(a) If gcd(m, n) = 1, prove for all $c \in \mathbb{Z}$ that m|c and n|c imply (mn)|c.

If gcd(m, n) = 1 then there exist $x, y \in \mathbb{Z}$ satisfying mx + ny = 1. Now suppose that m|c and n|c for some $c \in \mathbb{Z}$. By definition this means that mk = c and $n\ell = c$ for some $k, \ell \in \mathbb{Z}$. It follows that

$$mx + ny = 1$$
$$(mx + ny)c = c$$
$$mxc + nyc = c$$
$$mx(n\ell) + ny(mk) = c$$
$$mn(x\ell + yk) = c,$$

and hence (mn)|c.

(b) If gcd(m, n) = 1, use part (a) to prove that φ is injective.

Suppose that gcd(m, n) = 1. Our goal is to show for all $a, a' \in \mathbb{Z}/mn\mathbb{Z}$ that $\phi(a) = \phi(a')$ in $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ implies a = a' in $\mathbb{Z}/mn\mathbb{Z}$. In other words, we must show for all $a, a' \in \mathbb{Z}$ that $a \equiv a' \mod m$ and $a \equiv a' \mod n$ imply $a \equiv a' \mod mn$.

So let us suppose that $a \equiv a' \mod m$ and $a \equiv a' \mod n$. By definition this means that m|(a - a') and n|(a - a'). Then since gcd(m, n) = 1 it follows from part (a) that (mn)|(a - a') and hence $a \equiv a' \mod mn$, as desired.

(c) Since the domain and codomain have the same size, it follows from (b) that there exists an inverse function φ^{-1} . If mx + ny = 1, prove that

 $\varphi^{-1}(a \mod m, b \mod n) = any + bmx \mod mn.$

It suffices to show that $\varphi(any + bmx) = (a, b)$, i.e., that $any + bmx \equiv a \mod m$ and $any + bmx \equiv b \mod n$. For the first statement, note that $m \equiv 0 \mod m$ and $ny = 1 - mx \equiv 1 \mod m$, so that

$$any + bmx \equiv any + 0 \equiv a \cdot 1 \equiv a \mod m.$$

The second statement follows by symmetry. Or we can give the details: Since $n \equiv 0 \mod n$ and $m = 1 - ny \equiv 1 \mod n$ we have

$$any + bmx \equiv 0 + bmx \equiv b \cdot 1 \equiv b \mod n.$$

(d) Use part (c) to find all $c \in \mathbb{Z}$ such that $c \equiv 3 \mod 5$ and $c \equiv 4 \mod 11$.

From the definition of φ we have $c \equiv a \mod m$ and $c \equiv b \mod n$ if and only if $\varphi(c) = (a, b)$. If gcd(m, n) = 1 then since φ is invertible we have $\varphi(c) = (a, b)$ if and only if $c = \varphi^{-1}(a, b)$, i.e., if and only if $c \equiv any + bmx \mod mn$.

In our case we have (m,n) = (5,11) and (a,b) = (3,4). Then by inspection we have 5(-2) + 11(1) = 1, so we may take (x,y) = (-2,1). Finally, we have

$$c \equiv any + bmx$$

$$\equiv 3 \cdot 11(1) + 4 \cdot 5(-2)$$

$$\equiv 33 - 40$$

$$\equiv -7$$

$$\equiv 48 \mod 55.$$

Problem 2. Fractions. Let *R* be an integral domain. A "fraction" is an abstract symbol a/b with $a, b \in R$ and $b \neq 0$.

(a) State the definition of a/b = a'/b'.

$$\frac{a}{b} = \frac{a'}{b'} \quad \Longleftrightarrow \quad ab' = a'b.$$

(b) State the definition of a/b + c/d.

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

(c) If a/b = a'/b' and c/d = c'/d', prove that a/b + c/d = a'/b' + c'/d'.

By assumption we have ab' = a'b and cd' = c'd, which implies that

$$(ad + bc)(b'd') = (ad)(b'd') + (bc)(b'd')$$

= $(ab')(dd') + (cd')(bb')$
= $(a'b)(dd') + (c'd)(bb')$
= $(a'd')(bd) + (b'c')(bd)$
= $(a'd' + b'c')(bd).$

Problem 3. FTA Stuff. Let f(x) = g(x)q(x) + r(x) for some polynomials $f, g, q, r \in \mathbb{C}[x]$ with $g(x) \neq 0$, such that r(x) = 0 or $\deg(r) < \deg(g)$.

(a) If f(x) and g(x) have real coefficients, prove that q(x) and r(x) have real coefficients. [Hint: Divide f(x) by g(x) in the ring $\mathbb{R}[x]$.]

Since $f(x), g(x) \in \mathbb{R}[x]$ and $g(x) \neq 0$, the Division Theorem says that there exist $q'(x), r'(x) \in \mathbb{R}[x]$ satisfying f(x) = g(x)q'(x) + r'(x) with r'(x) = 0 or $\deg(r') < \deg(g)$. Then it follows from the **uniqueness** of quotient and remainder in the ring $\mathbb{C}[x]$ that $q(x) = q'(x) \in \mathbb{R}[x]$ and $r(x) = r'(x) \in \mathbb{R}$.

Optional Details: We have gq + r = gq' + r'. If r = r' = 0 then gq = gq' implies g(q - q') = 0. Then since $g \neq 0$ we have q - q' = 0, hence q = q'. So let us assume that r, r' are not both zero. Without loss of generality, let's say that $r \neq 0$. Now assume for contradiction that $r - r \neq 0$, which since g(q - q') = r - r' implies $q - q' \neq 0$. But then we have

 $\deg(g) \le \deg(g) + \deg(q - q') = \deg(g(q - q')) = \deg(r - r') \le \deg(r),$

which contradicts the fact that $\deg(r) < \deg(g)$. We have shown that g(q - q') = r - r' = 0, which since $g \neq 0$ also implies that q - q' = 0. In other words, we have shown that q = q' and r = r'.

(b) If $f(x) \in \mathbb{R}[x]$ and $f(\alpha) = 0$ for some $\alpha \in \mathbb{C} \setminus \mathbb{R}$, use Descartes' Theorem and part (a) to prove that $f(x) = (x^2 - (\alpha + \alpha^*)x + \alpha\alpha^*)q(x)$ for some $q(x) \in \mathbb{R}[x]$.

First we apply Descartes' Theorem in the ring $\mathbb{C}[x]$ to obtain

$$f(x) = (x - \alpha)g(x)$$

for some $g(x) \in \mathbb{C}[x]$. Since f(x) has real coefficients we also have $f(\alpha^*) = 0$, hence $0 = f(\alpha^*) = (\alpha^* - \alpha)g(\alpha^*).$

Since $\alpha^* - \alpha \neq 0$ (because $\alpha \notin \mathbb{R}$) this implies that $g(\alpha^*)$ and then applying Descartes' Theorem again gives

$$g(x) = (x - \alpha^*)h(x)$$

for some $h(x) \in \mathbb{C}[x]$. Putting these together gives

$$f(x) = (x - \alpha)g(x)$$

= $(x - \alpha)(x - \alpha^*)h(x)$
= $(x^2 - (\alpha + \alpha^*)x + \alpha\alpha^*)h(x)$.

Finally, since $\alpha + \alpha^* \in \mathbb{R}$ and $\alpha \alpha^* \in \mathbb{R}$, part (a) tells us that $h(x) \in \mathbb{R}[x]$.