Problem 1. Chinese Remainder Theorem. Let $m, n \geq 1$ and consider the function

$$
\begin{aligned}
\varphi: & \mathbb{Z} / m n \mathbb{Z}
\end{aligned} \rightarrow_{\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}}^{a \bmod m n} \begin{aligned}
& \mapsto \bmod m, a \bmod n) .
\end{aligned}
$$

This is well defined because $a \equiv a^{\prime} \bmod m n$ implies that $a \equiv a^{\prime} \bmod m$ and $a \equiv a^{\prime} \bmod n$.
(a) If $\operatorname{gcd}(m, n)=1$, prove for all $c \in \mathbb{Z}$ that $m \mid c$ and $n \mid c$ imply $(m n) \mid c$.

If $\operatorname{gcd}(m, n)=1$ then there exist $x, y \in \mathbb{Z}$ satisfying $m x+n y=1$. Now suppose that $m \mid c$ and $n \mid c$ for some $c \in \mathbb{Z}$. By definition this means that $m k=c$ and $n \ell=c$ for some $k, \ell \in \mathbb{Z}$. It follows that

$$
\begin{aligned}
m x+n y & =1 \\
(m x+n y) c & =c \\
m x c+n y c & =c \\
m x(n \ell)+n y(m k) & =c \\
m n(x \ell+y k) & =c,
\end{aligned}
$$

and hence $(m n) \mid c$.
(b) If $\operatorname{gcd}(m, n)=1$, use part (a) to prove that φ is injective.

Suppose that $\operatorname{gcd}(m, n)=1$. Our goal is to show for all $a, a^{\prime} \in \mathbb{Z} / m n \mathbb{Z}$ that $\phi(a)=\phi\left(a^{\prime}\right)$ in $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ implies $a=a^{\prime}$ in $\mathbb{Z} / m n \mathbb{Z}$. In other words, we must show for all $a, a^{\prime} \in \mathbb{Z}$ that $a \equiv a^{\prime} \bmod m$ and $a \equiv a^{\prime} \bmod n \operatorname{imply} a \equiv a^{\prime} \bmod m n$.

So let us suppose that $a \equiv a^{\prime} \bmod m$ and $a \equiv a^{\prime} \bmod n$. By definition this means that $m \mid\left(a-a^{\prime}\right)$ and $n \mid\left(a-a^{\prime}\right)$. Then since $\operatorname{gcd}(m, n)=1$ it follows from part (a) that $(m n) \mid\left(a-a^{\prime}\right)$ and hence $a \equiv a^{\prime} \bmod m n$, as desired.
(c) Since the domain and codomain have the same size, it follows from (b) that there exists an inverse function φ^{-1}. If $m x+n y=1$, prove that

$$
\varphi^{-1}(a \bmod m, b \bmod n)=a n y+b m x \bmod m n
$$

It suffices to show that $\varphi(a n y+b m x)=(a, b)$, i.e., that $a n y+b m x \equiv a \bmod m$ and $a n y+b m x \equiv b \bmod n$. For the first statement, note that $m \equiv 0 \bmod m$ and $n y=1-m x \equiv 1 \bmod m$, so that

$$
a n y+b m x \equiv a n y+0 \equiv a \cdot 1 \equiv a \bmod m .
$$

The second statement follows by symmetry. Or we can give the details: Since $n \equiv 0$ $\bmod n$ and $m=1-n y \equiv 1 \bmod n$ we have

$$
a n y+b m x \equiv 0+b m x \equiv b \cdot 1 \equiv b \bmod n
$$

(d) Use part (c) to find all $c \in \mathbb{Z}$ such that $c \equiv 3 \bmod 5$ and $c \equiv 4 \bmod 11$.

From the definition of φ we have $c \equiv a \bmod m$ and $c \equiv b \bmod n$ if and only if $\varphi(c)=(a, b)$. If $\operatorname{gcd}(m, n)=1$ then since φ is invertible we have $\varphi(c)=(a, b)$ if and only if $c=\varphi^{-1}(a, b)$, i.e., if and only if $c \equiv a n y+b m x \bmod m n$.

In our case we have $(m, n)=(5,11)$ and $(a, b)=(3,4)$. Then by inspection we have $5(-2)+11(1)=1$, so we may take $(x, y)=(-2,1)$. Finally, we have

$$
\begin{aligned}
c & \equiv a n y+b m x \\
& \equiv 3 \cdot 11(1)+4 \cdot 5(-2) \\
& \equiv 33-40 \\
& \equiv-7 \\
& \equiv 48 \bmod 55 .
\end{aligned}
$$

Problem 2. Fractions. Let R be an integral domain. A "fraction" is an abstract symbol a / b with $a, b \in R$ and $b \neq 0$.
(a) State the definition of $a / b=a^{\prime} / b^{\prime}$.

$$
\frac{a}{b}=\frac{a^{\prime}}{b^{\prime}} \quad \Longleftrightarrow \quad a b^{\prime}=a^{\prime} b
$$

(b) State the definition of $a / b+c / d$.

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

(c) If $a / b=a^{\prime} / b^{\prime}$ and $c / d=c^{\prime} / d^{\prime}$, prove that $a / b+c / d=a^{\prime} / b^{\prime}+c^{\prime} / d^{\prime}$.

By assumption we have $a b^{\prime}=a^{\prime} b$ and $c d^{\prime}=c^{\prime} d$, which implies that

$$
\begin{aligned}
(a d+b c)\left(b^{\prime} d^{\prime}\right) & =(a d)\left(b^{\prime} d^{\prime}\right)+(b c)\left(b^{\prime} d^{\prime}\right) \\
& =\left(a b^{\prime}\right)\left(d d^{\prime}\right)+\left(c d^{\prime}\right)\left(b b^{\prime}\right) \\
& =\left(a^{\prime} b\right)\left(d d^{\prime}\right)+\left(c^{\prime} d\right)\left(b b^{\prime}\right) \\
& =\left(a^{\prime} d^{\prime}\right)(b d)+\left(b^{\prime} c^{\prime}\right)(b d) \\
& =\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right)(b d) .
\end{aligned}
$$

Problem 3. FTA Stuff. Let $f(x)=g(x) q(x)+r(x)$ for some polynomials $f, g, q, r \in \mathbb{C}[x]$ with $g(x) \neq 0$, such that $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$.
(a) If $f(x)$ and $g(x)$ have real coefficients, prove that $q(x)$ and $r(x)$ have real coefficients. [Hint: Divide $f(x)$ by $g(x)$ in the ring $\mathbb{R}[x]$.]

Since $f(x), g(x) \in \mathbb{R}[x]$ and $g(x) \neq 0$, the Division Theorem says that there exist $q^{\prime}(x), r^{\prime}(x) \in \mathbb{R}[x]$ satisfying $f(x)=g(x) q^{\prime}(x)+r^{\prime}(x)$ with $r^{\prime}(x)=0$ or $\operatorname{deg}\left(r^{\prime}\right)<$ $\operatorname{deg}(g)$. Then it follows from the uniqueness of quotient and remainder in the ring $\mathbb{C}[x]$ that $q(x)=q^{\prime}(x) \in \mathbb{R}[x]$ and $r(x)=r^{\prime}(x) \in \mathbb{R}$.

Optional Details: We have $g q+r=g q^{\prime}+r^{\prime}$. If $r=r^{\prime}=0$ then $g q=g q^{\prime}$ implies $g\left(q-q^{\prime}\right)=0$. Then since $g \neq 0$ we have $q-q^{\prime}=0$, hence $q=q^{\prime}$. So let us assume that r, r^{\prime} are not both zero. Without loss of generality, let's say that $r \neq 0$. Now assume for contradiction that $r-r \neq 0$, which since $g\left(q-q^{\prime}\right)=r-r^{\prime}$ implies $q-q^{\prime} \neq 0$. But then we have

$$
\operatorname{deg}(g) \leq \operatorname{deg}(g)+\operatorname{deg}\left(q-q^{\prime}\right)=\operatorname{deg}\left(g\left(q-q^{\prime}\right)\right)=\operatorname{deg}\left(r-r^{\prime}\right) \leq \operatorname{deg}(r)
$$

which contradicts the fact that $\operatorname{deg}(r)<\operatorname{deg}(g)$. We have shown that $g\left(q-q^{\prime}\right)=$ $r-r^{\prime}=0$, which since $g \neq 0$ also implies that $q-q^{\prime}=0$. In other words, we have shown that $q=q^{\prime}$ and $r=r^{\prime}$.
(b) If $f(x) \in \mathbb{R}[x]$ and $f(\alpha)=0$ for some $\alpha \in \mathbb{C} \backslash \mathbb{R}$, use Descartes' Theorem and part (a) to prove that $f(x)=\left(x^{2}-\left(\alpha+\alpha^{*}\right) x+\alpha \alpha^{*}\right) q(x)$ for some $q(x) \in \mathbb{R}[x]$.

First we apply Descartes' Theorem in the ring $\mathbb{C}[x]$ to obtain

$$
f(x)=(x-\alpha) g(x)
$$

for some $g(x) \in \mathbb{C}[x]$. Since $f(x)$ has real coefficients we also have $f\left(\alpha^{*}\right)=0$, hence

$$
0=f\left(\alpha^{*}\right)=\left(\alpha^{*}-\alpha\right) g\left(\alpha^{*}\right) .
$$

Since $\alpha^{*}-\alpha \neq 0$ (because $\alpha \notin \mathbb{R}$) this implies that $g\left(\alpha^{*}\right)$ and then applying Descartes' Theorem again gives

$$
g(x)=\left(x-\alpha^{*}\right) h(x)
$$

for some $h(x) \in \mathbb{C}[x]$. Putting these together gives

$$
\begin{aligned}
f(x) & =(x-\alpha) g(x) \\
& =(x-\alpha)\left(x-\alpha^{*}\right) h(x) \\
& =\left(x^{2}-\left(\alpha+\alpha^{*}\right) x+\alpha \alpha^{*}\right) h(x) .
\end{aligned}
$$

Finally, since $\alpha+\alpha^{*} \in \mathbb{R}$ and $\alpha \alpha^{*} \in \mathbb{R}$, part (a) tells us that $h(x) \in \mathbb{R}[x]$.

