Problem 1. Divisibility. Let $(R,+, \cdot, 0,1)$ be a ring.
(a) Given elements $a, b \in R$, state the definition of the symbol " $a \mid b$ ".

$$
a \mid b \quad \Longleftrightarrow \quad \exists k \in R, a k=b
$$

(b) If $a \mid b$ and $a \mid c$ for some $a, b, c \in R$, prove that $a \mid(b x+c y)$ for all $x, y \in R$.

Suppose that $a \mid b$ and $a \mid c$, so there exist elements $k, \ell \in R$ satisfying $a k=b$ and $b \ell=c$. It follows that $c=(a k) \ell=a(k \ell)$ and hence $a \mid c$.
(c) Given $a, b \in R$ we let $\operatorname{Div}(a, b)=\{d \in R: d \mid a$ and $d \mid b\}$ denote the set of common divisors. If $a=b x+c$ for some $a, b, c, x \in R$, prove that $\operatorname{Div}(a, b)=\operatorname{Div}(b, c)$.

First suppose that $d \in \operatorname{Div}(a, b)$, which means that $d k=a$ and $d \ell=b$ for some elements $k, \ell \in R$. Since $a=b x+c$ this implies that $c=a-b x=d k x-d \ell=d(k x-\ell)$ and hence $d \mid c$. Since we already have $d \mid b$ this implies that $d \in \operatorname{Div}(b, c)$. Conversely, suppose that $d \in \operatorname{Div}(b, c)$, which implies that $d k=b$ and $d \ell=c$ for some elements $k, \ell \in R$. Since $a=b x+c$ this implies that $a=b x+c=d k x+d \ell=d(k x+\ell)$ and hence $d \mid a$. Since we already have $d \mid b$ this implies that $d \in \operatorname{Div}(a, b)$.
(d) Assume that R is an integral domain. If nonzero elements $a, b \in R$ satisfy $a \mid b$ and $b \mid a$, prove that $a u=b$ for some element $u \in R$ satisfying $u \mid 1$.

Suppose that nonzero elements $a, b \in R$ satisfy $a \mid b$ and $b \mid a$. This means that $a k=b$ and $b \ell=a$ for some elements $k, \ell \in R$, so that

$$
\begin{aligned}
a & =b \ell \\
a & =a k \ell \\
a(1-k \ell) & =0 .
\end{aligned}
$$

Since $a \neq 0$ and since R is a domain, this implies that $1-k \ell=0$ and hence $k \ell=1$. Taking $u=k$ gives $a u=b$ for some element $u \in R$ satisfying $u \mid 1$.
(e) Suppose that we have $a x+b y=1$ for some $a, b, x, y \in R$. If $a \neq 0$ and $a \mid(b c)$ for some $c \in R$, prove that we must have $a \mid c$.

Since $a \mid(b c)$ we can write $b c=a k$ for some element $k \in R$. Then we have

$$
\begin{aligned}
a x+b y & =1 \\
(a x+b y) c & =c \\
a c x+b c y & =c \\
a c x+a k y & =c \\
a(c x+k y) & =c,
\end{aligned}
$$

and hence $a \mid c$.

Problem 2. Modular Arithmetic. Fix an integer $n \geq 1$. Then for all integers $a, b \in \mathbb{Z}$ we say $a \equiv b \bmod n$ to mean that $n \mid(a-b)$.
(a) If $a \equiv b \bmod n$ and $b \equiv c \bmod n$, prove that $a \equiv c \bmod n$.

Suppose that $a \equiv b \bmod n$ and $b \equiv c \bmod n$, so that $a-b=n k$ and $b-c=n \ell$ for some integers $k, \ell \in \mathbb{Z}$. It follows that

$$
a-c=(a-b)+(b-c)=n k+n \ell=n(k+\ell),
$$

and hence $a \equiv c \bmod n$.
(b) If $a \equiv a^{\prime} \bmod n$ and $b \equiv b^{\prime} \bmod n$, prove that $a b \equiv a^{\prime} b^{\prime} \bmod n$.

Suppose that $a \equiv a^{\prime} \bmod n$ and $b \equiv b^{\prime} \bmod n$, so that $a-a^{\prime}=n k$ and $b-b^{\prime}=n \ell$ for some integers $k, \ell \in \mathbb{Z}$. It follows that

$$
\begin{aligned}
a b-a^{\prime} b^{\prime} & =a b-a b^{\prime}+a b^{\prime}-a^{\prime} b^{\prime} \\
& =a\left(b-b^{\prime}\right)+\left(a-a^{\prime}\right) b^{\prime} \\
& =a n \ell+n k b^{\prime} \\
& =n\left(a \ell+k b^{\prime}\right),
\end{aligned}
$$

and hence $a b \equiv a^{\prime} b^{\prime} \bmod n$.
(c) If $a b \equiv 1 \bmod n$ for some $a, b \in \mathbb{Z}$, prove that $\operatorname{gcd}(a, n)=1$.

Suppose that $a b \equiv 1 \bmod n$, so that $a b-1=n k$ for some integer $k \in \mathbb{Z}$. In order to prove that $\operatorname{gcd}(a, n)=1$ we will prove that the only common divisors of a and n are ± 1. So let d be any common divisor of a and n. This implies that $d \ell=a$ and $d m=n$ for some integers $\ell, m \in \mathbb{Z}$ and hence

$$
1=a b-n k=d \ell b-d m k=d(\ell b-m k) .
$$

Since $d \mid 1$ we conclude that $d= \pm 1$ as desired ${ }^{1}$
(d) Use the Vector Euclidean Algorithm to find some $x \in \mathbb{Z}$ satisfying $11 x \equiv 1 \bmod 29$.

Consider the set of triples $(x, y, z) \in \mathbb{Z}^{3}$ such that $11 x+29 y=z$. We perform \mathbb{Z} linear combinations on the triples $(0,1,29)$ and $(1,0,11)$ until we reduce the third coordinate to 1 :

x	y	z
0	1	29
1	0	11
-2	1	7
3	-1	4
-5	2	3
8	-3	1

It follows that $11(8)+29(-3)=1$ and hence $11 \cdot 8 \equiv 1 \bmod 29$.

[^0]
[^0]: ${ }^{1}$ Short proof: $d \mid 1$ implies $d \neq 0$ and $|d| \leq|1|=1$.

