Math 561/661 Exam 2
Fall 2021 Fri Nov 5

Problem 1. Divisibility. Let (R,+,-,0,1) be a ring.

(a)

(b)

Given elements a,b € R, state the definition of the symbol “a|b”.

alpb < 3Jke€R,ak=05b

If alb and a|c for some a,b, c € R, prove that a|(bx + cy) for all z,y € R.

Suppose that a|b and ale, so there exist elements k, ¢ € R satisfying ak = b and
bl = c. It follows that ¢ = (ak)l = a(kf) and hence alc.

Given a,b € R we let Div(a,b) = {d € R : d|a and d|b} denote the set of common
divisors. If a = bz + ¢ for some a,b, ¢,z € R, prove that Div(a,b) = Div(b, c).

First suppose that d € Div(a,b), which means that dk = a and d¢ = b for some
elements k, ¢ € R. Since a = bx+-c this implies that ¢ = a—bx = dkx—dl = d(kx—/)
and hence d|c. Since we already have d|b this implies that d € Div(b, c). Conversely,
suppose that d € Div(b, ¢), which implies that dk = b and d¢ = ¢ for some elements
k,¢ € R. Since a = bx + ¢ this implies that a = bx 4+ ¢ = dkx + dl = d(kxz + ¢) and
hence d|a. Since we already have d|b this implies that d € Div(a, b).

Assume that R is an integral domain. If nonzero elements a,b € R satisfy a|b and
bla, prove that au = b for some element u € R satisfying u|1.

Suppose that nonzero elements a,b € R satisfy a|b and b|a. This means that ak = b
and bf = a for some elements k,¢ € R, so that

a=0bl
a = akl
a(l — k) =0.

Since a # 0 and since R is a domain, this implies that 1 — k¢ = 0 and hence k¢ = 1.
Taking u = k gives au = b for some element u € R satisfying u|1.

Suppose that we have ax + by = 1 for some a,b,z,y € R. If a # 0 and a|(bc) for
some ¢ € R, prove that we must have alc.

Since a|(bc) we can write bc = ak for some element k € R. Then we have

ar +by=1
(ax 4+ by)c = c
acx + bcy = ¢
acr + aky = c
a(cx + ky) = c,

and hence alc.



Problem 2. Modular Arithmetic. Fix an integer n > 1. Then for all integers a,b € Z
we say a = b mod n to mean that n|(a — b).

(a)

If a = b mod n and b = ¢ mod n, prove that ¢ = ¢ mod n.
Suppose that a = b mod n and b = ¢ mod n, so that a — b = nk and b — ¢ = nf for
some integers k, ¢ € Z. It follows that
a—c=(a—b)+(b—c)=nk+nl =n(k+1),
and hence a = ¢ mod n.
If a = @’ mod n and b = b mod n, prove that ab = o’/ mod n.
Suppose that @ = a’ mod n and b = b mod n, so that a —a’ = nk and b — b = n/
for some integers k, ¢ € Z. It follows that
ab—a't! =ab—ab 4+ ab' —a't

=ab—0b)+(a—ad )V

= anl + nkb/

= n(al + kb'),

and hence ab = a’b/ mod n.
If ab = 1 mod n for some a,b € Z, prove that ged(a,n) = 1.

Suppose that ab = 1 mod n, so that ab — 1 = nk for some integer k € Z. In order
to prove that ged(a,n) = 1 we will prove that the only common divisors of @ and n
are +1. So let d be any common divisor of @ and n. This implies that d¢/ = a and
dm = n for some integers £, m € Z and hence

1 =ab—nk = dlb — dmk = d(¢b — mk).

Since d|1 we conclude that d = £1 as desiredﬂ
Use the Vector Euclidean Algorithm to find some = € Z satisfying 11z = 1 mod 29.

Consider the set of triples (z,vy,2) € Z3 such that 11z + 29y = 2. We perform Z-
linear combinations on the triples (0, 1,29) and (1,0,11) until we reduce the third
coordinate to 1:

x|y |z
0129
110 |11
-2 1|7
3 |—-1|4
-5 2 |3
8 |31

It follows that 11(8) 4+ 29(—3) = 1 and hence 11 -8 = 1 mod 29.

IShort proof: d|1 implies d # 0 and |d| < |1] = 1.



