No electronic devices are allowed. There are 4 pages and each page is worth 6 points, for a total of 24 points.

Problem 1. Polar Form of Complex Numbers.

(a) State Euler's formula.

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

(b) Express -1 in polar form.

$$
-1=e^{i \pi}
$$

(c) Find all of the 3rd roots of -1 .

The primitive 3 rd root of -1 is $e^{i \pi / 3}$ and the 3 rd roots of 1 are $1, e^{2 \pi i / 3}$ and $e^{4 \pi i / 3}$. Therefore the 3rd roots of -1 are

$$
\begin{aligned}
e^{i \pi / 3} & =\cos (\pi / 3)+i \sin (\pi / 3)=1 / 2+i \sqrt{3} / 2, \\
e^{i \pi / 3} e^{2 \pi i / 3} & =e^{i \pi}=\cos (\pi)+i \sin (\pi)=-1, \\
e^{i \pi / 3} e^{4 \pi / 3} & =e^{i 5 \pi / 3}=\cos (5 \pi / 3)+i \sin (5 \pi / 3)=1 / 2-i \sqrt{3} / 2 .
\end{aligned}
$$

Here is a picture:

(d) Use your answer from (c) to completely factor the polynomial $x^{3}+1$ over \mathbb{C}.

$$
x^{3}+1=(x-(-1))(x-(1 / 2+i \sqrt{3} / 2))(x-(1 / 2-i \sqrt{3} / 2))
$$

Problem 2. Descartes' Factor Theorem. For any polynomials $f(x), g(x) \in \mathbb{F}[x]$ over a field \mathbb{F} with $g(x) \neq 0$ there exist polynomials $q(x), r(x) \in \mathbb{F}[x]$ satisfying

$$
\left\{\begin{array}{l}
f(x)=g(x) q(x)+r(x) \\
\operatorname{deg}(r)<\operatorname{deg}(g) .
\end{array}\right.
$$

You do not need to prove this.
(a) If $f(x) \in \mathbb{F}[x]$ satisfies $f(a)=0$ for some $a \in \mathbb{F}$, prove that $f(x)=(x-a) q(x)$ for some polynomial $q(x) \in \mathbb{F}[x]$. [Hint: Divide $f(x)$ by $x-a$.]

There exist $q(x), r(x) \in \mathbb{F}[x]$ such that

$$
\left\{\begin{array}{l}
f(x)=(x-a) q(x)+r(x) \\
\operatorname{deg}(r)<\operatorname{deg}(x-a) .
\end{array}\right.
$$

Since $\operatorname{deg}(x-a)=1$ this implies that $r(x)=c$ is a constant. We can find the value of this constant by substituting $x=a$ to get

$$
f(a)=(a-a) q(a)+c=c .
$$

If $f(a)=0$ then it follows that $c=0$ and hence $f(x)=(x-a) q(x)$.
(b) If $f(x) \in \mathbb{F}[x]$ satisfies $f(a)=f(b)=0$ for some $a, b \in \mathbb{F}$ with $a \neq b$, use part (a) to show that $f(x)=(x-a)(x-b) p(x)$ for some polynomial $p(x) \in \mathbb{F}[x]$. [Hint: From part (a) you already know that $f(x)=(x-a) q(x)$ for some $q(x)$.]

If $f(a)=0$ and $a \in \mathbb{F}$ then from part (a) we have $f(x)=(x-a) q(x)$ for some $q(x) \in \mathbb{F}[x]$. Now suppose that we also have $f(b)=0$ with $b \in \mathbb{F}$ and $b \neq a$. By substituting $x=b$ we obtain

$$
0=f(b)=(b-a) q(b),
$$

which, since $b-a \neq 0$, implies that $q(b)=0$. Then from part (a) we have $q(x)=$ $(x-b) p(x)$ for some $p(x) \in \mathbb{F}[x]$, and putting everything together gives

$$
f(x)=(x-a) q(x)=(x-a)(x-b) p(x)
$$

Problem 3. Conjugation. Let $\mathbb{E} \supseteq \mathbb{F}$ be fields and let $*: \mathbb{E} \rightarrow \mathbb{E}$ be a function with the following properties:
(1) $a^{*}=a$ if and only if $a \in \mathbb{F}$
(2) $\left(a^{*}\right)^{*}=a$ for all $a \in \mathbb{E}$
(3) $(a+b)^{*}=a^{*}+b^{*}$ for all $a, b \in \mathbb{E}$
(4) $(a b)^{*}=a^{*} b^{*}$ for all $a, b \in \mathbb{E}$
(a) For all $f(x) \in \mathbb{F}[x]$ and $a \in \mathbb{E}$, show that $f(a)^{*}=f\left(a^{*}\right)$.

Let $f(x)=c_{0}+c_{1} x+c_{2} x^{2} \cdots+c_{n} x^{n}$ with $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{F}$. Then for all $a \in \mathbb{E}$,

$$
\begin{align*}
f(a)^{*} & =\left(c_{0}+c_{1} a+c_{2} a^{2}+\cdots+c_{n} a^{n}\right)^{*} \\
& =c_{0}^{*}+\left(c_{1} a\right)^{*}+\left(c_{2} a^{2}\right)^{*}+\cdots+\left(c_{n} a^{n}\right)^{*} \tag{3}\\
& =c_{0}^{*}+c_{1}^{*} a^{*}+c_{2}^{*}\left(a^{*}\right)^{2}+\cdots+c_{n}^{*}\left(a^{*}\right)^{n} \tag{4}\\
& =c_{0}+c_{1} a^{*}+c_{2}\left(a^{*}\right)^{2}+\cdots+c_{n}\left(a^{*}\right)^{n} \tag{1}\\
& =f\left(a^{*}\right) .
\end{align*}
$$

(b) Given $f(x) \in \mathbb{F}[x]$ use part (a) to show that the roots of $f(x)$ that are in \mathbb{E} but not in \mathbb{F} come in conjugate pairs.

For any $f(x) \in \mathbb{F}[x]$ and $a \in \mathbb{E}$ we will show that $f(a)=0$ if and only if $f\left(a^{*}\right)=0$. For one direction, suppose that $f(a)=0$. Then from part (a) we have

$$
f\left(a^{*}\right)=f(a)^{*}=0^{*}=0 .
$$

For the other direction, let $b=a^{*}$ so that $b^{*}=\left(a^{*}\right)^{*}=b$. Then it follows from the above argument that

$$
f\left(a^{*}\right)=0 \quad \Rightarrow \quad f(b)=0 \quad \Rightarrow \quad f\left(b^{*}\right)=0 \quad \Rightarrow \quad f(a)=0
$$

[Remark: I guess I left this question a bit open-ended. To be very rigorous we should note that the elements of \mathbb{E} that are not in \mathbb{F} come in conjugate pairs of the form $\left\{a, a^{*}\right\}$. Indeed, since $a \notin \mathbb{F}$ we know from property (1) that $a \neq a^{*}$ so that $\left\{a, a^{*}\right\}$ is really a pair of elements. And no two pairs $\left\{a, a^{*}\right\}$ and $\left\{b, b^{*}\right\}$ can partially overlap because $a=b$ implies $a^{*}=b^{*}$ and $a=b^{*}$ implies $a^{*}=b$, so in either case we have $\left\{a, a^{*}\right\}=\left\{b, b^{*}\right\}$. Later we will use the following technical language: The "group" $\{\mathrm{id}, *\}$ of automorphisms of \mathbb{E} "partitions" the set \mathbb{E} into "orbits".]
(c) For any $a \in \mathbb{E}$, show that the polynomial $(x-a)\left(x-a^{*}\right)$ has coefficients in \mathbb{F}. [Hint: Show that $a+a^{*}$ and $a a^{*}$ are in \mathbb{F}.]

First we observe that $\left(a+a^{*}\right)^{*}=a^{*}+\left(a^{*}\right)^{*}=a^{*}+a=a+a^{*}$ from properties $(2,3)$ and $\left(a a^{*}\right)^{*}=a^{*}\left(a^{*}\right)^{*}=a^{*} a=a a^{*}$ from properties $(2,4)$, so that $a+a^{*} \in \mathbb{F}$ and $a a^{*} \in \mathbb{F}$ from property (1). It follows that

$$
(x-a)\left(x-a^{*}\right)=x^{2}-\left(a+a^{*}\right) x+a a^{*} \in \mathbb{F}[x] .
$$

(d) If a polynomial $f(x) \in \mathbb{F}[x]$ splits over \mathbb{E}, prove that it can be factored as a product of polynomials of degrees 1 and 2 with coefficients in \mathbb{F}. [Hint: Use parts (b),(c).]

If $f(x) \in \mathbb{F}[x]$ splits over \mathbb{E} then from part (b) we can write

$$
f(x)=\prod_{i}\left(x-r_{i}\right) \prod_{j}\left(x-a_{j}\right)\left(x-a_{j}^{*}\right)
$$

for some $r_{i} \in \mathbb{F}$ and $a_{j} \in \mathbb{E}$ with $a_{j} \notin \mathbb{F}$. Then from part (c) we see that

$$
f(x)=\prod_{i}\left(x-r_{i}\right) \prod_{j}\left(x^{2}-\left(a_{j}+a_{j}\right)^{*} x+a_{j} a_{j}^{*}\right)
$$

is a product of polynomials of degrees 1 and 2 with coefficients in \mathbb{F}.

