1. Quotient Rings. Let $(R, +, \times, 0, 1)$ be a *commutative ring*. Technically: This means that (1) (R, +, 0) is an abelian group, (2) $(R, \times, 1)$ is a commutative monoid (abelian group without inverses), and (3) for all $a, b, c \in R$ we have a(b + c) = ab + ac.

(a) Let $I \subseteq R$ be an additive subgroup and recall that "addition of cosets" is well-defined:

$$(a+I) + (b+I) = (a+b) + I.$$

Thus we obtain the quotient group (R/I, +, 0 + I). Now suppose that for all $a \in R$ and $b \in I$ we have $ab \in I$. (Jargon: We say that $I \subseteq R$ is an *ideal*.) In this case prove that the following "multiplication of cosets" is well-defined:

$$(a+I)(b+I) = (ab) + I.$$

It follows that $(R/I, +, \times, 0 + I, 1 + I)$ is a ring, called the *quotient ring*. [You do not need to check all the details.]

(b) Apply part (a) to show that $\mathbb{Z}/n\mathbb{Z}$ is a ring.

2. The Fermat-Euler-Lagrange Theorem, Part II. Let $(R, +, \times, 0, 1)$ be a ring and let $R^{\times} \subseteq R$ denote the subset of elements that have multiplicative inverses. We call $(R^{\times}, \times, 1)$ the group of units.

- (a) For all $n \in \mathbb{Z}$ prove that $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{a + n\mathbb{Z} : \gcd(a, n) = 1\}$. [Hint: If $\gcd(a, n) = 1$ then we have $a\mathbb{Z} + n\mathbb{Z} = 1\mathbb{Z}$, hence there exist integers $x, y \in \mathbb{Z}$ with ax + ny = 1. This is sometimes called *Bézout's Identity*.]
- (b) Euler's Totient Theorem. Euler's totient function is defined by $\phi(n) := \#(\mathbb{Z}/n\mathbb{Z})^{\times}$. For all $a \in \mathbb{Z}$ with gcd(a, n) = 1 prove that

$$a^{\phi(n)} = 1 \mod n.$$

(c) Fermat's Little Theorem. If $p \in \mathbb{Z}$ is prime and $p \nmid a$ prove that

$$a^{p-1} = 1 \mod p.$$

3. Chinese Remainder Theorem. In this problem I will use the shorthand notation $[a]_n := a + n\mathbb{Z}$. Now fix some $m, n \in \mathbb{Z}$ with gcd(m, n) = 1 and consider the function

$$\varphi: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$
$$[a]_{mn} \mapsto ([a]_m, [a]_n).$$

(a) Prove that φ is well-defined. That is, for all $a, a' \in \mathbb{Z}$ prove that

$$[a]_{mn} = [a']_{mn}$$
 implies $[a]_m = [a']_m$ and $[a]_n = [a']_n$.

- (b) For all $c \in \mathbb{Z}$ prove that m|c and n|c together imply (mn)|c. [Hint: There exist $x, y \in \mathbb{Z}$ such that mx + ny = 1.] Use this conclude that φ is **injective**.
- (c) Prove that φ is **surjective**. [Big Hint: Given $([a]_m, [b]_n)$ we want to find $c \in \mathbb{Z}$ such that $[a]_m = [c]_m$ and $[b]_n = [c]_n$. Try c := any + bmx.]
- (d) Prove that φ restricts to a bijection

$$\varphi: (\mathbb{Z}/mn\mathbb{Z})^{\times} \longleftrightarrow (\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times}$$

[Hint: Use the fact that $gcd(k, \ell) = 1$ if and only if there exist integers $x, y \in \mathbb{Z}$ such that $kx + \ell y = 1$.] It follows that Euler's totient is multiplicative: $\phi(mn) = \phi(m)\phi(n)$.

4. Automorphisms of a Cyclic Group. For all integers $n \in \mathbb{Z}$ prove that

$$\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}.$$

[Hint: Show that any automorphism $\varphi : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ has the form $\varphi_a([k]_n) := [ak]_n$ for some integer $a \in \mathbb{Z}$ satisfying gcd(a, n) = 1.]

5. Matrix Representation of Isometries. Consider the following set of matrices:

$$G = \left\{ \begin{pmatrix} A & \mathbf{u} \\ \hline 0 & \cdots & 0 & 1 \end{pmatrix} : A \in O(n) \text{ and } \mathbf{u} \in \mathbb{R}^n \right\} \subseteq \operatorname{Mat}_{n+1}(\mathbb{R}).$$

- (a) Prove that $G \subseteq \operatorname{Mat}_{n+1}(\mathbb{R})$ is a subgroup. [Hint: Block multiplication.]
- (b) Use results from class to prove that G is isomorphic to the group $\text{Isom}(\mathbb{R}^n)$ of isometries of *n*-dimensional Euclidean space.

6. Second and Third Isomorphism Theorems.

(a) Let $H, K \subseteq G$ be subgroups with $K \trianglelefteq G$ normal. We already know that $HK \subseteq G$ is a subgroup. Prove that $K \trianglelefteq HK$ is a normal subgroup and the map $h \mapsto hK$ defines a surjective group homomorphism $H \to (HK)/K$ with kernel $H \cap K$. It follows that

$$\frac{H}{H \cap K} \cong \frac{HK}{K}$$

(b) Now consider another normal subgroup $N \leq G$ such that $N \subseteq K$. Prove that $N \leq K$ is normal and that the map $gN \mapsto gK$ defines a surjective group homomorphism $G/N \to G/K$ with kernel K/N. It follows that

$$\frac{G/N}{K/N} \cong \frac{G}{K}.$$

- 7. Dimension of a Vector Space, Part II. Let V be a vector space over a field \mathbb{F} .
 - (a) Let $\mathbf{u}_1, \ldots, \mathbf{u}_n \in V$ be a basis and consider the subspaces $V_k := \mathbb{F}(\mathbf{u}_1, \ldots, \mathbf{u}_k) \subseteq V$. Prove for all $0 \leq k < n$ that there is no subspace U satisfying

$$V_k \subsetneq U \subsetneq V_{k+1}.$$

(b) Conversely, suppose that we have a maximal chain of subspaces

$$\{\mathbf{0}\} = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_n = V.$$

Prove by induction that V_k has a basis of size k, hence $\dim(V_k) = k$. Parts (a) and (b) together show that **dimension** equals the **length** of a maximal chain of subspaces

(c) If $U \subseteq V$ is a subspace you may assume that the quotient group V/U is a vector space. Prove that $\dim(V/U) = m$ if and only if there exists a maximal chain of subspaces

$$U = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_m = V_m$$

[Hint: You may assume that the Correspondence Theorem and the First Isomorphism Theorem still hold after replacing the word "subgroup" with "subspace."¹]

- (d) Prove that $\dim(V) = \dim(U) + \dim(V/U)$. [Hint: Combine (a), (b) and (c).]
- (e) **Rank-Nullity Theorem.** For any linear function $\varphi: V \to W$ prove that

$$\dim(V) = \dim(\ker\varphi) + \dim(\operatorname{im}\varphi).$$

¹For that matter, the Second and Third Isomorphism Theorems also hold.