1. Quotient Rings. Let $(R,+, \times, 0,1)$ be a commutative ring. Technically: This means that (1) $(R,+, 0)$ is an abelian group, (2) $(R, \times, 1)$ is a commutative monoid (abelian group without inverses), and (3) for all $a, b, c \in R$ we have $a(b+c)=a b+a c$.
(a) Let $I \subseteq R$ be an additive subgroup and recall that "addition of cosets" is well-defined:

$$
(a+I)+(b+I)=(a+b)+I .
$$

Thus we obtain the quotient group $(R / I,+, 0+I)$. Now suppose that for all $a \in R$ and $b \in I$ we have $a b \in I$. (Jargon: We say that $I \subseteq R$ is an ideal.) In this case prove that the following "multiplication of cosets" is well-defined:

$$
(a+I)(b+I)=(a b)+I .
$$

It follows that $(R / I,+, \times, 0+I, 1+I)$ is a ring, called the quotient ring. [You do not need to check all the details.]
(b) Apply part (a) to show that $\mathbb{Z} / n \mathbb{Z}$ is a ring.
2. The Fermat-Euler-Lagrange Theorem, Part II. Let $(R,+, \times, 0,1)$ be a ring and let $R^{\times} \subseteq R$ denote the subset of elements that have multiplicative inverses. We call $\left(R^{\times}, \times, 1\right)$ the group of units.
(a) For all $n \in \mathbb{Z}$ prove that $(\mathbb{Z} / n \mathbb{Z})^{\times}=\{a+n \mathbb{Z}: \operatorname{gcd}(a, n)=1\}$. [Hint: If $\operatorname{gcd}(a, n)=1$ then we have $a \mathbb{Z}+n \mathbb{Z}=1 \mathbb{Z}$, hence there exist integers $x, y \in \mathbb{Z}$ with $a x+n y=1$. This is sometimes called Bézout's Identity.]
(b) Euler's Totient Theorem. Euler's totient function is defined by $\phi(n):=\#(\mathbb{Z} / n \mathbb{Z})^{\times}$. For all $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, n)=1$ prove that

$$
a^{\phi(n)}=1 \quad \bmod n .
$$

(c) Fermat's Little Theorem. If $p \in \mathbb{Z}$ is prime and $p \nmid a$ prove that

$$
a^{p-1}=1 \quad \bmod p .
$$

3. Chinese Remainder Theorem. In this problem I will use the shorthand notation $[a]_{n}:=a+n \mathbb{Z}$. Now fix some $m, n \in \mathbb{Z}$ with $\operatorname{gcd}(m, n)=1$ and consider the function

$$
\begin{aligned}
& \varphi: \mathbb{Z} / m n \mathbb{Z} \rightarrow \\
& {[a / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}} \\
& {[a]_{m n} } \mapsto \\
&\left([a]_{m},[a]_{n}\right) .
\end{aligned}
$$

(a) Prove that φ is well-defined. That is, for all $a, a^{\prime} \in \mathbb{Z}$ prove that

$$
[a]_{m n}=\left[a^{\prime}\right]_{m n} \quad \text { implies } \quad[a]_{m}=\left[a^{\prime}\right]_{m} \text { and }[a]_{n}=\left[a^{\prime}\right]_{n} .
$$

(b) For all $c \in \mathbb{Z}$ prove that $m \mid c$ and $n \mid c$ together imply $(m n) \mid c$. [Hint: There exist $x, y \in \mathbb{Z}$ such that $m x+n y=1$.] Use this conclude that φ is injective.
(c) Prove that φ is surjective. [Big Hint: Given $\left([a]_{m},[b]_{n}\right)$ we want to find $c \in \mathbb{Z}$ such that $[a]_{m}=[c]_{m}$ and $[b]_{n}=[c]_{n}$. Try $c:=a n y+b m x$.]
(d) Prove that φ restricts to a bijection

$$
\varphi:(\mathbb{Z} / m n \mathbb{Z})^{\times} \longleftrightarrow(\mathbb{Z} / m \mathbb{Z})^{\times} \times(\mathbb{Z} / n \mathbb{Z})^{\times} .
$$

[Hint: Use the fact that $\operatorname{gcd}(k, \ell)=1$ if and only if there exist integers $x, y \in \mathbb{Z}$ such that $k x+\ell y=1$.] It follows that Euler's totient is multiplicative: $\phi(m n)=\phi(m) \phi(n)$.
4. Automorphisms of a Cyclic Group. For all integers $n \in \mathbb{Z}$ prove that

$$
\operatorname{Aut}(\mathbb{Z} / n \mathbb{Z}) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}
$$

[Hint: Show that any automorphism $\varphi: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ has the form $\varphi_{a}\left([k]_{n}\right):=[a k]_{n}$ for some integer $a \in \mathbb{Z}$ satisfying $\operatorname{gcd}(a, n)=1$.]
5. Matrix Representation of Isometries. Consider the following set of matrices:

$$
G=\left\{\left(\begin{array}{ccc|c}
& A & & \mathbf{u} \\
\hline 0 & \cdots & 0 & 1
\end{array}\right): A \in O(n) \text { and } \mathbf{u} \in \mathbb{R}^{n}\right\} \subseteq \operatorname{Mat}_{n+1}(\mathbb{R}) .
$$

(a) Prove that $G \subseteq \operatorname{Mat}_{n+1}(\mathbb{R})$ is a subgroup. [Hint: Block multiplication.]
(b) Use results from class to prove that G is isomorphic to the group $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$ of isometries of n-dimensional Euclidean space.

6. Second and Third Isomorphism Theorems.

(a) Let $H, K \subseteq G$ be subgroups with $K \unlhd G$ normal. We already know that $H K \subseteq G$ is a subgroup. Prove that $K \unlhd H K$ is a normal subgroup and the map $h \mapsto h K$ defines a surjective group homomorphism $H \rightarrow(H K) / K$ with kernel $H \cap K$. It follows that

$$
\frac{H}{H \cap K} \cong \frac{H K}{K} .
$$

(b) Now consider another normal subgroup $N \unlhd G$ such that $N \subseteq K$. Prove that $N \unlhd K$ is normal and that the map $g N \mapsto g K$ defines a surjective group homomorphism $G / N \rightarrow G / K$ with kernel K / N. It follows that

$$
\frac{G / N}{K / N} \cong \frac{G}{K}
$$

7. Dimension of a Vector Space, Part II. Let V be a vector space over a field \mathbb{F}.
(a) Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n} \in V$ be a basis and consider the subspaces $V_{k}:=\mathbb{F}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right) \subseteq V$. Prove for all $0 \leq k<n$ that there is no subspace U satisfying

$$
V_{k} \subsetneq U \subsetneq V_{k+1} .
$$

(b) Conversely, suppose that we have a maximal chain of subspaces

$$
\{\mathbf{0}\}=V_{0} \subsetneq V_{1} \subsetneq \cdots \subsetneq V_{n}=V .
$$

Prove by induction that V_{k} has a basis of size k, hence $\operatorname{dim}\left(V_{k}\right)=k$. Parts (a) and (b) together show that dimension equals the length of a maximal chain of subspaces
(c) If $U \subseteq V$ is a subspace you may assume that the quotient group V / U is a vector space. Prove that $\operatorname{dim}(V / U)=m$ if and only if there exists a maximal chain of subspaces

$$
U=V_{0} \subsetneq V_{1} \subsetneq \cdots \subsetneq V_{m}=V .
$$

[Hint: You may assume that the Correspondence Theorem and the First Isomorphism Theorem still hold after replacing the word "subgroup" with "subspace." ${ }^{1}$
(d) Prove that $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}(V / U)$. [Hint: Combine (a), (b) and (c).]
(e) Rank-Nullity Theorem. For any linear function $\varphi: V \rightarrow W$ prove that

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{ker} \varphi)+\operatorname{dim}(\operatorname{im} \varphi) .
$$

[^0]
[^0]: ${ }^{1}$ For that matter, the Second and Third Isomorphism Theorems also hold.

