1. Permutation Matrices. Let S_{n} be the group of permutations of the set $\{1,2, \ldots, n\}$, and for each permutation $f \in S_{n}$ let $[f] \in \operatorname{Mat}_{n}(\mathbb{Q})$ be the matrix whose i, j-entry is 1 if $f(j)=i$ and 0 if $f(j) \neq i$.
(a) If $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}$ is the standard basis, prove that $[f] \mathbf{e}_{i}=\mathbf{e}_{f(i)}$ for all $i \in\{1, \ldots, n\}$.
(b) Use (a) to prove that the function $f \mapsto[f]$ is a group homomorphism $S_{n} \rightarrow O(n)$.
(c) Let det: $O(n) \rightarrow\{ \pm 1\}$ be the determinant. Use (b) to prove that $\varphi(f):=\operatorname{det}[f]$ is a group homomorphism $\varphi: S_{n} \rightarrow\{ \pm 1\}$.
(d) Show that the kernel of φ is the alternating subgroup $A_{n} \subseteq S_{n}$ which was defined on the first homework. [Hint: If $t \in S_{n}$ is a transposition then $\varphi(t)=-1$.]
(e) Use the First Isomorphism Theorem and Lagrange's Theorem to conclude that

$$
\# A_{n}=n!/ 2 .
$$

2. Dimension of a Vector Space. Let ($\mathbb{F},+, \times, 0,1$) be a field (of "scalars") and let $(V,+, \mathbf{0})$ be an abelian group (of "vectors"). We say that V is a vector space over \mathbb{F} if there exists a function $\mathbb{F} \times V \rightarrow V$ denoted by $(a, \mathbf{u}) \mapsto a \mathbf{u}$ that satisfies four axioms:

- For all $\mathbf{u} \in V$ we have $1 \mathbf{u}=\mathbf{u}$.
- For all $a, b \in \mathbb{F}$ and $\mathbf{u} \in V$ we have $(a b) \mathbf{u}=a(b \mathbf{u})$.
- For all $a, b \in \mathbb{F}$ and $\mathbf{u} \in V$ we have $(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$.
- For all $a \in \mathbb{F}$ and $\mathbf{u}, \mathbf{v} \in V$ we have $a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$.
(a) In this case prove that $0 \mathbf{u}=\mathbf{0}$ for all $\mathbf{u} \in V$ and $a \mathbf{0}=\mathbf{0}$ for all $a \in \mathbb{F}$.
(b) Steinitz Exchange. For all vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m} \in V$ we define their span as the set

$$
\mathbb{F}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right):=\left\{a_{1} \mathbf{u}_{1}+\cdots+a_{m} \mathbf{u}_{m}: a_{1}, \ldots, a_{m} \in \mathbb{F}\right\} \subseteq V
$$

and we say that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ is a spanning set when $\mathbb{F}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right)=V$. We say that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$ is an independent set if for all $b_{1}, \ldots, b_{n} \in \mathbb{F}$ we have

$$
\left(b_{1} \mathbf{v}_{1}+\cdots+b_{n} \mathbf{v}_{n}=\mathbf{0}\right) \Rightarrow\left(b_{1}=\cdots=b_{n}=0\right)
$$

If $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ are spanning and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are independent, prove that $n \leq m$. [Hint: Assume for contradiction that $m<n$. Since the \mathbf{u}_{i} are spanning we have $\mathbf{v}_{1}=\sum_{i} a_{i} \mathbf{u}_{i}$ and since the \mathbf{v}_{j} are independent, not all of the coefficients are zero. Without loss suppose that $a_{1} \neq 0$ and use this to show that $\mathbf{v}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}$ is spanning. Now show by induction that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is a spanning set and use this to obtain a contradiction.]
(c) An independent spanning set is called a basis of V. If V has a finite spanning set, prove that V has a finite basis.
(d) Continuing from (b) and (c), prove that any two finite bases have the same size. This size is called the dimension of the vector space V.
3. Conjugacy Classes. Let G be a group and for all $a, b \in G$ define the following relation:

$$
a \sim b \quad \Longleftrightarrow \quad a=g b g^{-1} \text { for some } g \in G .
$$

(a) Prove that this is an equivalence relation, called conjugacy.
(b) Compute the conjugacy classes for the group of symmetries of an equilateral triangle:

$$
D_{6}=\langle R, F\rangle=\left\{I, R, R^{2}, F, R F, R^{2} F\right\} .
$$

Observe that conjugate elements "do the same thing" to the triangle.
(c) Explicitly describe the conjugacy classes of the symmetric group S_{n}. [Hint: Let $f, g \in$ S_{n}. Show that g sends i to j if and only if $f g f^{-1}$ sends $f(i)$ to $f(j)$. What does this say about the cycle structure?]
4. Multiplication of Subgroups, Part II. Let $(G, *, \varepsilon)$ be a group and let $H, K \subseteq G$ be any two subgroups.
(a) If at least one of H or K is normal, prove that $H K \subseteq G$ is a subgroup and hence that $H K$ equals the join $H \vee K$. The converse is not true.
(b) Prove that the multiplication function $\mu: H \times K \rightarrow G$ is a group isomorphism if and only if (1) H and K are both normal, (2) $H \wedge K=\{\varepsilon\}$ and (3) $H \vee K=G$. In this case we write

$$
G=H \times K
$$

and we say that G is the internal direct product of the subgroups H and K.
5. Euler's Rotation Theorem. Recall the definition of the special orthogonal group:

$$
S O(3)=\left\{A \in \operatorname{Mat}_{3}(A): A^{T} A=I \text { and } \operatorname{det}(A)=1\right\} .
$$

We have seen that every element of this group is an isometry of \mathbb{R}^{3}. Now you will show that every element of this group is a rotation.
(a) Recall that there exists a nonzero vector $\mathbf{0} \neq \mathbf{u} \in \mathbb{R}^{3}$ satisfying $A \mathbf{u}=\lambda \mathbf{u}$ if and only if $\operatorname{det}(A-\lambda I)=0$. Prove that there exists a unit vector $\mathbf{u} \in \mathbb{R}^{3}$ satisfying $A \mathbf{u}=\mathbf{u}$.
(b) For all \mathbf{v} perpendicular to \mathbf{u}, prove that $A \mathbf{v}$ is perpendicular to \mathbf{u}.
(c) Prove that there exists a matrix $B \in S O(3)$ and a real number $\theta \in \mathbb{R}$ such that

$$
B^{-1} A B=\left(\begin{array}{c|cc}
1 & 0 & 0 \\
\hline 0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

[Hint: Choose unit vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ so that $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are mutually perpendicular. These are the columns of B.] It follows from this that $\mathbf{x} \mapsto A \mathbf{x}$ is a rotation around the vector \mathbf{u} by angle θ.

