
Math 561/661 Fall 2018
Homework 3 Drew Armstrong

1. Order of a Power. Let G be a group and let g ∈ G be an element of order n.

(a) For all k ∈ Z, prove that 〈gk〉 = 〈gd〉 where d = gcd(n, k). [Hint: nZ + kZ = dZ.]
(b) For any divisor d|n show that gd has order n/d.
(c) Combine (a) and (b) to prove that for any k ∈ Z the element gk has order n/ gcd(n, k).

2. Multiplication of Subgroups. Let (G, ∗, ε) be a group and let H,K ⊆ G be any two
subgroups. Consider the Cartesian product of sets

H ×K := {(h, k) : h ∈ H, k ∈ K}

and the “multiplication function” µ : H ×K → G defined by µ(h, k) := h ∗ k.

(a) Prove that µ is injective if and only if H ∩K = {ε}.
(b) We can think of the set H ×K as an abstract group by defining

(h1, k1) ∗ (h2, k2) := (h1 ∗ h2, k1 ∗ k2) for all h1, h2 ∈ H and k1, k2 ∈ K.

In this case we call (H ×K, ∗) the direct product of H and K. Prove that µ is a group
homomorphism if and only if we have h ∗ k = k ∗ h for all h ∈ H and k ∈ K.

(c) The image of µ : H ×K → G is the “internal product set”

HK := {h ∗ k : h ∈ H, k ∈ K} ⊆ G.

Prove that HK ⊆ G is a subgroup if and only if HK = KH.

3. Why Does AB = I Imply BA = I ? Given a field F and a positive integer n we define

M := Matn(F) = the set of n× n matrices with entries in F.

I claim that this set is a vector space of dimension n2 over the field F. Now consider any two
matrices A,B ∈M such that AB = I.

(a) Show that the set BM := {BM : M ∈ M} is a vector subspace of M. In other words,
for all matrices X,Y ∈ BM and scalars α, β ∈ F, show that αX + βY ∈ BM.

(b) More generally, for each integer k ≥ 0 define the set BkM := {BkM : M ∈ M} and
show that Bk+1M is a vector subspace of BkM.

(c) I claim that a finite-dimensional vector space has no infinite descending chain of sub-
spaces. Use this fact to prove that there exists an integer k ≥ 0 and a matrix C ∈ M
satisfying Bk = Bk+1C.

(d) Let C be as in part (c). Prove that BC = I and hence C = A. It follows that BA = I.

[Remark: Believe it or not, this is the shortest proof I know.]

4. Conjugation is an Automorphism. Let (G, ∗, ε) be a group and let g ∈ G be any
element. Define the function ϕg : G→ G by ϕg(a) := g ∗ a ∗ g−1.

(a) Prove that ϕg : G→ G is a bijection.
(b) Prove that ϕg : G→ G is a homomorphism, hence it is an automorphism of G.
(c) Application: Consider any two elements a, b ∈ G. Prove that the cyclic groups 〈a ∗ b〉

and 〈b ∗ a〉 are isomorphic, hence the elements a ∗ b and b ∗ a have the same order.



5. Galois Connection. Let (P,≤) and (Q,≤) be posets and let f : P → Q and g : Q→ P
be any functions satisfying

p ≤ g(q)⇐⇒ f(p) ≤ q for all p ∈ P and q ∈ Q.

(a) For all p ∈ P and q ∈ Q prove that

p ≤ g(f(p)) and f(g(q)) ≤ q.
(b) For all p1, p2 ∈ P and q1, q2 ∈ Q prove that

p1 ≤ p2 ⇒ f(p1) ≤ f(p2) and q1 ≤ q2 ⇒ g(q1) ≤ g(q2).

(c) For all p ∈ P and q ∈ Q prove that

f(p) = f(g(f(p)) and g(q) = g(f(g(q))).

(d) Define the “images” P ′ := g[Q] := {g(q) : q ∈ Q} and Q′ := f [P ] := {f(p) : p ∈ P}.
Prove that these are the same as the sets of “closed elements”

P ′ = {p ∈ P : p = g(f(p))} and Q′ = {q ∈ Q : q = f(g(q))}.
(e) Prove that the functions f, g restrict to an isomorphism of posets:

f : P ′ ←→ Q′ : g.

6. Image and Preimage. Let (G, ∗, δ) and (H, •, ε) be groups and let ϕ : G → H be any
group homomorphism. For every subset S ⊆ G we define the image set

ϕ[S] := {ϕ(g) : g ∈ S} ⊆ H,
and for every subset T ⊆ H we define the preimage set

ϕ−1[T ] := {g ∈ G : ϕ(g) ∈ T} ⊆ G.
(a) Show that the function ϕ−1 : H → G exists if and only if #ϕ−1[{h}] = 1 for all h ∈ H.
(b) If S ⊆ G is a subgroup prove that the image ϕ[S] ⊆ H is a subgroup.
(c) If T ⊆ H is a subgroup prove that the preimage ϕ−1[T ] ⊆ G is a subgroup.
(d) Now you have two functions ϕ : L (G) � L (H) : ϕ−1 between the subgroup lattices.

Prove that this is a Galois connection.


