Math 561/661 Fall 2018
Homework 3 Drew Armstrong

1. Order of a Power. Let GG be a group and let g € G be an element of order n.
(a) For all k € Z, prove that (g¥) = (g%) where d = ged(n, k). [Hint: nZ + kZ = dZ.]
(b) For any divisor d|n show that g¢ has order n/d.
(c) Combine (a) and (b) to prove that for any k € Z the element g* has order n/ ged(n, k).

2. Multiplication of Subgroups. Let (G, *,¢) be a group and let H, K C G be any two
subgroups. Consider the Cartesian product of sets

Hx K :={(h,k):he H ke K}

and the “multiplication function” pu: H x K — G defined by p(h, k) :== h x k.

(a) Prove that u is injective if and only if H N K = {e}.
(b) We can think of the set H x K as an abstract group by defining

(hl,kl) * (hg,kg) = (hl * hg,kl * kg) for all hl,hg € H and kl,kg e K.

In this case we call (H x K, x*) the direct product of H and K. Prove that p is a group
homomorphism if and only if we have h xk =k« h for all h € H and k € K.
(c) The image of pu: H x K — G is the “internal product set”

HK :={hxk:he Hke K} CQG.
Prove that HK C G is a subgroup if and only if HK = KH.

3. Why Does AB =1 Imply BA =17 Given a field F and a positive integer n we define

M := Mat,, (F) = the set of n x n matrices with entries in F.
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I claim that this set is a vector space of dimension n* over the field F. Now consider any two

matrices A, B € M such that AB = 1.

(a) Show that the set BM := {BM : M € M} is a vector subspace of M. In other words,
for all matrices X,Y € BM and scalars a, 5 € F, show that aX + Y € BM.

(b) More generally, for each integer k& > 0 define the set B*M := {B*¥M : M € M} and
show that B**'M is a vector subspace of B¥M.

(c) I claim that a finite-dimensional vector space has no infinite descending chain of sub-
spaces. Use this fact to prove that there exists an integer £ > 0 and a matrix C' € M
satisfying B* = B*1C.

(d) Let C be as in part (c). Prove that BC' = I and hence C' = A. It follows that BA = I.

[Remark: Believe it or not, this is the shortest proof I know.]

4. Conjugation is an Automorphism. Let (G,#,¢) be a group and let ¢ € G be any

element. Define the function ¢y : G — G by ¢4(a) :=g*a* g™t

(a) Prove that ¢, : G — G is a bijection.

(b) Prove that ¢4 : G — G is a homomorphism, hence it is an automorphism of G.

(c¢) Application: Consider any two elements a,b € G. Prove that the cyclic groups (a * b)
and (b * a) are isomorphic, hence the elements a * b and b * a have the same order.



5. Galois Connection. Let (P, <) and (Q, <) be posets and let f: P — Q and g: Q — P
be any functions satisfying

p<g(q) <= f(p)<q foralpe PandqeQ.
(a) For all p € P and ¢ € @ prove that
p<g(f(p)) and  f(g(q) <q
(b) For all p1,p2 € P and q1,q2 € Q prove that
pr<p2= f(p1) < f(p2) and @ <q= g(q) < g(q)
(¢) For all p € P and ¢ € Q prove that
fp)=r(g(f(p)) and  g(q) = g(f(9(a)))-
(d) Define the “images” P’ := ¢g[Q] := {9(q) : ¢ € Q} and Q' := f[P] := {f(p) : p € P}.
Prove that these are the same as the sets of “closed elements”
Pr={peP:p=g(f(p))} and Q ={q€Q:q=f(9(q)}
(e) Prove that the functions f, g restrict to an isomorphism of posets:
f:P +—=Q 9.

6. Image and Preimage. Let (G,*,0) and (H,e,¢) be groups and let ¢ : G — H be any
group homomorphism. For every subset S C G we define the image set

plS]:={plg): g€ S} CH,
and for every subset T C H we define the preimage set
¢ T:={geG:p(9) €T} CG.
(a) Show that the function =1 : H — G exists if and only if #p~'[{h}] = 1 for all h € H.
(b) If S C G is a subgroup prove that the image ¢[S] C H is a subgroup.
(c) If T C H is a subgroup prove that the preimage ¢~ ![T] C G is a subgroup.
(d)

Now you have two functions ¢ : Z(G) S Z(H) : ¢! between the subgroup lattices.
Prove that this is a Galois connection.



