1. Order of a Power. Let G be a group and let $g \in G$ be an element of order n.
(a) For all $k \in \mathbb{Z}$, prove that $\left\langle g^{k}\right\rangle=\left\langle g^{d}\right\rangle$ where $d=\operatorname{gcd}(n, k)$. [Hint: $n \mathbb{Z}+k \mathbb{Z}=d \mathbb{Z}$.]
(b) For any divisor $d \mid n$ show that g^{d} has order n / d.
(c) Combine (a) and (b) to prove that for any $k \in \mathbb{Z}$ the element g^{k} has order $n / \operatorname{gcd}(n, k)$.
2. Multiplication of Subgroups. Let $(G, *, \varepsilon)$ be a group and let $H, K \subseteq G$ be any two subgroups. Consider the Cartesian product of sets

$$
H \times K:=\{(h, k): h \in H, k \in K\}
$$

and the "multiplication function" $\mu: H \times K \rightarrow G$ defined by $\mu(h, k):=h * k$.
(a) Prove that μ is injective if and only if $H \cap K=\{\varepsilon\}$.
(b) We can think of the set $H \times K$ as an abstract group by defining

$$
\left(h_{1}, k_{1}\right) *\left(h_{2}, k_{2}\right):=\left(h_{1} * h_{2}, k_{1} * k_{2}\right) \quad \text { for all } h_{1}, h_{2} \in H \text { and } k_{1}, k_{2} \in K
$$

In this case we call $(H \times K, *)$ the direct product of H and K. Prove that μ is a group homomorphism if and only if we have $h * k=k * h$ for all $h \in H$ and $k \in K$.
(c) The image of $\mu: H \times K \rightarrow G$ is the "internal product set"

$$
H K:=\{h * k: h \in H, k \in K\} \subseteq G .
$$

Prove that $H K \subseteq G$ is a subgroup if and only if $H K=K H$.
3. Why Does $A B=I$ Imply $B A=I$? Given a field \mathbb{F} and a positive integer n we define

$$
\mathbb{M}:=\operatorname{Mat}_{n}(\mathbb{F})=\text { the set of } n \times n \text { matrices with entries in } \mathbb{F} .
$$

I claim that this set is a vector space of dimension n^{2} over the field \mathbb{F}. Now consider any two matrices $A, B \in \mathbb{M}$ such that $A B=I$.
(a) Show that the set $B \mathbb{M}:=\{B M: M \in \mathbb{M}\}$ is a vector subspace of \mathbb{M}. In other words, for all matrices $X, Y \in B \mathbb{M}$ and scalars $\alpha, \beta \in \mathbb{F}$, show that $\alpha X+\beta Y \in B \mathbb{M}$.
(b) More generally, for each integer $k \geq 0$ define the set $B^{k} \mathbb{M}:=\left\{B^{k} M: M \in \mathbb{M}\right\}$ and show that $B^{k+1} \mathbb{M}$ is a vector subspace of $B^{k} \mathbb{M}$.
(c) I claim that a finite-dimensional vector space has no infinite descending chain of subspaces. Use this fact to prove that there exists an integer $k \geq 0$ and a matrix $C \in \mathbb{M}$ satisfying $B^{k}=B^{k+1} C$.
(d) Let C be as in part (c). Prove that $B C=I$ and hence $C=A$. It follows that $B A=I$.
[Remark: Believe it or not, this is the shortest proof I know.]
4. Conjugation is an Automorphism. Let $(G, *, \varepsilon)$ be a group and let $g \in G$ be any element. Define the function $\varphi_{g}: G \rightarrow G$ by $\varphi_{g}(a):=g * a * g^{-1}$.
(a) Prove that $\varphi_{g}: G \rightarrow G$ is a bijection.
(b) Prove that $\varphi_{g}: G \rightarrow G$ is a homomorphism, hence it is an automorphism of G.
(c) Application: Consider any two elements $a, b \in G$. Prove that the cyclic groups $\langle a * b\rangle$ and $\langle b * a\rangle$ are isomorphic, hence the elements $a * b$ and $b * a$ have the same order.
5. Galois Connection. Let (P, \leq) and (Q, \leq) be posets and let $f: P \rightarrow Q$ and $g: Q \rightarrow P$ be any functions satisfying

$$
p \leq g(q) \Longleftrightarrow f(p) \leq q \quad \text { for all } p \in P \text { and } q \in Q .
$$

(a) For all $p \in P$ and $q \in Q$ prove that

$$
p \leq g(f(p)) \quad \text { and } \quad f(g(q)) \leq q
$$

(b) For all $p_{1}, p_{2} \in P$ and $q_{1}, q_{2} \in Q$ prove that

$$
p_{1} \leq p_{2} \Rightarrow f\left(p_{1}\right) \leq f\left(p_{2}\right) \quad \text { and } \quad q_{1} \leq q_{2} \Rightarrow g\left(q_{1}\right) \leq g\left(q_{2}\right)
$$

(c) For all $p \in P$ and $q \in Q$ prove that

$$
f(p)=f(g(f(p)) \quad \text { and } \quad g(q)=g(f(g(q))) .
$$

(d) Define the "images" $P^{\prime}:=g[Q]:=\{g(q): q \in Q\}$ and $Q^{\prime}:=f[P]:=\{f(p): p \in P\}$. Prove that these are the same as the sets of "closed elements"

$$
P^{\prime}=\{p \in P: p=g(f(p))\} \quad \text { and } \quad Q^{\prime}=\{q \in Q: q=f(g(q))\} .
$$

(e) Prove that the functions f, g restrict to an isomorphism of posets:

$$
f: P^{\prime} \longleftrightarrow Q^{\prime}: g
$$

6. Image and Preimage. Let $(G, *, \delta)$ and $(H, \bullet, \varepsilon)$ be groups and let $\varphi: G \rightarrow H$ be any group homomorphism. For every subset $S \subseteq G$ we define the image set

$$
\varphi[S]:=\{\varphi(g): g \in S\} \subseteq H
$$

and for every subset $T \subseteq H$ we define the preimage set

$$
\varphi^{-1}[T]:=\{g \in G: \varphi(g) \in T\} \subseteq G
$$

(a) Show that the function $\varphi^{-1}: H \rightarrow G$ exists if and only if $\# \varphi^{-1}[\{h\}]=1$ for all $h \in H$.
(b) If $S \subseteq G$ is a subgroup prove that the image $\varphi[S] \subseteq H$ is a subgroup.
(c) If $T \subseteq H$ is a subgroup prove that the preimage $\varphi^{-1}[T] \subseteq G$ is a subgroup.
(d) Now you have two functions $\varphi: \mathscr{L}(G) \leftrightarrows \mathscr{L}(H): \varphi^{-1}$ between the subgroup lattices. Prove that this is a Galois connection.

