- **1.** Order of a Power. Let G be a group and let $g \in G$ be an element of order n.
 - (a) For all $k \in \mathbb{Z}$, prove that $\langle g^k \rangle = \langle g^d \rangle$ where $d = \gcd(n, k)$. [Hint: $n\mathbb{Z} + k\mathbb{Z} = d\mathbb{Z}$.]
 - (b) For any divisor d|n show that g^d has order n/d.
 - (c) Combine (a) and (b) to prove that for any $k \in \mathbb{Z}$ the element g^k has order $n/\gcd(n,k)$.

2. Multiplication of Subgroups. Let $(G, *, \varepsilon)$ be a group and let $H, K \subseteq G$ be any two subgroups. Consider the Cartesian product of sets

$$H \times K := \{(h,k) : h \in H, k \in K\}$$

and the "multiplication function" $\mu: H \times K \to G$ defined by $\mu(h, k) := h * k$.

- (a) Prove that μ is injective if and only if $H \cap K = \{\varepsilon\}$.
- (b) We can think of the set $H \times K$ as an abstract group by defining

$$(h_1, k_1) * (h_2, k_2) := (h_1 * h_2, k_1 * k_2)$$
 for all $h_1, h_2 \in H$ and $k_1, k_2 \in K$.

In this case we call $(H \times K, *)$ the *direct product* of H and K. Prove that μ is a group homomorphism if and only if we have h * k = k * h for all $h \in H$ and $k \in K$.

(c) The image of $\mu: H \times K \to G$ is the "internal product set"

 $HK := \{h * k : h \in H, k \in K\} \subseteq G.$

Prove that $HK \subseteq G$ is a subgroup if and only if HK = KH.

3. Why Does AB = I Imply BA = I? Given a field \mathbb{F} and a positive integer n we define

 $\mathbb{M} := \mathrm{Mat}_n(\mathbb{F}) = \mathrm{the \ set \ of} \ n \times n \ \mathrm{matrices \ with \ entries \ in \ } \mathbb{F}.$

I claim that this set is a vector space of dimension n^2 over the field \mathbb{F} . Now consider any two matrices $A, B \in \mathbb{M}$ such that AB = I.

- (a) Show that the set $B\mathbb{M} := \{BM : M \in \mathbb{M}\}$ is a vector subspace of \mathbb{M} . In other words, for all matrices $X, Y \in B\mathbb{M}$ and scalars $\alpha, \beta \in \mathbb{F}$, show that $\alpha X + \beta Y \in B\mathbb{M}$.
- (b) More generally, for each integer $k \ge 0$ define the set $B^k \mathbb{M} := \{B^k M : M \in \mathbb{M}\}$ and show that $B^{k+1} \mathbb{M}$ is a vector subspace of $B^k \mathbb{M}$.
- (c) I claim that a finite-dimensional vector space has no infinite descending chain of subspaces. Use this fact to prove that there exists an integer $k \ge 0$ and a matrix $C \in \mathbb{M}$ satisfying $B^k = B^{k+1}C$.
- (d) Let C be as in part (c). Prove that BC = I and hence C = A. It follows that BA = I.

[Remark: Believe it or not, this is the shortest proof I know.]

4. Conjugation is an Automorphism. Let $(G, *, \varepsilon)$ be a group and let $g \in G$ be any element. Define the function $\varphi_q : G \to G$ by $\varphi_q(a) := g * a * g^{-1}$.

- (a) Prove that $\varphi_q: G \to G$ is a bijection.
- (b) Prove that $\varphi_q: G \to G$ is a homomorphism, hence it is an *automorphism* of G.
- (c) Application: Consider any two elements $a, b \in G$. Prove that the cyclic groups $\langle a * b \rangle$ and $\langle b * a \rangle$ are isomorphic, hence the elements a * b and b * a have the same order.

5. Galois Connection. Let (P, \leq) and (Q, \leq) be posets and let $f : P \to Q$ and $g : Q \to P$ be any functions satisfying

$$p \leq g(q) \iff f(p) \leq q$$
 for all $p \in P$ and $q \in Q$.

(a) For all $p \in P$ and $q \in Q$ prove that

$$p \le g(f(p))$$
 and $f(g(q)) \le q$

(b) For all $p_1, p_2 \in P$ and $q_1, q_2 \in Q$ prove that $p_1 \leq p_2 \Rightarrow f(p_1) \leq f(p_2)$ and

and
$$q_1 \leq q_2 \Rightarrow g(q_1) \leq g(q_2).$$

(c) For all $p \in P$ and $q \in Q$ prove that

$$f(p) = f(g(f(p)))$$
 and $g(q) = g(f(g(q))).$

(d) Define the "images" $P' := g[Q] := \{g(q) : q \in Q\}$ and $Q' := f[P] := \{f(p) : p \in P\}$. Prove that these are the same as the sets of "closed elements"

$$P' = \{p \in P : p = g(f(p))\}$$
 and $Q' = \{q \in Q : q = f(g(q))\}.$

(e) Prove that the functions f, g restrict to an isomorphism of posets:

 $f: P' \longleftrightarrow Q': g.$

6. Image and Preimage. Let $(G, *, \delta)$ and $(H, \bullet, \varepsilon)$ be groups and let $\varphi : G \to H$ be any group homomorphism. For every subset $S \subseteq G$ we define the *image set*

$$\varphi[S] := \{\varphi(g) : g \in S\} \subseteq H,$$

and for every subset $T \subseteq H$ we define the *preimage set*

$$\varphi^{-1}[T] := \{ g \in G : \varphi(g) \in T \} \subseteq G.$$

- (a) Show that the function $\varphi^{-1}: H \to G$ exists if and only if $\#\varphi^{-1}[\{h\}] = 1$ for all $h \in H$.
- (b) If $S \subseteq G$ is a subgroup prove that the image $\varphi[S] \subseteq H$ is a subgroup.
- (c) If $T \subseteq H$ is a subgroup prove that the preimage $\varphi^{-1}[T] \subseteq G$ is a subgroup.
- (d) Now you have two functions $\varphi : \mathscr{L}(G) \leftrightarrows \mathscr{L}(H) : \varphi^{-1}$ between the subgroup lattices. Prove that this is a Galois connection.