1. Powers of a Cycle. Consider the standard 12-cycle in cycle notation:

$$
c:=(1,2,3,4,5,6,7,8,9,10,11,12) \in S_{12} .
$$

Compute the first twelve powers $c, c^{2}, c^{3} \ldots, c^{12}$ and express each of them in cycle notation. Try to guess what the k-th power of an n-cycle looks like.
2. Homomorphism and Isomorphism. Let $(G, *, \delta)$ and $(H, \bullet, \varepsilon)$ be abstract groups and let $f: G \rightarrow H$ be a function. We say that f is a (group) homomorphism if it satisfies the following condition:

$$
\text { for all } a, b \in G \text { we have } f(a * b)=f(a) \bullet f(b) \text {. }
$$

(a) If $f: G \rightarrow H$ is a homomorphism, prove that $f(\delta)=\varepsilon$.
(b) If $f: G \rightarrow H$ is a homomorphism, prove that $f\left(a^{-1}\right)=f(a)^{-1}$ for all $a \in G$.
(c) Suppose that $f: G \rightarrow H$ is homomorphism and that the inverse function exists. Prove that the function $f^{-1}: H \rightarrow G$ is also a homomorphism. It follows that invertible homomorphisms are the same as isomorphisms.
3. Isometries $=$ Orthogonal Matrices. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ be column vectors and let \mathbf{x}^{T} denote the row vector corresponding to \mathbf{x}. We define the standard inner product as follows:

$$
\langle\mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{T} \mathbf{y}=\sum_{i} x_{i} y_{i} .
$$

Recall the the distance between two points $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ is defined by $\|\mathbf{x}-\mathbf{y}\|^{2}=\langle\mathbf{x}-\mathbf{y}, \mathbf{x}-\mathbf{y}\rangle$ and recall that the following properties are satisfied:

- We have $\|\mathbf{x}\|^{2}=\langle\mathbf{x}, \mathbf{x}\rangle=0$ if and only if $\mathbf{x}=\mathbf{0}$.
- For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$.
- For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$ and $\alpha, \beta \in \mathbb{R}$ we have $\langle\mathbf{x}, \alpha \mathbf{y}+\beta \mathbf{z}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle+\beta\langle\mathbf{x}, \mathbf{z}\rangle$.

The goal of this problem is to show the following: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is any function that preserves distance and sends the origin to itself then it preserves the inner product. Hence the function is linear. Hence we have $f(\mathbf{x})=A \mathbf{x}$ for some $n \times n$ matrix A, which must satisfy $A^{T} A=I$.
(a) Assume that the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserves the distance between any two points (i.e., $\|f(\mathbf{x})-f(\mathbf{y})\|^{2}=\|\mathbf{x}-\mathbf{y}\|^{2}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$) and sends the origin to iself (i.e., $f(\mathbf{0})=\mathbf{0})$. Prove that

$$
\langle f(\mathbf{x}), f(\mathbf{y})\rangle=\langle\mathbf{x}, \mathbf{y}\rangle \quad \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

(b) Continuing from part (a), prove that this f is a linear function. [Hint: For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$ show that

$$
\left.\|f(\mathbf{x}+\mathbf{y})-(f(\mathbf{x})+f(\mathbf{y}))\|^{2}=0 \quad \text { and } \quad\|f(\alpha \mathbf{x})-\alpha f(\mathbf{x})\|^{2} .\right]
$$

(c) Continuing from (a) and (b), show that $f(\mathbf{x})=A \mathbf{x}$ for some $n \times n$ matrix satisfying $A^{T} A=I$. [Hint: Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}$ be the standard basis vectors. Then $f\left(\mathbf{e}_{i}\right)$ is the i-th column of A. To show that $A^{T} A=I$ use the fact that $\mathbf{e}_{i}^{T} B \mathbf{e}_{j}$ is equal to the i, j-entry of an arbitrary matrix B.]
4. Rotation and Reflection. In class I showed that every element of $O_{2}(\mathbb{R})$ has the form

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \quad \text { or } \quad F_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right) .
$$

(a) Verify that $R_{\theta} \in S O_{2}(\mathbb{R})$ and that $F_{\theta} \in O_{2}(\mathbb{R})-S_{2}(\mathbb{R})$.
(b) We saw on the previous homework that $\mathbf{x} \mapsto R_{\theta} \mathbf{x}$ is a rotation. Use a similar argument to prove that $\mathbf{x} \mapsto F_{\theta} \mathbf{x}$ is a reflection.
(c) For all $\alpha, \beta \in \mathbb{R}$ prove that

- $R_{\alpha} R_{\beta}=R_{\alpha+\beta}$,
- $F_{\alpha} F_{\beta}=R_{\alpha-\beta}$,
- $R_{\alpha} F_{\beta}=F_{\beta}\left(R_{\alpha}\right)^{-1}=F_{\alpha+\beta}$.
(d) Fix a positive integer n and define the matrices $R:=R_{2 \pi / n}$ and $F:=F_{0}$. The subgroup of $O_{2}(\mathbb{R})$ generated by the set $\{R, F\}$ has $2 n$ elements. Use (c) to find them all.

5. The Fermat-Euler-Lagrange Theorem. Let $(G, *, \varepsilon)$ be a group and let $g \in G$ be any element. Define the function $f_{g}: G \rightarrow G$ by $f_{g}(a):=g * a$.
(a) Prove that $f_{g}: G \rightarrow G$ is a bijection.
(b) If G is a finite abelian group, prove that $g^{\# G}=\varepsilon$. [Hint: Suppose that $G=$ $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Explain why $\prod_{i} a_{i}=\prod_{i} f_{g}\left(a_{i}\right)$. Rearrange and then cancel.]
[Remark: This theorem is also true for finite non-abelian groups but we don't have the technology to prove it yet.]
6. Join of Two Subgroups. Let G be a group and let $H, K \subseteq G$ be subgroups. Recall that the subgroup generated by the union $H \cup K$ is called the join:
$H \vee K:=\langle H \cup K\rangle=$ the intersection of all subgroups that contain $H \cup K$.
(a) If $(G,+, 0)$ is abelian, we define the sum of H and K as follows:

$$
H+K:=\{h+k: h \in H, k \in K\} .
$$

Prove that this is a subgroup.
(b) If $(G,+, 0)$ is abelian, use part (a) to prove that $H \vee K=H+K$.
(c) If $(G, *, \varepsilon)$ is non-abelian, show that the following set is not necessarily a subgroup, and hence it does not coincide with the join:

$$
H * K:=\{h * k: h \in H, k \in K\} .
$$

[Hint: The smallest non-abelian group is S_{3}.]

