1. An Example Cubic. Consider the cubic equation

$$
x^{3}-6 x-6=0 .
$$

(a) Apply Cardano's formula to find one specfic root of the equation.
(b) Now apply Lagrange's method to find all three roots. [Hint: Follow the steps in the course notes. There will be a lot of simplification.]
2. Working With Permutations. Let S_{3} be the set of all permutations of the set $\{1,2,3\}$, i.e., all invertible functions

$$
f:\{1,2,3\} \rightarrow\{1,2,3\} .
$$

(a) List all 6 elements of the set. [I recommend using cycle notation.]
(b) We can think of (S_{3}, \circ, id) as a group, where \circ is functional composition and id is the identity function. Write out the full 6×6 group table.
(c) Let S_{n} be the group of permutations of $\{1,2, \ldots, n\}$. An element of S_{n} is called a transposition if it switches two elements of the set and sends every other element to itself. We denote the transposition that switches $i \leftrightarrow j$ by $(i j) \in S_{n}$. Let $A_{n} \subseteq S_{n}$ be the subset of permutations that can be expressed as a composition of an even number of transpositions. Prove that $A_{n} \subseteq S_{n}$ is a subgroup.
(d) List all elements of the subgroup $A_{3} \subseteq S_{3}$ and draw its group table.
3. Working With Axioms. Let G be a set with a binary operation $(a, b) \mapsto a * b$. Consider the following four possible axioms:
(G1) For all $a, b, c \in G$ we have $a *(b * c)=(a * b) * c$.
(G2) There exists some $\varepsilon \in G$ such that $a * \varepsilon=\varepsilon * a=a$ for all $a \in G$.
(G3) For each $a \in G$ there exists some $b \in G$ such that $a * b=b * a=\varepsilon$.
(G4) For each $a \in G$ there exists some $c \in G$ such that $a * c=\varepsilon$.
The element ε in (G2) is called a two-sided identity. The element b in (G3) is called a two-sided inverse for a and the element c in (G3) is called a right inverse for a.
(a) If (G1) and (G2) hold, prove that the two-sided identity element is unique.
(b) If (G1), (G2) and (G3) hold, prove that the two-sided inverse is unique.
(c) Assuming that (G1) and (G2) hold, prove that that (G3) and (G4) are equivalent. [Hint: One direction is obvious. The hard part is to prove that the existence of right inverses implies the existence of two-sided inverses.]
4. Groups of Matrices. Matrix multiplication is necessarily associative because it corresponds to composition of linear functions. You may recall from linear algebra that a real $n \times n$ matrix $A \in \operatorname{Mat}_{n}(\mathbb{R})$ has a (unique) two-sided inverse precisely when $\operatorname{det} A \neq 0$. Now consider the following sets of matrices:

$$
\begin{aligned}
G L_{n}(\mathbb{R}) & =\left\{A \in \operatorname{Mat}_{n}(\mathbb{R}): \operatorname{det} A \neq 0\right\} \\
S L_{n}(\mathbb{R}) & =\left\{A \in \operatorname{Mat}_{n}(\mathbb{R}): \operatorname{det} A=1\right\} \\
O_{n}(\mathbb{R}) & =\left\{A \in \operatorname{Mat}_{n}(\mathbb{R}): A A^{T}=I\right\} \\
S O_{n}(\mathbb{R}) & =\left\{A \in \operatorname{Mat}_{n}(\mathbb{R}): A A^{T}=I \text { and } \operatorname{det} A=1\right\} .
\end{aligned}
$$

Prove that each one of these sets is a group under matrix multiplication. [Hint: It is helpful to remember that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ and $(A B)^{T}=B^{T} A^{T}$ for all matrices $A, B \in$ $\left.\operatorname{Mat}_{n}(\mathbb{R}).\right]$
5. Order of an Element. Let $(G, *, \varepsilon)$ be a group and let $g \in G$ be any element. Then for all integers $n \in \mathbb{Z}$ we define the exponential notation

$$
g^{n}:= \begin{cases}\overbrace{g * g * \cdots * g}^{n \text { times }} & \text { if } n>0, \\ \varepsilon & \text { if } n=0, \\ \underbrace{g^{-1} * g^{-1} * \cdots * g^{-1}}_{-n \text { times }} & \text { if } n<0 .\end{cases}
$$

(a) Check that $g^{m+n}=g^{m} * g^{n}$ for all $m, n \in \mathbb{Z}$.
(b) Use this to prove that $\langle g\rangle:=\left\{g^{n}: n \in \mathbb{Z}\right\}$ is a subgroup of G.
(c) If $\langle g\rangle$ is a finite set, prove that there exists some $n \geq 1$ such that $g^{n}=\varepsilon$.
(d) If $\langle g\rangle$ is finite, and if $r \geq 1$ is the smallest number such that $g^{r}=\varepsilon$, prove that

$$
\#\langle g\rangle=r .
$$

This r is called the order of the element $g \in G$. If the set $\langle g\rangle$ is infinite we will say that g has infinite order.
6. Matrices of Finite and Infinite Order. Consider the matrices

$$
J=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \text { for any } \theta \in \mathbb{R}
$$

(a) Show that J is invertible and has infinite order.
(b) Show that $R_{\theta} R_{-\theta}=I$, hence R_{θ} is invertible.
(c) More generally, show that $R_{\alpha} R_{\beta}=R_{\alpha+\beta}$ for all angles $\alpha, \beta \in \mathbb{R}$.
(d) Conclude that for each integer $n \geq 1$ the matrix $R_{2 \pi / n}$ has order n.
(e) For which angles θ does the matrix R_{θ} have infinite order?

