
MTH 561/661 Fall 2018
Exam 3 — Mon Dec 3 Drew Armstrong

Problem 1. Multiplication of Subgroups. Let H,K ⊆ G be subgroups and consider the
multiplication function µ : H ×K → G defined by µ(h, k) := hk.

(a) Prove that µ is injective if and only if H ∩K = {ε}.

Proof. First suppose that µ is injective and let g ∈ H ∩K. Then since

µ(g, g−1) = ε = µ(ε, ε)

we have (g, g−1) = (ε, ε), and hence g = ε. Conversely, let H ∩K = {ε} and suppose
that µ(h1, k2) = µ(h2, k2). Then we have

h1k1 = h2k2

h−1
2 h1 = k2k

−1
1 ∈ H ∩K,

which implies that h−1
2 h1 = ε and k2k

−1
1 = ε, hence h1 = h2 and k1 = k2. �

(b) If G is abelian, prove that imµ ⊆ G is a subgroup.

Proof. Suppose that G is abelian. Then for all elements h1k1 and h2k2 in imµ we have

(h1k1)(h2k2)
−1 = (h1k1)(k

−1
2 h−1

2 ) = (h1h
−1
2 )(k1k

−1
2 ) ∈ imµ.

�

Problem 2. Direct Product. Let H,K ⊆ G be subgroups.

(a) Suppose that gcd(#H,#K) = 1 and use this to prove that H ∩K = {ε}.

Proof. Since H ∩K ⊆ H is a subgroup, Lagrange’s Theorem says that #(H ∩K)|#H.
Similarly, we have #(H ∩ K)|#K. Then since gcd(#H,#K) = 1 we conclude that
#(H ∩K) = 1, and hence H ∩K = {ε}. �

(b) Assume also that G is abelian with #G = #H ·#K. Use this to prove that G = H×K.

Proof. From (a) and Problem 1 we know that µ : H ×K → G is injective, hence

#(imµ) = #(H ×K) = #H ·#K = #G.

Since imµ ⊆ G, this implies that G = imµ. Finally, since G is abelian we know that
H EG and K EG. �

Problem 3. Orbit-Stabilizer Theorem. Let X be a “set with structure” and let ϕ : G→
Aut(X) be a group homomorphism. For all x ∈ X we define

Orbϕ(x) := {ϕg(x) : g ∈ G} ⊆ X,
Stabϕ(x) := {g ∈ G : ϕg(x) = x} ⊆ G.

You can assume that ϕε = id and ϕ−1
g = ϕg−1 for all g ∈ G.

(a) For all x ∈ X, prove that Stabϕ(x) ⊆ G is a subgroup.

Proof. Fix an element x ∈ X.



• Identity. Since ϕε(x) = id(x) = x we have ε ∈ Stabϕ(x).
• Inverse. For any g ∈ Stabϕ(x) we have

ϕg(x) = x =⇒ x = ϕg−1(x),

and hence g−1 ∈ Stabϕ(x).
• Closure. For any g, h ∈ Stabϕ(x) we have

ϕgh(x) = (ϕg ◦ ϕh)(x) = ϕg(ϕh(x)) = ϕg(x) = x,

and hence gh ∈ Stabϕ(x).
�

(b) For all x ∈ X, prove that the rule ϕg(x) 7→ g · Stabϕ(x) defines a bijection from points
of the orbit to left cosets of the stabilizer:

Orbϕ(x)→ G/Stabϕ(x).

Proof. The map is clearly surjective. It is well-defined and injective since for all
g, h ∈ G we have

ϕg(x) = ϕh(x)⇐⇒ ϕg−1(ϕh(x)) = x

⇐⇒ ϕg−1h(x) = x

⇐⇒ g−1h ∈ Stabϕ(x)

⇐⇒ g · Stabϕ(x) = h · Stabϕ(x).

�

Problem 4. Semidirect Product. Let Isom be the group of isometries f : Rn → Rn. For
all u ∈ Rn you can assume that the translation τu(x) := x + u is an isometry, and for all
f ∈ Isom you can assume that f(0) = 0 implies f(x + y) = f(x) + f(y) for all x,y ∈ Rn.
Consider the subgroups

T := {τu : u ∈ Rn} ⊆ Isom,

Isom0 := {f ∈ Isom : f(0) = 0} ⊆ Isom.

(a) Prove that every f ∈ Isom has the form f = τu ◦ g for some τu ∈ T and g ∈ Isom0.

Proof. Suppose that f(0) = u and define the isometry g := τ−u ◦ f , so that f = τu ◦ g.
Then f has the correct form because

g(0) = (τ−u ◦ f)(0) = τ−u(f(0)) = τ−u(u) = u− u = 0,

and hence g ∈ Isom0. �

(b) For all τu ∈ T and f ∈ Isom0, prove that f ◦ τu ◦ f−1 ∈ T .

Proof. For all x ∈ Rn we have

(f ◦ τu ◦ f−1)(x) = f(τu(f−1(x)))

= f(f−1(x) + u)

= f(f−1(x)) + f(u)

= x + f(u).

It follows that f ◦ τu ◦ f−1 = τf(u) ∈ T as desired. �


