Problem 1. Multiplication of Subgroups. Let $H, K \subseteq G$ be subgroups and consider the multiplication function $\mu: H \times K \rightarrow G$ defined by $\mu(h, k):=h k$.
(a) Prove that μ is injective if and only if $H \cap K=\{\varepsilon\}$.

Proof. First suppose that μ is injective and let $g \in H \cap K$. Then since

$$
\mu\left(g, g^{-1}\right)=\varepsilon=\mu(\varepsilon, \varepsilon)
$$

we have $\left(g, g^{-1}\right)=(\varepsilon, \varepsilon)$, and hence $g=\varepsilon$. Conversely, let $H \cap K=\{\varepsilon\}$ and suppose that $\mu\left(h_{1}, k_{2}\right)=\mu\left(h_{2}, k_{2}\right)$. Then we have

$$
\begin{aligned}
h_{1} k_{1} & =h_{2} k_{2} \\
h_{2}^{-1} h_{1} & =k_{2} k_{1}^{-1} \in H \cap K
\end{aligned}
$$

which implies that $h_{2}^{-1} h_{1}=\varepsilon$ and $k_{2} k_{1}^{-1}=\varepsilon$, hence $h_{1}=h_{2}$ and $k_{1}=k_{2}$.
(b) If G is abelian, prove that $\operatorname{im} \mu \subseteq G$ is a subgroup.

Proof. Suppose that G is abelian. Then for all elements $h_{1} k_{1}$ and $h_{2} k_{2}$ in im μ we have

$$
\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)^{-1}=\left(h_{1} k_{1}\right)\left(k_{2}^{-1} h_{2}^{-1}\right)=\left(h_{1} h_{2}^{-1}\right)\left(k_{1} k_{2}^{-1}\right) \in \operatorname{im} \mu .
$$

Problem 2. Direct Product. Let $H, K \subseteq G$ be subgroups.
(a) Suppose that $\operatorname{gcd}(\# H, \# K)=1$ and use this to prove that $H \cap K=\{\varepsilon\}$.

Proof. Since $H \cap K \subseteq H$ is a subgroup, Lagrange's Theorem says that $\#(H \cap K) \mid \# H$. Similarly, we have $\#(H \cap K) \mid \# K$. Then since $\operatorname{gcd}(\# H, \# K)=1$ we conclude that $\#(H \cap K)=1$, and hence $H \cap K=\{\varepsilon\}$.
(b) Assume also that G is abelian with $\# G=\# H \cdot \# K$. Use this to prove that $G=H \times K$. Proof. From (a) and Problem 1 we know that $\mu: H \times K \rightarrow G$ is injective, hence

$$
\#(\operatorname{im} \mu)=\#(H \times K)=\# H \cdot \# K=\# G .
$$

Since $\operatorname{im} \mu \subseteq G$, this implies that $G=\operatorname{im} \mu$. Finally, since G is abelian we know that $H \unlhd G$ and $K \unlhd G$.

Problem 3. Orbit-Stabilizer Theorem. Let X be a "set with structure" and let $\varphi: G \rightarrow$ $\operatorname{Aut}(X)$ be a group homomorphism. For all $x \in X$ we define

$$
\begin{aligned}
\operatorname{Orb}_{\varphi}(x) & :=\left\{\varphi_{g}(x): g \in G\right\} \subseteq X \\
\operatorname{Stab}_{\varphi}(x) & :=\left\{g \in G: \varphi_{g}(x)=x\right\} \subseteq G .
\end{aligned}
$$

You can assume that $\varphi_{\varepsilon}=\mathrm{id}$ and $\varphi_{g}^{-1}=\varphi_{g^{-1}}$ for all $g \in G$.
(a) For all $x \in X$, prove that $\operatorname{Stab}_{\varphi}(x) \subseteq G$ is a subgroup.

Proof. Fix an element $x \in X$.

- Identity. Since $\varphi_{\varepsilon}(x)=\operatorname{id}(x)=x$ we have $\varepsilon \in \operatorname{Stab}_{\varphi}(x)$.
- Inverse. For any $g \in \operatorname{Stab}_{\varphi}(x)$ we have

$$
\varphi_{g}(x)=x \quad \Longrightarrow \quad x=\varphi_{g^{-1}}(x),
$$

and hence $g^{-1} \in \operatorname{Stab}_{\varphi}(x)$.

- Closure. For any $g, h \in \operatorname{Stab}_{\varphi}(x)$ we have

$$
\varphi_{g h}(x)=\left(\varphi_{g} \circ \varphi_{h}\right)(x)=\varphi_{g}\left(\varphi_{h}(x)\right)=\varphi_{g}(x)=x,
$$

and hence $g h \in \operatorname{Stab}_{\varphi}(x)$.
(b) For all $x \in X$, prove that the rule $\varphi_{g}(x) \mapsto g \cdot \operatorname{Stab}_{\varphi}(x)$ defines a bijection from points of the orbit to left cosets of the stabilizer:

$$
\operatorname{Orb}_{\varphi}(x) \rightarrow G / \operatorname{Stab}_{\varphi}(x) .
$$

Proof. The map is clearly surjective. It is well-defined and injective since for all $g, h \in G$ we have

$$
\begin{aligned}
\varphi_{g}(x)=\varphi_{h}(x) & \Longleftrightarrow \varphi_{g^{-1}}\left(\varphi_{h}(x)\right)=x \\
& \Longleftrightarrow \varphi_{g^{-1} h}(x)=x \\
& \Longleftrightarrow g^{-1} h \in \operatorname{Stab}_{\varphi}(x) \\
& \Longleftrightarrow g \cdot \operatorname{Stab}_{\varphi}(x)=h \cdot \operatorname{Stab}_{\varphi}(x)
\end{aligned}
$$

Problem 4. Semidirect Product. Let Isom be the group of isometries $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. For all $\mathbf{u} \in \mathbb{R}^{n}$ you can assume that the translation $\tau_{\mathbf{u}}(\mathbf{x}):=\mathbf{x}+\mathbf{u}$ is an isometry, and for all $f \in \operatorname{Isom}$ you can assume that $f(\mathbf{0})=\mathbf{0}$ implies $f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Consider the subgroups

$$
\begin{aligned}
T & :=\left\{\tau_{\mathbf{u}}: \mathbf{u} \in \mathbb{R}^{n}\right\} \subseteq \text { Isom }, \\
\text { Isom }_{\mathbf{0}} & :=\{f \in \operatorname{Isom}: f(\mathbf{0})=\mathbf{0}\} \subseteq \text { Isom. }
\end{aligned}
$$

(a) Prove that every $f \in \operatorname{Isom}$ has the form $f=\tau_{\mathbf{u}} \circ g$ for some $\tau_{\mathbf{u}} \in T$ and $g \in$ Isom $_{\mathbf{0}}$.

Proof. Suppose that $f(\mathbf{0})=\mathbf{u}$ and define the isometry $g:=\tau_{-\mathbf{u}} \circ f$, so that $f=\tau_{\mathbf{u}} \circ g$. Then f has the correct form because

$$
g(\mathbf{0})=\left(\tau_{-\mathbf{u}} \circ f\right)(\mathbf{0})=\tau_{-\mathbf{u}}(f(\mathbf{0}))=\tau_{-\mathbf{u}}(\mathbf{u})=\mathbf{u}-\mathbf{u}=\mathbf{0},
$$

and hence $g \in$ Isom $_{\mathbf{0}}$.
(b) For all $\tau_{\mathbf{u}} \in T$ and $f \in \operatorname{Isom}_{\mathbf{0}}$, prove that $f \circ \tau_{\mathbf{u}} \circ f^{-1} \in T$.

Proof. For all $\mathbf{x} \in \mathbb{R}^{n}$ we have

$$
\begin{aligned}
\left(f \circ \tau_{\mathbf{u}} \circ f^{-1}\right)(\mathbf{x}) & =f\left(\tau_{\mathbf{u}}\left(f^{-1}(\mathbf{x})\right)\right) \\
& =f\left(f^{-1}(\mathbf{x})+\mathbf{u}\right) \\
& =f\left(f^{-1}(\mathbf{x})\right)+f(\mathbf{u}) \\
& =\mathbf{x}+f(\mathbf{u}) .
\end{aligned}
$$

It follows that $f \circ \tau_{\mathbf{u}} \circ f^{-1}=\tau_{f(\mathbf{u})} \in T$ as desired.

