Problem 1. Multiplication of Subgroups. Let $H, K \subseteq G$ be subgroups and consider the multiplication function $\mu : H \times K \to G$ defined by $\mu(h, k) := hk$.

(a) Prove that μ is injective if and only if $H \cap K = \{\varepsilon\}$.

Proof. First suppose that μ is injective and let $g \in H \cap K$. Then since

$$\mu(g,g^{-1}) = \varepsilon = \mu(\varepsilon,\varepsilon)$$

we have $(g, g^{-1}) = (\varepsilon, \varepsilon)$, and hence $g = \varepsilon$. Conversely, let $H \cap K = \{\varepsilon\}$ and suppose that $\mu(h_1, k_2) = \mu(h_2, k_2)$. Then we have

$$h_1 k_1 = h_2 k_2$$
$$h_2^{-1} h_1 = k_2 k_1^{-1} \in H \cap K$$

which implies that $h_2^{-1}h_1 = \varepsilon$ and $k_2k_1^{-1} = \varepsilon$, hence $h_1 = h_2$ and $k_1 = k_2$.

(b) If G is abelian, prove that im $\mu \subseteq G$ is a subgroup.

Proof. Suppose that G is abelian. Then for all elements h_1k_1 and h_2k_2 in im μ we have $(h_1k_1)(h_2k_2)^{-1} = (h_1k_1)(k_2^{-1}h_2^{-1}) = (h_1h_2^{-1})(k_1k_2^{-1}) \in \operatorname{im} \mu.$

Problem 2. Direct Product. Let $H, K \subseteq G$ be subgroups.

(a) Suppose that gcd(#H, #K) = 1 and use this to prove that $H \cap K = \{\varepsilon\}$.

Proof. Since $H \cap K \subseteq H$ is a subgroup, Lagrange's Theorem says that $\#(H \cap K)|\#H$. Similarly, we have $\#(H \cap K)|\#K$. Then since $\gcd(\#H, \#K) = 1$ we conclude that $\#(H \cap K) = 1$, and hence $H \cap K = \{\varepsilon\}$.

(b) Assume also that G is abelian with $#G = #H \cdot #K$. Use this to prove that $G = H \times K$.

Proof. From (a) and Problem 1 we know that $\mu: H \times K \to G$ is injective, hence

$$#(\operatorname{im} \mu) = #(H \times K) = #H \cdot #K = #G.$$

Since im $\mu \subseteq G$, this implies that $G = \operatorname{im} \mu$. Finally, since G is abelian we know that $H \leq G$ and $K \leq G$.

Problem 3. Orbit-Stabilizer Theorem. Let X be a "set with structure" and let $\varphi : G \to Aut(X)$ be a group homomorphism. For all $x \in X$ we define

$$Orb_{\varphi}(x) := \{\varphi_g(x) : g \in G\} \subseteq X,$$

$$Stab_{\varphi}(x) := \{g \in G : \varphi_g(x) = x\} \subseteq G.$$

You can assume that $\varphi_{\varepsilon} = \text{id}$ and $\varphi_q^{-1} = \varphi_{q^{-1}}$ for all $g \in G$.

(a) For all $x \in X$, prove that $\operatorname{Stab}_{\varphi}(x) \subseteq G$ is a subgroup.

Proof. Fix an element $x \in X$.

- Identity. Since $\varphi_{\varepsilon}(x) = id(x) = x$ we have $\varepsilon \in Stab_{\varphi}(x)$.
- Inverse. For any $g \in \operatorname{Stab}_{\varphi}(x)$ we have

$$\varphi_g(x) = x \implies x = \varphi_{g^{-1}}(x),$$

and hence $g^{-1} \in \operatorname{Stab}_{\varphi}(x)$.

• Closure. For any $g, h \in \operatorname{Stab}_{\varphi}(x)$ we have

$$\varphi_{gh}(x) = (\varphi_g \circ \varphi_h)(x) = \varphi_g(\varphi_h(x)) = \varphi_g(x) = x,$$

and hence $gh \in \operatorname{Stab}_{\varphi}(x)$.

(b) For all $x \in X$, prove that the rule $\varphi_g(x) \mapsto g \cdot \operatorname{Stab}_{\varphi}(x)$ defines a bijection from points of the orbit to left cosets of the stabilizer:

$$\operatorname{Orb}_{\varphi}(x) \to G/\operatorname{Stab}_{\varphi}(x).$$

Proof. The map is clearly surjective. It is well-defined and injective since for all $g, h \in G$ we have

$$\varphi_g(x) = \varphi_h(x) \iff \varphi_{g^{-1}}(\varphi_h(x)) = x$$
$$\iff \varphi_{g^{-1}h}(x) = x$$
$$\iff g^{-1}h \in \operatorname{Stab}_{\varphi}(x)$$
$$\iff g \cdot \operatorname{Stab}_{\varphi}(x) = h \cdot \operatorname{Stab}_{\varphi}(x).$$

Problem 4. Semidirect Product. Let Isom be the group of isometries $f : \mathbb{R}^n \to \mathbb{R}^n$. For all $\mathbf{u} \in \mathbb{R}^n$ you can assume that the translation $\tau_{\mathbf{u}}(\mathbf{x}) := \mathbf{x} + \mathbf{u}$ is an isometry, and for all $f \in$ Isom you can assume that $f(\mathbf{0}) = \mathbf{0}$ implies $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Consider the subgroups

$$T := \{ \tau_{\mathbf{u}} : \mathbf{u} \in \mathbb{R}^n \} \subseteq \text{Isom},$$

$$\text{Isom}_{\mathbf{0}} := \{ f \in \text{Isom} : f(\mathbf{0}) = \mathbf{0} \} \subseteq \text{Isom}.$$

(a) Prove that every $f \in \text{Isom}$ has the form $f = \tau_{\mathbf{u}} \circ g$ for some $\tau_{\mathbf{u}} \in T$ and $g \in \text{Isom}_{\mathbf{0}}$.

Proof. Suppose that $f(\mathbf{0}) = \mathbf{u}$ and define the isometry $g := \tau_{-\mathbf{u}} \circ f$, so that $f = \tau_{\mathbf{u}} \circ g$. Then f has the correct form because

$$g(\mathbf{0}) = (\tau_{-\mathbf{u}} \circ f)(\mathbf{0}) = \tau_{-\mathbf{u}}(f(\mathbf{0})) = \tau_{-\mathbf{u}}(\mathbf{u}) = \mathbf{u} - \mathbf{u} = \mathbf{0},$$

and hence $g \in \text{Isom}_{\mathbf{0}}$.

(b) For all $\tau_{\mathbf{u}} \in T$ and $f \in \text{Isom}_{\mathbf{0}}$, prove that $f \circ \tau_{\mathbf{u}} \circ f^{-1} \in T$.

Proof. For all $\mathbf{x} \in \mathbb{R}^n$ we have

$$(f \circ \tau_{\mathbf{u}} \circ f^{-1})(\mathbf{x}) = f(\tau_{\mathbf{u}}(f^{-1}(\mathbf{x})))$$
$$= f(f^{-1}(\mathbf{x}) + \mathbf{u})$$
$$= f(f^{-1}(\mathbf{x})) + f(\mathbf{u})$$
$$= \mathbf{x} + f(\mathbf{u}).$$

It follows that $f \circ \tau_{\mathbf{u}} \circ f^{-1} = \tau_{f(\mathbf{u})} \in T$ as desired.