
MTH 561/661 Fall 2018
Exam 2 — Fri Oct 26 Drew Armstrong

Problem 1. Subgroups of Z. Consider the abelian group (Z,+, 0).

(a) Prove that every subgroup H ⊆ Z has the form H = mZ for some m ≥ 0. [Hint: If
H 6= {0} then let m ∈ H be the smallest positive element.]

Proof. If H = {0} = 0Z then we are done. Otherwise, let m ≥ 1 be the smallest
positive element of H. First note that mZ = 〈m〉 ⊆ H. Conversely, let k ∈ H. Then
we have k = qm+r for some remainder satisfying 0 ≤ r < m. If r > 0 then r = k−qm
is a smaller positive element of H. Thus we must have r = 0 and hence k = qm ∈ mZ.
Since this is true for all k ∈ H we conclude that H ⊆ mZ. �

(b) For all m,n ∈ Z prove that mZ ⊆ nZ if and only if n|m.

Proof. Suppose that mZ ⊆ nZ. Then since m ∈ mZ we must have m ∈ nZ and
hence m = nk for some k ∈ Z. By definition this means that n|m. Conversely,
suppose that n|m, so that m = nk for some k ∈ Z. Then for any m` ∈ mZ we have
m` = (nk)` = n(k`) ∈ nZ, and hence mZ ⊆ nZ. �

Problem 2. Equivalence Modulo a Subgroup. Let H ⊆ G be a subgroup.

(a) Prove that the relation a ∼ b⇐⇒ a−1b ∈ H is an equivalence on G.

Proof. There are three things to check.

• Reflexive. For all a ∈ G we have a−1a = ε ∈ H and hence a ∼ a.
• Symmetric. For all a, b ∈ G we have

a ∼ b =⇒ a−1b ∈ H =⇒ b−1a = (a−1b)−1 ∈ H =⇒ b ∼ a.

• Transitive. For all a, b, c ∈ G we have

a ∼ b and b ∼ c =⇒ a−1b ∈ H and b−1c ∈ H

=⇒ a−1c = (a−1b)(b−1c) ∈ H

=⇒ a ∼ c.

�

(b) For all a, b ∈ G prove that aH = bH implies a ∼ b.

Proof. Suppose that aH = bH. Then since b ∈ bH we have b ∈ aH and hence b = ah
for some h ∈ H. But then a−1b = h ∈ H. �

(c) For all a, b ∈ G prove that a ∼ b implies aH = bH.

Proof. Suppose that a ∼ b, so that a−1b = h ∈ H. Then for all ah′ ∈ aH we have
ah′ = (bh−1)h′ = b(h−1h′) ∈ bH, hence aH ⊆ bH. And for all bh′ ∈ bH we have
bh′ = (ah)h′ = a(hh′) ∈ aH, hence bH ⊆ aH. �



Problem 3. Image and Preimage. Let ϕ : G → H be a group homomorphism. For all
subsets S ⊆ G and T ⊆ H we define

ϕ[S] = {ϕ(s) : s ∈ S} ⊆ H,

ϕ−1[T ] = {g ∈ G : ϕ(g) ∈ T} ⊆ G.

(a) For all subsets S ⊆ G prove that S ⊆ ϕ−1[ϕ[S]].

Proof. For all s ∈ S we have ϕ(s) ∈ ϕ[S] and hence s ∈ ϕ−1[ϕ[S]]. �

(b) If S ⊆ G is a subgroup prove that ϕ[S] ⊆ H is a subgroup.

Proof. Let S ⊆ G be a subgroup and consider any h1, h2 ∈ ϕ[S]. By definition this
means h1 = ϕ(s1) and h2 = ϕ(s2) for some s1, s2 ∈ S. Then since s1s

−1
2 ∈ S we have

h1h
−1
2 = ϕ(s1)ϕ(s2)

−1 = ϕ(s1s
−1
2 ) ∈ ϕ[S].

�
(c) If T ⊆ H is a subgroup prove that ϕ−1[T ] ⊆ G is a subgroup.

Proof. Let T ⊆ H be a subgroup and consider any g1, g2 ∈ ϕ−1[T ]. By definition this
means ϕ(g1) ∈ T and ϕ(g2) ∈ T . Then since T is a subgroup we have

ϕ(g1g
−1
2 ) = ϕ(g1)ϕ(g2)

−1 ∈ T,

and hence g1g
−1
2 ∈ ϕ−1[T ]. �

Problem 4. Normal Subgroups. Let ϕ : G→ G′ be any group homomorphism.

(a) Prove that kerϕ ⊆ G is a normal subgroup.

Proof. For all g ∈ G and k ∈ kerϕ we have

ϕ(gkg−1) = ϕ(g)ϕ(k)ϕ(g)−1 = ϕ(g)εϕ(g)−1 = ϕ(g)ϕ(g)−1 = ε,

and hence gkg−1 ∈ kerϕ. �

(b) If H ⊆ G is any subgroup prove that the following set is also subgroup:

H(kerϕ) := {hk : h ∈ H, k ∈ kerϕ} ⊆ G.

Proof. I’ll do it the slow way.

• Identity. Since ε ∈ H and ε ∈ kerϕ we have ε = εε ∈ H(kerϕ).
• Inverses. Consider h ∈ H and k ∈ kerϕ. Then from (a) we have hkh−1 = k′ for

some k′ ∈ kerϕ, and hence

(hk)−1 = k−1h−1 = h−1(k′)−1 ∈ H(kerϕ).

• Closure. Consider h1k1 and h2k2 in H(kerϕ). Then from (a) we have h−12 k1h2 =
k′ for some k′ ∈ kerϕ, and hence

(h1k1)(h2k2) = h1(k1h2)k2 = h1(h2k
′)k2 = (h1h2)(k

′k2) ∈ H(kerϕ).

�


