Problem 1. Subgroups of \mathbb{Z}. Consider the abelian group $(\mathbb{Z},+, 0)$.
(a) Prove that every subgroup $H \subseteq \mathbb{Z}$ has the form $H=m \mathbb{Z}$ for some $m \geq 0$. [Hint: If $H \neq\{0\}$ then let $m \in H$ be the smallest positive element.]

Proof. If $H=\{0\}=0 \mathbb{Z}$ then we are done. Otherwise, let $m \geq 1$ be the smallest positive element of H. First note that $m \mathbb{Z}=\langle m\rangle \subseteq H$. Conversely, let $k \in H$. Then we have $k=q m+r$ for some remainder satisfying $0 \leq r<m$. If $r>0$ then $r=k-q m$ is a smaller positive element of H. Thus we must have $r=0$ and hence $k=q m \in m \mathbb{Z}$. Since this is true for all $k \in H$ we conclude that $H \subseteq m \mathbb{Z}$.
(b) For all $m, n \in \mathbb{Z}$ prove that $m \mathbb{Z} \subseteq n \mathbb{Z}$ if and only if $n \mid m$.

Proof. Suppose that $m \mathbb{Z} \subseteq n \mathbb{Z}$. Then since $m \in m \mathbb{Z}$ we must have $m \in n \mathbb{Z}$ and hence $m=n k$ for some $k \in \mathbb{Z}$. By definition this means that $n \mid m$. Conversely, suppose that $n \mid m$, so that $m=n k$ for some $k \in \mathbb{Z}$. Then for any $m \ell \in m \mathbb{Z}$ we have $m \ell=(n k) \ell=n(k \ell) \in n \mathbb{Z}$, and hence $m \mathbb{Z} \subseteq n \mathbb{Z}$.

Problem 2. Equivalence Modulo a Subgroup. Let $H \subseteq G$ be a subgroup.
(a) Prove that the relation $a \sim b \Longleftrightarrow a^{-1} b \in H$ is an equivalence on G.

Proof. There are three things to check.

- Reflexive. For all $a \in G$ we have $a^{-1} a=\varepsilon \in H$ and hence $a \sim a$.
- Symmetric. For all $a, b \in G$ we have

$$
a \sim b \Longrightarrow a^{-1} b \in H \Longrightarrow b^{-1} a=\left(a^{-1} b\right)^{-1} \in H \Longrightarrow b \sim a
$$

- Transitive. For all $a, b, c \in G$ we have

$$
\begin{aligned}
a \sim b \text { and } b \sim c & \Longrightarrow a^{-1} b \in H \text { and } b^{-1} c \in H \\
& \Longrightarrow a^{-1} c=\left(a^{-1} b\right)\left(b^{-1} c\right) \in H \\
& \Longrightarrow a \sim c .
\end{aligned}
$$

(b) For all $a, b \in G$ prove that $a H=b H$ implies $a \sim b$.

Proof. Suppose that $a H=b H$. Then since $b \in b H$ we have $b \in a H$ and hence $b=a h$ for some $h \in H$. But then $a^{-1} b=h \in H$.
(c) For all $a, b \in G$ prove that $a \sim b$ implies $a H=b H$.

Proof. Suppose that $a \sim b$, so that $a^{-1} b=h \in H$. Then for all $a h^{\prime} \in a H$ we have $a h^{\prime}=\left(b h^{-1}\right) h^{\prime}=b\left(h^{-1} h^{\prime}\right) \in b H$, hence $a H \subseteq b H$. And for all $b h^{\prime} \in b H$ we have $b h^{\prime}=(a h) h^{\prime}=a\left(h h^{\prime}\right) \in a H$, hence $b H \subseteq a H$.

Problem 3. Image and Preimage. Let $\varphi: G \rightarrow H$ be a group homomorphism. For all subsets $S \subseteq G$ and $T \subseteq H$ we define

$$
\begin{aligned}
\varphi[S] & =\{\varphi(s): s \in S\} \subseteq H, \\
\varphi^{-1}[T] & =\{g \in G: \varphi(g) \in T\} \subseteq G .
\end{aligned}
$$

(a) For all subsets $S \subseteq G$ prove that $S \subseteq \varphi^{-1}[\varphi[S]]$.

Proof. For all $s \in S$ we have $\varphi(s) \in \varphi[S]$ and hence $s \in \varphi^{-1}[\varphi[S]]$.
(b) If $S \subseteq G$ is a subgroup prove that $\varphi[S] \subseteq H$ is a subgroup.

Proof. Let $S \subseteq G$ be a subgroup and consider any $h_{1}, h_{2} \in \varphi[S]$. By definition this means $h_{1}=\varphi\left(s_{1}\right)$ and $h_{2}=\varphi\left(s_{2}\right)$ for some $s_{1}, s_{2} \in S$. Then since $s_{1} s_{2}^{-1} \in S$ we have

$$
h_{1} h_{2}^{-1}=\varphi\left(s_{1}\right) \varphi\left(s_{2}\right)^{-1}=\varphi\left(s_{1} s_{2}^{-1}\right) \in \varphi[S] .
$$

(c) If $T \subseteq H$ is a subgroup prove that $\varphi^{-1}[T] \subseteq G$ is a subgroup.

Proof. Let $T \subseteq H$ be a subgroup and consider any $g_{1}, g_{2} \in \varphi^{-1}[T]$. By definition this means $\varphi\left(g_{1}\right) \in T$ and $\varphi\left(g_{2}\right) \in T$. Then since T is a subgroup we have

$$
\varphi\left(g_{1} g_{2}^{-1}\right)=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)^{-1} \in T,
$$

and hence $g_{1} g_{2}^{-1} \in \varphi^{-1}[T]$.
Problem 4. Normal Subgroups. Let $\varphi: G \rightarrow G^{\prime}$ be any group homomorphism.
(a) Prove that $\operatorname{ker} \varphi \subseteq G$ is a normal subgroup.

Proof. For all $g \in G$ and $k \in \operatorname{ker} \varphi$ we have

$$
\varphi\left(g k g^{-1}\right)=\varphi(g) \varphi(k) \varphi(g)^{-1}=\varphi(g) \varepsilon \varphi(g)^{-1}=\varphi(g) \varphi(g)^{-1}=\varepsilon,
$$

and hence $g k g^{-1} \in \operatorname{ker} \varphi$.
(b) If $H \subseteq G$ is any subgroup prove that the following set is also subgroup:

$$
H(\operatorname{ker} \varphi):=\{h k: h \in H, k \in \operatorname{ker} \varphi\} \subseteq G .
$$

Proof. I'll do it the slow way.

- Identity. Since $\varepsilon \in H$ and $\varepsilon \in \operatorname{ker} \varphi$ we have $\varepsilon=\varepsilon \varepsilon \in H(\operatorname{ker} \varphi)$.
- Inverses. Consider $h \in H$ and $k \in \operatorname{ker} \varphi$. Then from (a) we have $h k h^{-1}=k^{\prime}$ for some $k^{\prime} \in \operatorname{ker} \varphi$, and hence

$$
(h k)^{-1}=k^{-1} h^{-1}=h^{-1}\left(k^{\prime}\right)^{-1} \in H(\operatorname{ker} \varphi) .
$$

- Closure. Consider $h_{1} k_{1}$ and $h_{2} k_{2}$ in $H(\operatorname{ker} \varphi)$. Then from (a) we have $h_{2}^{-1} k_{1} h_{2}=$ k^{\prime} for some $k^{\prime} \in \operatorname{ker} \varphi$, and hence

$$
\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)=h_{1}\left(k_{1} h_{2}\right) k_{2}=h_{1}\left(h_{2} k^{\prime}\right) k_{2}=\left(h_{1} h_{2}\right)\left(k^{\prime} k_{2}\right) \in H(\operatorname{ker} \varphi) .
$$

