Problem 1. Definition of Subgroup. Let $(G, *, \varepsilon)$ be a group and let $H \subseteq G$ be any subset. We say that H is a subgroup if the following three conditions hold:
(S1) For all $a, b \in H$ we have $a * b \in H$.
(S2) We have $\varepsilon \in H$.
(S3) For all $a \in H$ we have $a^{-1} \in H$.
(a) If H is a subgroup, prove that for all $a, b \in H$ we have $a * b^{-1} \in H$.

If $a, b \in H$ then (S3) implies $b^{-1} \in H$ and then (S1) implies $a * b^{-1} \in H$.
(b) (Bonus) Assume that for all $a, b \in H$ we have $a * b^{-1} \in H$. Prove that H is a subgroup.

We will prove (S2), (S3), (S1), in that order:
(S2) If $a \in H$ then $\varepsilon=a * a^{-1} \in H$.
(S3) If $b \in H$ then from (S2) we have $b^{-1}=\varepsilon * b^{-1} \in H$.
(S1) If $a, b \in H$ then from (S3) we have $b^{-1} \in H$ and hence $a * b=a *\left(b^{-1}\right)^{-1} \in H$.
(c) If $H, K \subseteq G$ are subgroups prove that $H \cap K$ is a subgroup. [Hint: Use (a) and (b).]

Suppose that $a, b \in H \cap K$, which implies $a, b \in H$ and $a, b \in K$. Then part (a) says that $a * b^{-1} \in H$ and $a * b^{-1} \in K$, hence $a * b^{-1} \in H \cap K$. We conclude from part (b) that $H \cap K$ is a subgroup.

Problem 2. Cyclic Groups. Let $(G, *, \varepsilon)$ be a group and let $g \in G$ be any element. Consider the cyclic subgroup $\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\} \subseteq G$.
(a) If $\langle g\rangle$ is a finite set, prove that there exists an integer $n \geq 1$ such that $g^{n}=\varepsilon$.

If $\langle g\rangle$ is finite then there exist integers $k<\ell$ such that $g^{k}=g^{\ell}$. Now define $n=\ell-k$ and observe that

$$
\begin{aligned}
g^{\ell} & =g^{k} \\
g^{\ell} * g^{-k} & =g^{k} * g^{-k} \\
g^{\ell-k} & =\varepsilon .
\end{aligned}
$$

(b) If $g^{n}=\varepsilon$ for some $n \geq 1$, prove that $\langle g\rangle=\left\{\varepsilon, g, g^{2}, \ldots, g^{n-1}\right\}$.

Consider any element $g^{k} \in\langle g\rangle$ and divide k by n to obtain $k=q n+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<k$. Now observe that

$$
g^{k}=g^{q n+r}=\left(g^{n}\right)^{q} * g^{r}=\varepsilon^{q} * g^{r}=g^{r} \in\left\{\varepsilon, g, g^{2}, \ldots, g^{n-1}\right\} .
$$

(c) If m is the smallest positive integer such that $g^{m}=\varepsilon$, prove that the m elements

$$
g^{0}, g^{1}, g^{2}, \ldots, g^{m-1}
$$

are distinct, and hence $\#\langle g\rangle=m$.
Suppose for contradiction that we have $g^{k}=g^{\ell}$ for some integers $0 \leq k<\ell \leq m-1$, so that $1 \leq \ell-k<m$. Then from part (a) we have $g^{\ell-k}=\varepsilon$, which contradicts the minimality of m.

Problem 3. Homomorphism and Isomorphism. Let $(G, *, \delta)$ and $(H, \bullet, \varepsilon)$ be groups and let $f: G \rightarrow H$ be any function satisfying

$$
f(a * b)=f(a) \bullet f(b) \text { for all } a, b \in G
$$

(a) Prove that $f(\delta)=\varepsilon$.

$$
\begin{aligned}
\delta * \delta & =\delta \\
f(\delta) \bullet f(\delta) & =f(\delta) \\
f(\delta) \bullet f(\delta) \bullet f(\delta)^{-1} & =f(\delta) \bullet f(\delta)^{-1} \\
f(\delta) & =\varepsilon .
\end{aligned}
$$

(b) For all $a \in G$ prove that $f\left(a^{-1}\right)=f(a)^{-1}$.

$$
\begin{aligned}
a * a^{-1} & =\delta \\
f\left(a * a^{-1}\right) & =f(\delta) \\
f(a) \bullet f\left(a^{-1}\right) & =\varepsilon \\
f(a)^{-1} \bullet f(a) \bullet f\left(a^{-1}\right) & =f(a)^{-1} \bullet \varepsilon \\
f\left(a^{-1}\right) & =f(a)^{-1} .
\end{aligned}
$$

(c) Assuming that the inverse function $f^{-1}: H \rightarrow G$ exists, prove that

$$
f^{-1}(a \bullet b)=f^{-1}(a) * f^{-1}(b) \text { for all } a, b \in H .
$$

Observe that

$$
f\left(f^{-1}(a) * f^{-1}(b)\right)=f\left(f^{-1}(a)\right) \bullet f\left(f^{-1}(b)\right)=a \bullet b
$$

Then apply f^{-1} to both sides.
Problem 4. Orthogonal Matrices. Consider the set of 2×2 orthogonal matrices:

$$
O_{2}(\mathbb{R})=\left\{A \in \operatorname{Mat}_{2}(\mathbb{R}): A^{T} A=I\right\}
$$

(a) Given A and B in $O_{2}(\mathbb{R})$ prove that $A B^{-1}$ is in $O_{2}(\mathbb{R})$.

Assume that $A^{T} A=I$ and $B^{T} B=I$, hence $\left(B^{-1}\right)^{T}=B$. Then we have

$$
\left(A B^{-1}\right)^{T}\left(A B^{-1}\right)=\left(B^{-1}\right)^{T} A^{T} A B^{-1}=B I B^{-1}=I
$$

(b) Let $\langle-,-\rangle: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the standard dot product and let $A \in \operatorname{Mat}_{2}(\mathbb{R})$. If $\langle A \mathbf{x}, A \mathbf{y}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$, prove that $A \in O_{2}(\mathbb{R})$.

Let \mathbf{e}_{i} and \mathbf{e}_{j} be the i-th and j-th standard basis vectors. Then the i, j-entry of the matrix $A^{T} A$ is

$$
\mathbf{e}_{i}^{T}\left(A^{T} A\right) \mathbf{e}_{j}=\left(A \mathbf{e}_{i}\right)^{T}\left(A \mathbf{e}_{j}\right)=\left\langle A \mathbf{e}_{i}, A \mathbf{e}_{j}\right\rangle=\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j\end{cases}
$$

In other words, $A^{T} A=I$.
(c) Prove that every matrix $A \in O_{2}(\mathbb{R})$ has the form

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \quad \text { or } \quad A=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

The equation $A^{T} A=I$ says that the two columns of A are perpendicular unit vectors. Since the first column is a unit vector it must equal $(\cos \theta, \sin \theta)$ for some angle θ. Then since the second column is a perpendicular unit vector, it must be $(-\sin \theta, \cos \theta)$ or $(\sin \theta,-\cos \theta)$.

