
MTH 561/661 Fall 2018
Exam 1 — Fri Sept 21 Drew Armstrong

Problem 1. Definition of Subgroup. Let (G, ∗, ε) be a group and let H ⊆ G be any
subset. We say that H is a subgroup if the following three conditions hold:

(S1) For all a, b ∈ H we have a ∗ b ∈ H.
(S2) We have ε ∈ H.
(S3) For all a ∈ H we have a−1 ∈ H.

(a) If H is a subgroup, prove that for all a, b ∈ H we have a ∗ b−1 ∈ H.

If a, b ∈ H then (S3) implies b−1 ∈ H and then (S1) implies a ∗ b−1 ∈ H.

(b) (Bonus) Assume that for all a, b ∈ H we have a∗b−1 ∈ H. Prove that H is a subgroup.

We will prove (S2), (S3), (S1), in that order:

(S2) If a ∈ H then ε = a ∗ a−1 ∈ H.
(S3) If b ∈ H then from (S2) we have b−1 = ε ∗ b−1 ∈ H.
(S1) If a, b ∈ H then from (S3) we have b−1 ∈ H and hence a ∗ b = a ∗ (b−1)−1 ∈ H.

(c) If H,K ⊆ G are subgroups prove that H ∩K is a subgroup. [Hint: Use (a) and (b).]

Suppose that a, b ∈ H ∩K, which implies a, b ∈ H and a, b ∈ K. Then part (a) says
that a ∗ b−1 ∈ H and a ∗ b−1 ∈ K, hence a ∗ b−1 ∈ H ∩K. We conclude from part (b)
that H ∩K is a subgroup.

Problem 2. Cyclic Groups. Let (G, ∗, ε) be a group and let g ∈ G be any element.
Consider the cyclic subgroup 〈g〉 = {gn : n ∈ Z} ⊆ G.

(a) If 〈g〉 is a finite set, prove that there exists an integer n ≥ 1 such that gn = ε.

If 〈g〉 is finite then there exist integers k < ` such that gk = g`. Now define n = `− k
and observe that

g` = gk

g` ∗ g−k = gk ∗ g−k

g`−k = ε.

(b) If gn = ε for some n ≥ 1, prove that 〈g〉 = {ε, g, g2, . . . , gn−1}.

Consider any element gk ∈ 〈g〉 and divide k by n to obtain k = qn+r for some q, r ∈ Z
with 0 ≤ r < k. Now observe that

gk = gqn+r = (gn)q ∗ gr = εq ∗ gr = gr ∈ {ε, g, g2, . . . , gn−1}.



(c) If m is the smallest positive integer such that gm = ε, prove that the m elements

g0, g1, g2, . . . , gm−1

are distinct, and hence #〈g〉 = m.

Suppose for contradiction that we have gk = g` for some integers 0 ≤ k < ` ≤ m − 1,
so that 1 ≤ ` − k < m. Then from part (a) we have g`−k = ε, which contradicts the
minimality of m.

Problem 3. Homomorphism and Isomorphism. Let (G, ∗, δ) and (H, •, ε) be groups
and let f : G→ H be any function satisfying

f(a ∗ b) = f(a) • f(b) for all a, b ∈ G.

(a) Prove that f(δ) = ε.

δ ∗ δ = δ

f(δ) • f(δ) = f(δ)

f(δ) • f(δ) • f(δ)−1 = f(δ) • f(δ)−1

f(δ) = ε.

(b) For all a ∈ G prove that f(a−1) = f(a)−1.

a ∗ a−1 = δ

f(a ∗ a−1) = f(δ)

f(a) • f(a−1) = ε from (a)

f(a)−1 • f(a) • f(a−1) = f(a)−1 • ε
f(a−1) = f(a)−1.

(c) Assuming that the inverse function f−1 : H → G exists, prove that

f−1(a • b) = f−1(a) ∗ f−1(b) for all a, b ∈ H.

Observe that

f(f−1(a) ∗ f−1(b)) = f(f−1(a)) • f(f−1(b)) = a • b.

Then apply f−1 to both sides.

Problem 4. Orthogonal Matrices. Consider the set of 2× 2 orthogonal matrices:

O2(R) = {A ∈ Mat2(R) : ATA = I}.

(a) Given A and B in O2(R) prove that AB−1 is in O2(R).

Assume that ATA = I and BTB = I, hence (B−1)T = B. Then we have

(AB−1)T (AB−1) = (B−1)TATAB−1 = BIB−1 = I.



(b) Let 〈−,−〉 : R2 × R2 → R be the standard dot product and let A ∈ Mat2(R). If
〈Ax, Ay〉 = 〈x,y〉 for all x,y ∈ R2, prove that A ∈ O2(R).

Let ei and ej be the i-th and j-th standard basis vectors. Then the i, j-entry of the
matrix ATA is

eTi (ATA)ej = (Aei)
T (Aej) = 〈Aei, Aej〉 = 〈ei, ej〉 =

{
1 if i = j,

0 if i 6= j.

In other words, ATA = I.

(c) Prove that every matrix A ∈ O2(R) has the form

A =

(
cos θ − sin θ
sin θ cos θ

)
or A =

(
cos θ sin θ
sin θ − cos θ

)
.

The equation ATA = I says that the two columns of A are perpendicular unit vectors.
Since the first column is a unit vector it must equal (cos θ, sin θ) for some angle θ. Then
since the second column is a perpendicular unit vector, it must be (− sin θ, cos θ) or
(sin θ,− cos θ).


