
Math 561 H Fall 2011
Homework 5 Drew Armstrong

1. We saw in class that any element of the orthogonal group O(2) has the form

Rθ :=
(

cos θ − sin θ
sin θ cos θ

)
or Fθ :=

(
cos θ sin θ
sin θ − cos θ

)
.

The matrix Rθ (with determinant 1) rotates the plane around 0 counterclockwise by the
angle θ. The matrix Fθ (with determinant −1) reflects the plane across the line through 0
that has angle θ/2 measured counterclockwise from the x-axis.

(a) For all angles α, β ∈ R, prove that FαFβ = Rα−β.
(b) Consider lines `1 and `2 in R2 with intersection P and angle θ/2 as below.

Let F` denote the reflection across line ` and let RPθ denote the rotation around the
point P counterclockwise by θ. Prove that F`2 ◦ F`1 = RPθ . (Hint: You can assume
that P = 0 and `1 is the x-axis. Use part (a).)

Proof. For part (a) we compute the matrix product to get

FαFβ =
(

cosα sinα
sinα − cosα

)(
cosβ sinβ
sinβ − cosβ

)
=
(

sinα sinβ + cosα cosβ −(sinα cosβ − cosα sinβ)
sinα cosβ − cosα sinβ sinα sinβ + cosα cosβ

)
=
(

cos(α− β) − sin(α− β)
sin(α− β) cos(α− β)

)
= Rα−β.

We have shown that the product of two reflections is a rotation (or the identity). For part (b),
let us assume that P = 0 and `1 is the x-axis. (This amounts to conjugation by an element of
Isom(Rn), but never mind.) Then the matrices corresponding to the linear maps F`2 and F`1
are Fθ and F0, respectively. By part (a) we find that the matrix of the composition F`2 ◦ F`1
is FθF0 = Rθ, which is the matrix for R0

θ. �

[Alternatively, you could use a purely geometric argument to prove part (b), in this case you could
regard the calculation in part (a) as a proof of the trigonometric angle sum formulas.]

2. Consider the following triangle in R2.



Again let RPθ denote the rotation around point P counterclockwise by angle θ. Prove that

RQϕ ◦RPθ = RX−χ.

(Hint: Use Problem 1(b).) What happens when θ = ϕ→ 180◦?

Proof. This is fun. Let FPQ, FPX and FQX denote the reflections in the (lines generating
the) sides of the triangle. By Problem 1(b) we have RPθ = FPQ ◦ FPX and RQϕ = FQX ◦ FPQ.
Composing these and using the fact that a reflection is its own inverse gives

RQϕ ◦RPθ = FQX ◦ FPQ ◦ FPQ ◦ FPX
= FQX ◦ (FPQ ◦ FPQ) ◦ FPX
= FQX ◦ FPX .

Next, note that the inverse of a clockwise rotation is a counterclockwise rotation by the same
angle, hence (RXχ )−1 = RX−χ. Applying Problem 1(b) again gives

RX−χ = (Rχ)−1 = (FPX ◦ FQX)−1 = F−1
QX ◦ F

−1
PX = FQX ◦ FPX .

�

[This is obviously the “correct” proof. (What would we have done without Problem 1(b)?) Now
suppose that θ/2 = ϕ/2→ 90◦. In this case the point X goes to infinity, the angle χ goes to 0,

and the composition RQϕ ◦RPθ becomes a translation of the plane by the vector 2(P → Q). So
a translation is just a rotation around a “point at infinity” by an “infinitesimal angle”. The group
Isom(R2) is interesting, isn’t it?]

3. Let Isom(Rn) denote the group of isometries ϕ : Rn → Rn. We know that if ϕ fixes the
origin, then ϕ is an orthogonal linear map. Let O(n) ≤ Isom(Rn) denote the subgroup fixing
the origin. Given α ∈ Rn, define the translation tα : Rn → Rn by tα(x) := x+ α. Clearly this
is an isometry. Let Rn

+ ≤ Isom(Rn) denote the (abelian) subgroup of translations, which is
isomorphic to vector addition on Rn via tα ◦ tβ = tα+β.

(a) Prove that every isometry f ∈ Isom(Rn) can be written uniquely in the form f = tα◦ϕ
with tα ∈ Rn

+ and ϕ ∈ O(n). (Hint: Let α = f(0).)
(b) Given α ∈ Rn and ϕ ∈ O(n), prove that ϕ ◦ tα = tα′ ◦ ϕ, where α′ = ϕ(α).
(c) Prove that Rn

+EIsom(Rn), and hence Isom(Rn) = Rn
+oO(n). (This is the prototypical

example of a semi-direct product.) Describe how to multiply the elements tα ◦ ϕ and
tβ ◦ ψ. Conclude that Isom(Rn) 6≈ Rn

+ ×O(n).

Proof. To prove (a), consider an isometry f ∈ Isom(Rn) and let α := f(0) ∈ Rn. Then the
isometry t−α ◦ f fixes the origin since t−α(f(0)) = t−α(α) = α − α = 0. By the Cartan-
Dieudonné Theorem (which we proved in class) it follows that t−α ◦ f = ϕ for some ϕ ∈ O(n).
Hence f = t1−α ◦ϕ = tα ◦ϕ. This expression is unique because Rn

+∩O(n) is trivial — only the
trivial translation fixes the origin. (Remind yourself why this implies uniqueness.) To prove
part (b), consider any vector x ∈ Rn and observe that

ϕ ◦ tα(x) = ϕ(tα(x)) = ϕ(x+ α) = ϕ(x) + ϕ(α) = tϕ(α)(ϕ(x)) = tϕ(α) ◦ ϕ(x).

Here we used the fact that ϕ ∈ O(n) is linear. To prove (c), let tα ∈ Rn
+ and consider an

arbitrary element of Isom(Rn), which by part (a) we can take to be tβ ◦ ϕ for ϕ ∈ O(n). By
part (b) we know that ϕ ◦ tα ◦ ϕ−1 = tϕ(α). Then conjugating tα by tβ ◦ ϕ gives

(tβ ◦ ϕ) ◦ tα ◦ (tβ ◦ ϕ)−1 = tβ ◦ ϕ ◦ tα ◦ ϕ−1 ◦ t−β
= tβ ◦ tϕ(α) ◦ t−β
= tϕ(α).



Hence Rn
+ is closed under conjugation by Isom(Rn) and we conclude that Rn

+ E Isom(Rn).
Parts (a), (b) and (c) imply that Isom(Rn) has a semi-direct product structure Isom(Rn) =
Rn

+ oO(n) with group operation given by

(tα ◦ ϕ) ◦ (tβ ◦ ρ) = tα+ϕ(β) ◦ (ϕρ).

We could phrase this abstractly as a product on ordered pairs (tα, ϕ)(tβ, ρ) = (tα+ϕ(β), ϕρ),
where α + ϕ(β) takes place in Rn

+ and ϕρ takes place in O(n). This is not a direct product
because the direct product structure is defined by

(tα, ϕ)(tβ, ρ) := (tα+β, ϕρ).

Our product is not direct is because O(n) acts on Rn
+ in a non-trivial way (another way of

saying this is that O(n) and Rn
+ don’t commute inside Isom(Rn) — see part (b)). �

[So, if you care about isometries of Euclidean space then you care about semi-direct products.]

4. The Lemma That Is Not Burnside’s is a nice way to compute the number of orbits
when a finite group G acts on a finite set S. Here you will prove it.

(a) Let Sg = {s ∈ S : gs = s} be the set fixed by g ∈ G and let Gs = {g ∈ G : gs = s}
be the subgroup of G that fixes s ∈ S. Count the elements of the set {(g, s) ∈ G× S :
gs = s} in two different ways to show that∑

g∈G
|Sg| =

∑
s∈S
|Gs|.

(b) Let G(s) = {gs : g ∈ G} be the orbit generated by s ∈ S and let S/G denote the set
of orbits (which, recall, partition the set S). Prove that∑

s∈S

1
|G(s)|

= |S/G|.

(c) Combine (a) and (b) to prove that

|S/G| = 1
|G|

∑
g∈G
|Sg|.

That is, the number of orbits is equal to the average number of elements of S fixed by
an element of G. (Hint: Orbit-Stabilizer Theorem.)

Proof. For part (a), let X = {(g, s) ∈ G × S : gs = s}. We can count the elements of X in
two ways. First, given a group element g ∈ G, there are exactly |Sg| elements s ∈ S such that
(g, s) ∈ X, hence |X| =

∑
g∈G |Sg|. On the other hand, given an element s ∈ S, there are

exactly |Gs| group elements g ∈ G such that (g, s) ∈ X, hence |X| =
∑

s∈S |Gs|. We conclude
that

∑
s∈S |Gs| = |X| =

∑
g∈G |Sg|. Next, consider the sum

∑
s∈S 1/|G(s)|, where G(s) is the

G-orbit of s ∈ S. If we partition the set S into orbits S/G = {O1, . . . , Ok}, then for each
s ∈ Oi we have G(s) = Oi. Then we can partition the sum over orbits to get∑

s∈S

1
|G(s)|

=
k∑
i=1

∑
s∈Oi

1
|Oi|

=
k∑
i=1

|Oi|
1
|Oi|

=
k∑
i=1

1 = k = |S/G|.

Finally, we apply the Orbit-Stabilizer Theorem (i.e. |G| = |G(s)||Gs| for all s ∈ S) to get∑
g∈G
|Sg| =

∑
s∈S
|Gs| =

∑
s∈S

|G|
|G(s)|

= |G|
∑
s∈S

1
|G(s)|

= |G||S/G|.

Dividing by |G| gives the result. �



5. We say a bracelet of size n is a circular string of n black and white beads. We say that
two bracelets are equal if they differ by a dihedral symmetry. (You can rotate a bracelet and
you can take it off your wrist, flip it over, and put it back on.) Use The Lemma That Is Not
Burnside’s to compute the number of bracelets of size 7.

Let X be the set of circular arrangements of 7 black or white beads. We regard these
as fixed in the plane (so that we can say e.g. that “bead number i is white”), hence we
have |X| = 27 = 128. However, a bracelet doesn’t have a “bead number i”. Instead, we let
D7 act on X by rotation and reflection, and note that two arrangements represent the same
bracelet if and only if they are in the same D7 orbit. By Burnside’s Lemma, the number of
bracelets/orbits is

|X/D7| =
1
|D7|

∑
g∈D7

|Xg|.

To solve this, we need to compute |Xg| — the number of arrangements fixed by g — for each
g ∈ D7, which is 14 computations in total. However, the number |Xg| is constant over each
conjugacy class in D7, so there are really only 5 computations (the number of D7-conjugacy
classes). First note that g = 1 fixes all 128 arrangements. The rotations come in three pairs
{ρ, ρ−1}, {ρ2, ρ−2} and {ρ3, ρ−3}, where ρ is rotation by 2πi/7. In principle we might need to
do 3 calculations, but since 1, 2, 3 are all coprime to 7, we find that any of these six rotations
can only fix the all-white arrangement and the all-black arrangement. Finally, there is one
class of 7 reflections, show below. The number of arrangements invariant under a reflection is
24 = 16. Indeed, since beads on the same horizontal level have the same color and there are
2 possible colors, we have 24 = 16 choices.

Finally, we conclude that the number of bracelets is

|X/D7| =
1
14

[128 + 2 + 2 + 2 + 2 + 2 + 2 + 16 + 16 + 16 + 16 + 16 + 16 + 16] = 18.

You see that Burnside’s Lemma is very useful. In general, we can use the same method
to count k-colored necklaces with n beads (where we allow cyclic symmetry) and k-colored
bracelets with n beads (where we allow dihedral symmetry). If Nk(n) and Bk(n) are the
numbers of k-colored necklaces and bracelets, respectively, with n beads, then we find

Nk(n) =
1
n

∑
d|n

ϕ(d) kn/d,

and

Bk(n) =

{
1
2Nk(n) + 1

4(k + 1)kn/2 for n even
1
2Nk(n) + 1

2k
(n+1)/2 for n odd

Verify that N1(n) = 1. Verify that B2(7) = 18.


