
Math 561 H Fall 2011
Homework 4 Drew Armstrong

1. Define the ring of quaternions H := {a1 + bi + cj + dk : a, b, c, d ∈ R}, with the relations
1 = 1 and i2 = j2 = k2 = ijk = −1. Define the quaternion absolute value by

|a1 + bi + cj + dk|2 := a2 + b2 + c2 + d2.

Note H is actually isomorphic to R4 as a vector space, but it has more structure than R4.

(a) Given q = a1 + bi + cj + dk, define the quaternion conjugate q̄ := a1− bi− cj− dk and
show that qq̄ = |q|2.

Proof. Multiplying qq̄ gives

(a1 + bi + cj + dk)(a1− bi− cj− dk) = a21− abi− acj− adk
+ bai + b21− bck + bdj

+ caj + cbk + c21− cdi
+ dak− dbj + dci + d21.

Notice that the resulting array of terms is antisymmetric, so all the off-diagonal terms
cancel. The remaining diagonal terms give qq̄ = a21 + b21 + c21 + d21. �

(b) Show that H is actually a division algebra by finding the inverse of q = a1+bi+cj+dk.
Note that H is not a field because it is not commutative.

Proof. By part (a) we know that qq̄ = |q|21 + 0i + 0j + 0k, where |q|2 is a real number.
If q 6= 0 ∈ H then |q|2 6= 0 ∈ R, and we can divide by |q|2 to get q q̄

|q|2 = 1, hence

q−1 =
q̄

|q|2
=

1
a2 + b2 + c2 + d2

(a1− bi− cj− dk).

�

(c) The nonzero quaternions H× are isomorphic to a subgroup of GL2(C) via the map

a1 + bi + cj + dk↔
(
a+ id −b− ic
b− ic a− id

)
.

Use this to prove that |uv| = |u||v| for all u, v ∈ H.

Proof. Given a quaternion q ∈ H, let [q] ∈ GL2(C) denote the corresponding matrix.
Then for q = a1 + bi + cj + dk we have

det[q] = det
(
a+ id −b− ic
b− ic a− id

)
= (a+ id)(a− id)− (b− ic)(−b− ic)

= a2 + b2 + c2 + d2

= |q|2.

By the multiplicativity of determinant, we conclude that for all u, v ∈ H we have

|uv|2 = det[uv] = det[u][v] = det[u] det[v] = |u|2|v|2.

Taking square roots gives the result. �



[The quaternions were discovered by William Rowan Hamilton on October 16, 1843, as he was
walking with his wife along the Royal Canal in Dublin. To celebrate the discovery, he immediately
carved this equation into the stone of the Brougham Bridge: i2 = j2 = k2 = ijk = −1.]

2. Recall that Z/nZ has a unique (cyclic) subgroup of order d for each d|n. Use this to prove
that

∑
d|n ϕ(d) = n, where ϕ is Euler’s totient function. This formula can be used to compute

ϕ recursively: ϕ(n) = n−
∑

d|n,d<n ϕ(d).

Proof. Let G be a cyclic group of size n. Then G contains elements of order d if and only if
d|n. We claim that the number of elements of G with order d is ϕ(d). Since every element of
G has some order, it will follow that

∑
d|n ϕ(d) = n.

So fix d|n and recall that G contains a unique (cyclic) subgroup H ≤ G of size d. Note that
the elements of H with order d are precisely the generators of H, and we know that there are
ϕ(d) of these. Hence we have found ϕ(d) elements of order d in G. Are there any more? If
a ∈ G has order d, then 〈a〉 ≤ G is a subgroup of size d. By the uniqueness of H we conclude
that 〈a〉 = H, and hence a ∈ H. That is, a has already been counted. We conclude that G
contains exactly ϕ(d) elements of order d, which proves the claim. �

3. Let G be a group and recall that its center is a normal subgroup Z(G) E G. Prove: If
G/Z(G) is cyclic then G is abelian.

Proof. Suppose that the quotient group G/Z(G) is cyclic, generated by the coset gZ(G). This
means that every coset looks like giZ(G) for some i ∈ Z. But the cosets partition the group,
hence every element of G looks like giz for some integer i ∈ Z and some element z ∈ Z(G) of
the center. This implies that any two elements of G, say giz and gjz′ commute, since

gizgjz′ = gigjzz′ = gi+jz′z = gjgiz′z = gjz′giz.

�

4. Explicitly describe the conjugacy classes of the Dihedral group

Dn := 〈r, ρ : r2 = ρn = 1, ρr = rρ−1〉.
Hint: Every element of Dn looks like rρk or ρk for some k.

Proof. First we compute the conjugacy class of a rotation ρk. If we conjugate it by some ρi

then we get ρiρkρ−i = ρk, which gives us nothing new. If we conjugate it by some rρi then
we get rρiρk(rρi)−1 = rρiρkρ−ir = rρkr = rrρ−k = ρ−k. Hence the conjugacy class of ρk

consists of {ρk, ρ−k}. That is, the rotations come in inverse pairs. If n is odd then the set
{1, ρ, . . . , ρn−1} breaks into classes {1} and {ρi, ρ−i} for i = 1..(n − 1)/2. If n is even then
{1, ρ, . . . , ρn−1} breaks into two singletons, {1} and {ρn/2}, together with pairs {ρi, ρ−i} for
i = 1..(n− 2)/2.

Next we compute the conjugacy class of a reflection rρk. If we conjugate by some ρi we get
ρirρkρ−i = rρ−iρkρ−i = rρk−2i. If we conjugate by some rρi (and move all copies of r to the
left) we get rρirρk(rρi)−1 = rρirρkρ−ir = rrrρiρ−kρi = rρ2i−k. That is, the conjugacy class
of rρk consists of {rρk−2i : i ∈ Z}. If n is odd, all of the reflections form a single conjugacy
class, and if n is even then the reflections break into two classes:

{r, rρ2, rρ4 . . . , rρn−2} and {rρ, rρ3, . . . , rρn−1}.
What does all of this mean in terms of the symmetries of a regular polygon? What does
conjugacy mean in this case? One could alternatively solve this problem using pictures instead
of algebra, but I didn’t have time for that... �


