Group Problems.

1. Let G be a group. Given $a \in G$ define the centralizer $Z(a) := \{b \in G : ab = ba\}$. Prove that $Z(a) \leq G$. For which $a \in G$ is Z(a) = G?

Proof. To show closure, let $b, c \in Z(a)$. That is, suppose that ba = ab and ca = ac. Then we have (bc)a = bca = bac = abc = a(bc), hence $bc \in Z(a)$. Next, note that $1 \in Z(a)$ since 1a = a1 = a. Finally, suppose $b \in Z(a)$, i.e. ab = ba. Multiplying by b^{-1} on both the left and the right gives $b^{-1}abb^{-1} = b^{-1}bab^{-1}$, or $b^{-1}a = ab^{-1}$. We conclude that $b^{-1} \in Z(a)$.

2. We say $a, b \in G$ are conjugate if there exists $g \in G$ such that $a = gbg^{-1}$. Recall (HW2.8) that this is an equivalence relation. Let $C(a) := \{b \in G : \exists g \in G, a = gbg^{-1}\}$ denote the conjugacy class of $a \in G$. Prove that |C(a)| = [G : Z(a)].

Proof. First note that every element of C(a) looks like gag^{-1} for some $g \in G$. We claim that the map $gag^{-1} \mapsto gZ(a)$ is a **bijection** from C(a) to the cosets of Z(a). The map is clearly **surjective**. Then to see that the map is **well-defined** and **injective**, note that

$$gag^{-1} = hah^{-1} \Leftrightarrow a(g^{-1}h) = (g^{-1}h)a$$
$$\Leftrightarrow g^{-1}h \in Z(a)$$
$$\Leftrightarrow qZ(a) = hZ(a).$$

The direction \Rightarrow shows well-definedness and the direction \Leftarrow shows injectivity.

3. On HW2 you proved that $\operatorname{Aut}(\mathbb{Z})$ is the group with two elements. Now **prove** that $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^{\times}$. (Hint: An automorphism $\varphi : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ is determined by $\varphi(1)$. What are the possibilities?) Taking n = 0, we recover the fact that $\operatorname{Aut}(\mathbb{Z}) \approx \mathbb{Z}^{\times} = \{\pm 1\}$.

To save space we will just write a for the element $a + n\mathbb{Z}$ of $\mathbb{Z}/n\mathbb{Z}$. First we will prove a useful **Lemma:** The order of $a \in \mathbb{Z}/n\mathbb{Z}$ is $n/\gcd(a, n)$.

Proof. First note that $a(n/\gcd(a, n)) = n(a/\gcd(a, n)) = 0 \in \mathbb{Z}/n\mathbb{Z}$. Next suppose that $ak = 0 \in \mathbb{Z}/n\mathbb{Z}$ for some $k \ge 1$. We wish to show that $n/\gcd(a, n) \le k$. Indeed since $ak = 0 \in \mathbb{Z}/n\mathbb{Z}$ we have n|ak, which implies that $(n/\gcd(a, n))|(a/\gcd(a, n))k$, and since $n/\gcd(a, n)$ and $a/\gcd(a, n)$ are **coprime**, this implies that $n/\gcd(a, n)|k$, hence $n/\gcd(a, n) \le k$.

Proof. Suppose that $\varphi; \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ is an **automorphism** with $\varphi(1) = a$. By the **homomorphism** property we have $\varphi(x) = \varphi(1 + \dots + 1) = \varphi(1) + \dots + \varphi(1) = a + \dots + a = ax$. Thus the **image** of φ is the (additive) cyclic subgroup $\langle a \rangle \leq \mathbb{Z}/n\mathbb{Z}$. Then since φ is **surjective** we must have $\langle a \rangle = \mathbb{Z}/n\mathbb{Z}$. By the Lemma, this happens if and only if a and n are coprime, i.e. $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, in which case the map $\varphi(x) = ax$ is also invertible with inverse $\varphi^{-1}(x) = a^{-1}x$.

In summary, there is a **bijection** between $(\mathbb{Z}/n\mathbb{Z})^{\times}$ and $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ given by sending $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ to the automorphism $\varphi_a(x) = ax$. Moreover, this bijection is a **group isomorphism** since for all $a, b \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ and $x \in \mathbb{Z}/n\mathbb{Z}$ we have

$$\varphi_a \circ \varphi_b(x) = \varphi_a(\varphi_b(x)) = \varphi_a(bx) = a(bx) = (ab)x = \varphi_{ab}(x).$$

4. Let H, K be subgroups of G. Prove that:

(a) If $H \leq G$ then $HK := \{hk \in G : h \in H, k \in K\}$ is a subgroup of G.

П

(b) Moreover, if H∩K = {1} and if hk = kh for all h ∈ H, k ∈ K then HK is isomorphic to the direct product group H×K := {(h, k) : h ∈ H, k ∈ K} with the componentwise product. (Hint: What could the isomorphism possibly be? Really?)

Proof. First we show (a). Given $H, K \leq G$ with $H \leq G$, we will show that $HK \leq G$. To see that HK is closed, consider h_1k_1 and h_2k_2 in HK. Is $h_1k_1h_2k_2 \in HK$? Yes. Since $k_1h_2 \in k_1H = Hk_1$ there exists $h_3 \in H$ such that $k_1h_2 = h_3k_1$. Then $h_1h_2k_1k_2 = (h_1h_3)(k_1k_2) \in HK$. Next, observe that $1 \in H \cap K$ hence $1 = 1 \cdot 1 \in HK$. Finally, let $a = hk \in HK$ with $h \in H$ and $k \in K$. To see that $a^{-1} = k^{-1}h^{-1} \in HK$ note that $k^{-1}h^{-1} \in k^{-1}H = Hk^{-1}$, hence there exists $h' \in H$ such that $k^{-1}h^{-1} = h'k^{-1}$. That is, $a^{-1} = k^{-1}h^{-1} = h'k^{-1}$.

Next we show (b). Suppose that $H, K \leq G$ with $H \leq G, H \cap K = \{1\}$ and with hk = kh for all $h \in H, k \in K$. In this case we claim that the "multiplication" map $\mu((h, k)) := hk$ is a **group** isomorphism $\mu : H \times K \to HK$. First note that it is a homomorphism because

$$\mu((h_1, k_1)(h_2, k_2)) = \mu((h_1h_2, k_1k_2)) = h_1h_2k_1k_2 = h_1k_1h_2k_2 = \mu((h_1, k_1))\mu((h_2, k_2)).$$

Next, to show that μ is **injective**, suppose that $\mu((h_1, k_1) = h_1k_1 = h_2k_2 = \mu((h_2, k_2))$. Then $h_1k_1 = h_2k_2$ implies that $h_2^{-1}h_1 = k_2k_1^{-1} \in H \cap K$. Since $H \cap K = \{1\}$, we get $h_2^{-1}h_1 = 1$ (or $h_1 = h_2$) and $k_2k_1^{-1} = 1$ (or $k_1 = k_2$), hence $(h_1, k_1) = (h_2, k_2)$. Finally, note that μ is **surjective** by definition.

5. Let G be a cyclic group of order n. **Prove** that every subgroup of G is cyclic and has order d for some d|n. Conversely, **prove** that for every d|n there exists a subgroup of order d. Bonus: Prove that there is **exactly one** subgroup of order d|n.

Proof. First we show that every subgroup of G is cyclic. To see this suppose $G = \langle g \rangle$ and consider the **surjecitve homomorphism** $\varphi : \mathbb{Z} \to G$ given by $\varphi(n) := g^n$. If $H \leq G$ is any subgroup, then $H' := \varphi^{-1}(H)$ is a subgroup of \mathbb{Z} . We know (Theorem 2.3.3) that any subgroup of \mathbb{Z} is **cyclic**, hence $H' = a\mathbb{Z}$ for some $a \in \mathbb{Z}$. Then the **restricted homomorphism** $\varphi : H' \to H$ (which is **surjective** by definition) sends $ak \in a\mathbb{Z}$ to $g^{ak} = (g^a)^k$. Hence H is equal to the image $\langle g^a \rangle$, which is cyclic. Finally, by Lagrange's Theorem 2.8.9 we know that the size of H divides the size of G.

Conversely, suppose that $G = \langle g \rangle$ has size n and consider a divisor d|n. We claim that there exists a subgroup $H \leq G$ of size d. To see this consider the **surjective homomorphism** $\varphi : \mathbb{Z} \to G$ defined by $\varphi(a) := g^a$. The **kernel** is $n\mathbb{Z}$. Thus the Correspondence Theorem 2.10.5 says that the map $H \mapsto \varphi(H)$ is a bijection from subgroups $n\mathbb{Z} \leq H \leq \mathbb{Z}$ to subgroups $\varphi(H) \leq G$. In particular, let dk = n and consider the subgroup $n\mathbb{Z} \leq k\mathbb{Z} \leq \mathbb{Z}$. Then $\varphi(k\mathbb{Z})$ is a subgroup of G (and is cyclic by part (a)). What is its order? Part of the Correspondence Theorem says that $k = [\mathbb{Z} : k\mathbb{Z}] = [G :$ $\varphi(k\mathbb{Z})]$. Finally, Lagrange's Theorem 2.8.9 tells us that $|\varphi(k\mathbb{Z})| = |G|/k = n/k = dk/k = d$.

Bonus: Suppose we had two subgroups $H, K \leq G$ with |H| = |K| = d, where dk = n. Then the preimages $\varphi^{-1}(H)$ and $\varphi^{-1}(K)$ are both sugroups of index k in \mathbb{Z} . By Theorem 2.3.3 there is a **unique** such subgroup; namely $k\mathbb{Z}$. Hence $\varphi^{-1}(H) = k\mathbb{Z} = \varphi^{-1}(K)$. Applying φ then gives $H = \varphi(k\mathbb{Z}) = K$.

Ring Problems.

A ring is a tuple $(R, +, \times, 0, 1)$ such that (R, +, 0) is an abelian group, $(R, \times, 1)$ is a semigroup (associative with identity 1, maybe no inverses, maybe not abelian) and for all $a, b, c \in R$ we have a(b+c) = ab + ac and (a+b)c = ac + bc.

6. Let R and S be rings. What is the correct definition of a ring homomorphism $\varphi : R \to S$? Hint: You will need $\varphi(1_R) = 1_S$. Suppose that R and S are isomorphic as rings. **Prove** that the corresponding groups of units R^{\times} and S^{\times} are isomorphic as groups.

Proof. A ring homomorphism should preserve the operations $+, \times$. That is, we need $\varphi(a + b) = \varphi(a) + \varphi(b)$ and $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$. We also want $\varphi(0_R) = 0_S$ and $\varphi(1_R) = 1_S$. The first of these follows from $\varphi(a + b) = \varphi(a) + \varphi(b)$ since a homomorphism of additive groups

automatically preserves zero. However, $\varphi(1_R) = 1_S$ does **not** automatically follow from $\varphi(ab) = \varphi(a)\varphi(b)$ since the usual proof requires invertibility, which we don't have. Hence we define a **ring** homomorphism to satisfy:

- $\varphi(a+b) = \varphi(a) + \varphi(b)$ for all $a, b \in R$,
- $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$,
- $\varphi(1_R) = 1_S$.

We say $R \approx S$ as rings if there exists a bijective ring homomorphism (i.e. a ring isomorphism) $\varphi : R \to S$. In this case we claim that $R^{\times} \approx S^{\times}$ as groups. To see this, restrict the map φ to R^{\times} and note that for all $r \in R^{\times}$ we have $\varphi(r^{-1}) = \varphi(r)^{-1}$ by the usual proof. Hence $\varphi(r) \in S^{\times}$ and by the same logic we have $\varphi^{-1}(r) \in R^{\times}$ for all S^{\times} . Thus we have a surjective homomorphism of multiplicative groups $\varphi : R^{\times} \to S^{\times}$. Injectivity is inherited from $\varphi : R \to S$.

7. Let R be a (possibly non-commutative) ring. Prove that:

- (a) For all $a \in R$ we have 0a = a0 = 0.
- (b) For all $a, b \in R$ we have (-a)(-b) = ab. (Hint: Think about ab + a(-b). Think about (-a)(-b) + a(-b). Now if a child asks you why negative \times negative = positive, you will have an answer.)

Proof. First we show (a). Note that for all $a \in R$ we have 0 + 0a = 0a = (0 + 0)a = 0a + 0a. Then we cancel 0a from both sides (which we can since (R, +, 0) is a group) to get 0 = 0a. The proof of 0 = a0 is similar. Next we show (b). Note that ab + a(-b) = a(b + (-b)) = a0 = 0 and also that (-a)(-b) + a(-b) = ((-a) + a)(-b) = 0(-b) = 0. By transitivity we have ab + a(-b) = (-a)(-b) + a(-b). Cancel a(-b) from both sides to get ab = (-a)(-b).

8. (Chinese Remainder Theorem) For all $a, b \in \mathbb{Z}$ define the notation $[a]_b = a + b\mathbb{Z}$. Now let $m, n \in \mathbb{Z}$ be coprime. Prove that the map $\varphi : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ defined by $\varphi([a]_{mn}) := ([a]_m, [a]_n)$ is a **ring isomorphism**. (Hint: The hard part is to show surjectivity. Since m, n are coprime we can write 1 = xm + yn. What does φ do to bxm + ayn?)

Proof. First we show that φ is well-defined. Indeed, if $[a]_{mn} = [b]_{mn}$ then $[a]_m = [b]_m$ and $[a]_n = [b]_n$, hence $([a]_m, [a]_n) = ([b]_m, [b]_n)$. The fact that φ is a **ring homomorphism** is straightforward. Finally, let us show that φ is a **bijection**. To see that it is an **injection**, suppose that $([a]_m, [a]_n) = ([b]_m, [b]_n)$, i.e $[a]_m = [b]_m$ and $[a]_n = [b]_n$. This means that m|a - b and n|a - b. Since m, n are coprime this implies mn|a - b, hence $[a]_{mn} = [b]_{mn}$ as desired. To show **surjectivity**, consider an arbitrary element $([a]_m, [b]_n)$. Does it get hit by φ ? Well, since m, n are coprime we can write xm + yn = 1. Then we claim that $\varphi([bxm + ayn]_{mn}) = ([a]_m, [b]_n)$. Indeed, we have $[bxm + ayn]_m = [ayn]_m$. Then note that $[yn]_m = [1]_m$, hence $[ayn]_m = [a]_m[1]_m = [a]_m$. The proof that $[bxm + ayn]_n = [b]_n$ is similar.

Let R be a ring. We say that R is an integral domain if it is commutative and if for all $a, b \in R$ we have ab = 0 implies a = 0 or b = 0 (i.e. R has no "zero divisors"). We say that R is a field if it is commutative and if every nonzero $a \in R$ has a multiplicative inverse.

9. Prove that a **finite** integral domain is a field. Give an example to show that an infinite integral domain need not be a field. (Hint: Given $a \in R$ consider the map $R \to R$ defined by $x \mapsto ax$. Is it injective? Surjective?)

Proof. Let R be a **finite integral domain** and fix $a \in R$ with $a \neq 0$. Then the map $x \mapsto ax$ is **injective** because $ax = ay \Rightarrow a(x - y) = 0 \Rightarrow x - y = 0 \Rightarrow x = y$. Since R is **finite**, the map is **also surjective**. It follows that there exists some $b \in R$ such that 1 = ab. Hence a is invertible. Since the choice of $a \neq 0$ was arbitrary we conclude that R is a field.

The integers \mathbb{Z} are an example of an (infinite) integral domain that is **not** a field.