Fall 2011
 Drew Armstrong

Group Problems.

1. Let G be a group. Given $a \in G$ define the centralizer $Z(a):=\{b \in G: a b=b a\}$. Prove that $Z(a) \leq G$. For which $a \in G$ is $Z(a)=G$?

Proof. To show closure, let $b, c \in Z(a)$. That is, suppose that $b a=a b$ and $c a=a c$. Then we have $(b c) a=b c a=b a c=a b c=a(b c)$, hence $b c \in Z(a)$. Next, note that $1 \in Z(a)$ since $1 a=a 1=a$. Finally, suppose $b \in Z(a)$, i.e. $a b=b a$. Multiplying by b^{-1} on both the left and the right gives $b^{-1} a b b^{-1}=b^{-1} b a b^{-1}$, or $b^{-1} a=a b^{-1}$. We conclude that $b^{-1} \in Z(a)$.
2. We say $a, b \in G$ are conjugate if there exists $g \in G$ such that $a=g b g^{-1}$. Recall (HW2.8) that this is an equivalence relation. Let $C(a):=\left\{b \in G: \exists g \in G, a=g b g^{-1}\right\}$ denote the conjugacy class of $a \in G$. Prove that $|C(a)|=[G: Z(a)]$.

Proof. First note that every element of $C(a)$ looks like $g a g^{-1}$ for some $g \in G$. We claim that the map $g a g^{-1} \mapsto g Z(a)$ is a bijection from $C(a)$ to the cosets of $Z(a)$. The map is clearly surjective. Then to see that the map is well-defined and injective, note that

$$
\begin{aligned}
g a g^{-1}=h a h^{-1} & \Leftrightarrow a\left(g^{-1} h\right)=\left(g^{-1} h\right) a \\
& \Leftrightarrow g^{-1} h \in Z(a) \\
& \Leftrightarrow g Z(a)=h Z(a) .
\end{aligned}
$$

The direction \Rightarrow shows well-definedness and the direction \Leftarrow shows injectivity.
3. On HW2 you proved that $\operatorname{Aut}(\mathbb{Z})$ is the group with two elements. Now prove that $\operatorname{Aut}(\mathbb{Z} / n \mathbb{Z})$ is isomorphic to $(\mathbb{Z} / n \mathbb{Z})^{\times}$. (Hint: An automorphism $\varphi: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is determined by $\varphi(1)$. What are the possibilities?) Taking $n=0$, we recover the fact that $\operatorname{Aut}(\mathbb{Z}) \approx \mathbb{Z}^{\times}=\{ \pm 1\}$.

To save space we will just write a for the element $a+n \mathbb{Z}$ of $\mathbb{Z} / n \mathbb{Z}$. First we will prove a useful Lemma: The order of $a \in \mathbb{Z} / n \mathbb{Z}$ is $n / \operatorname{gcd}(a, n)$.

Proof. First note that $a(n / \operatorname{gcd}(a, n))=n(a / \operatorname{gcd}(a, n))=0 \in \mathbb{Z} / n \mathbb{Z}$. Next suppose that $a k=0 \in$ $\mathbb{Z} / n \mathbb{Z}$ for some $k \geq 1$. We wish to show that $n / \operatorname{gcd}(a, n) \leq k$. Indeed since $a k=0 \in \mathbb{Z} / n \mathbb{Z}$ we have $n \mid a k$, which implies that $(n / \operatorname{gcd}(a, n)) \mid(a / \operatorname{gcd}(a, n)) k$, and since $n / \operatorname{gcd}(a, n)$ and $a / \operatorname{gcd}(a, n)$ are coprime, this implies that $n / \operatorname{gcd}(a, n) \mid k$, hence $n / \operatorname{gcd}(a, n) \leq k$.

Proof. Suppose that $\varphi ; \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is an automorphism with $\varphi(1)=a$. By the homomorphism property we have $\varphi(x)=\varphi(1+\cdots+1)=\varphi(1)+\cdots+\varphi(1)=a+\cdots+a=a x$. Thus the image of φ is the (additive) cyclic subgroup $\langle a\rangle \leq \mathbb{Z} / n \mathbb{Z}$. Then since φ is surjective we must have $\langle a\rangle=\mathbb{Z} / n \mathbb{Z}$. By the Lemma, this happens if and only if a and n are coprime, i.e. $a \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, in which case the map $\varphi(x)=a x$ is also invertible with inverse $\varphi^{-1}(x)=a^{-1} x$.

In summary, there is a bijection between $(\mathbb{Z} / n \mathbb{Z})^{\times}$and $\operatorname{Aut}(\mathbb{Z} / n \mathbb{Z})$ given by sending $a \in(\mathbb{Z} / n \mathbb{Z})^{\times}$ to the automorphism $\varphi_{a}(x)=a x$. Moreover, this bijection is a group isomorphism since for all $a, b \in(\mathbb{Z} / n \mathbb{Z})^{\times}$and $x \in \mathbb{Z} / n \mathbb{Z}$ we have

$$
\varphi_{a} \circ \varphi_{b}(x)=\varphi_{a}\left(\varphi_{b}(x)\right)=\varphi_{a}(b x)=a(b x)=(a b) x=\varphi_{a b}(x) .
$$

4. Let H, K be subgroups of G. Prove that:
(a) If $H \unlhd G$ then $H K:=\{h k \in G: h \in H, k \in K\}$ is a subgroup of G.
(b) Moreover, if $H \cap K=\{1\}$ and if $h k=k h$ for all $h \in H, k \in K$ then $H K$ is isomorphic to the direct product group $H \times K:=\{(h, k): h \in H, k \in K\}$ with the componentwise product. (Hint: What could the isomorphism possibly be? Really?)

Proof. First we show (a). Given $H, K \leq G$ with $H \unlhd G$, we will show that $H K \leq G$. To see that $H K$ is closed, consider $h_{1} k_{1}$ and $h_{2} k_{2}$ in $H K$. Is $h_{1} k_{1} h_{2} k_{2} \in H K$? Yes. Since $k_{1} h_{2} \in k_{1} H=H k_{1}$ there exists $h_{3} \in H$ such that $k_{1} h_{2}=h_{3} k_{1}$. Then $h_{1} h_{2} k_{1} k_{2}=\left(h_{1} h_{3}\right)\left(k_{1} k_{2}\right) \in H K$. Next, observe that $1 \in H \cap K$ hence $1=1 \cdot 1 \in H K$. Finally, let $a=h k \in H K$ with $h \in H$ and $k \in K$. To see that $a^{-1}=k^{-1} h^{-1} \in H K$ note that $k^{-1} h^{-1} \in k^{-1} H=H k^{-1}$, hence there exists $h^{\prime} \in H$ such that $k^{-1} h^{-1}=h^{\prime} k^{-1}$. That is, $a^{-1}=k^{-1} h^{-1}=h^{\prime} k^{-1} \in H K$.

Next we show (b). Suppose that $H, K \leq G$ with $H \unlhd G, H \cap K=\{1\}$ and with $h k=k h$ for all $h \in H, k \in K$. In this case we claim that the "multiplication" map $\mu((h, k)):=h k$ is a group isomorphism $\mu: H \times K \rightarrow H K$. First note that it is a homomorphism because

$$
\mu\left(\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)\right)=\mu\left(\left(h_{1} h_{2}, k_{1} k_{2}\right)\right)=h_{1} h_{2} k_{1} k_{2}=h_{1} k_{1} h_{2} k_{2}=\mu\left(\left(h_{1}, k_{1}\right)\right) \mu\left(\left(h_{2}, k_{2}\right)\right) .
$$

Next, to show that μ is injective, suppose that $\mu\left(\left(h_{1}, k_{1}\right)=h_{1} k_{1}=h_{2} k_{2}=\mu\left(\left(h_{2}, k_{2}\right)\right)\right.$. Then $h_{1} k_{1}=h_{2} k_{2}$ implies that $h_{2}^{-1} h_{1}=k_{2} k_{1}^{-1} \in H \cap K$. Since $H \cap K=\{1\}$, we get $h_{2}^{-1} h_{1}=1$ (or $h_{1}=h_{2}$) and $k_{2} k_{1}^{-1}=1\left(\right.$ or $\left.k_{1}=k_{2}\right)$, hence $\left(h_{1}, k_{1}\right)=\left(h_{2}, k_{2}\right)$. Finally, note that μ is surjective by definition.
5. Let G be a cyclic group of order n. Prove that every subgroup of G is cyclic and has order d for some $d \mid n$. Conversely, prove that for every $d \mid n$ there exists a subgroup of order d. Bonus: Prove that there is exactly one subgroup of order $d \mid n$.

Proof. First we show that every subgroup of G is cyclic. To see this suppose $G=\langle g\rangle$ and consider the surjecitve homomorphism $\varphi: \mathbb{Z} \rightarrow G$ given by $\varphi(n):=g^{n}$. If $H \leq G$ is any subgroup, then $H^{\prime}:=\varphi^{-1}(H)$ is a subgroup of \mathbb{Z}. We know (Theorem 2.3.3) that any subgroup of \mathbb{Z} is cyclic, hence $H^{\prime}=a \mathbb{Z}$ for some $a \in \mathbb{Z}$. Then the restricted homomorphism $\varphi: H^{\prime} \rightarrow H$ (which is surjective by definition) sends $a k \in a \mathbb{Z}$ to $g^{a k}=\left(g^{a}\right)^{k}$. Hence H is equal to the image $\left\langle g^{a}\right\rangle$, which is cyclic. Finally, by Lagrange's Theorem 2.8.9 we know that the size of H divides the size of G.

Conversely, suppose that $G=\langle g\rangle$ has size n and consider a divisor $d \mid n$. We claim that there exists a subgroup $H \leq G$ of size d. To see this consider the surjective homomorphism $\varphi: \mathbb{Z} \rightarrow G$ defined by $\varphi(a):=g^{a}$. The kernel is $n \mathbb{Z}$. Thus the Correspondence Theorem 2.10.5 says that the map $H \mapsto \varphi(H)$ is a bijection from subgroups $n \mathbb{Z} \leq H \leq \mathbb{Z}$ to subgroups $\varphi(H) \leq G$. In particular, let $d k=n$ and consider the subgroup $n \mathbb{Z} \leq k \mathbb{Z} \leq \mathbb{Z}$. Then $\varphi(k \mathbb{Z})$ is a subgroup of G (and is cyclic by part (a)). What is its order? Part of the Correspondence Theorem says that $k=[\mathbb{Z}: k \mathbb{Z}]=[G$: $\varphi(k \mathbb{Z})]$. Finally, Lagrange's Theorem 2.8.9 tells us that $|\varphi(k \mathbb{Z})|=|G| / k=n / k=d k / k=d$.

Bonus: Suppose we had two subgroups $H, K \leq G$ with $|H|=|K|=d$, where $d k=n$. Then the preimages $\varphi^{-1}(H)$ and $\varphi^{-1}(K)$ are both sugroups of index k in \mathbb{Z}. By Theorem 2.3.3 there is a unique such subgroup; namely $k \mathbb{Z}$. Hence $\varphi^{-1}(H)=k \mathbb{Z}=\varphi^{-1}(K)$. Applying φ then gives $H=\varphi(k \mathbb{Z})=K$.

Ring Problems.

A ring is a tuple $(R,+, \times, 0,1)$ such that $(R,+, 0)$ is an abelian group, $(R, \times, 1)$ is a semigroup (associative with identity 1 , maybe no inverses, maybe not abelian) and for all $a, b, c \in R$ we have $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$.
6. Let R and S be rings. What is the correct definition of a ring homomorphism $\varphi: R \rightarrow S$? Hint: You will need $\varphi\left(1_{R}\right)=1_{S}$. Suppose that R and S are isomorphic as rings. Prove that the corresponding groups of units R^{\times}and S^{\times}are isomorphic as groups.

Proof. A ring homomorphism should preserve the operations,$+ \times$. That is, we need $\varphi(a+b)=$ $\varphi(a)+\varphi(b)$ and $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in R$. We also want $\varphi\left(0_{R}\right)=0_{S}$ and $\varphi\left(1_{R}\right)=1_{S}$. The first of these follows from $\varphi(a+b)=\varphi(a)+\varphi(b)$ since a homomorphism of additive groups
automatically preserves zero. However, $\varphi\left(1_{R}\right)=1_{S}$ does not automatically follow from $\varphi(a b)=$ $\varphi(a) \varphi(b)$ since the usual proof requires invertibility, which we don't have. Hence we define a ring homomorphism to satisfy:

- $\varphi(a+b)=\varphi(a)+\varphi(b)$ for all $a, b \in R$,
- $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in R$,
- $\varphi\left(1_{R}\right)=1_{S}$.

We say $R \approx S$ as rings if there exists a bijective ring homomorphism (i.e. a ring isomorphism) $\varphi: R \rightarrow S$. In this case we claim that $R^{\times} \approx S^{\times}$as groups. To see this, restrict the map φ to R^{\times} and note that for all $r \in R^{\times}$we have $\varphi\left(r^{-1}\right)=\varphi(r)^{-1}$ by the usual proof. Hence $\varphi(r) \in S^{\times}$and by the same logic we have $\varphi^{-1}(r) \in R^{\times}$for all S^{\times}. Thus we have a surjective homomorphism of multiplicative groups $\varphi: R^{\times} \rightarrow S^{\times}$. Injectivity is inherited from $\varphi: R \rightarrow S$.
7. Let R be a (possibly non-commutative) ring. Prove that:
(a) For all $a \in R$ we have $0 a=a 0=0$.
(b) For all $a, b \in R$ we have $(-a)(-b)=a b$. (Hint: Think about $a b+a(-b)$. Think about $(-a)(-b)+a(-b)$. Now if a child asks you why negative \times negative $=$ positive, you will have an answer.)

Proof. First we show (a). Note that for all $a \in R$ we have $0+0 a=0 a=(0+0) a=0 a+0 a$. Then we cancel $0 a$ from both sides (which we can since ($R,+, 0$) is a group) to get $0=0 a$. The proof of $0=a 0$ is similar. Next we show (b). Note that $a b+a(-b)=a(b+(-b))=a 0=0$ and also that $(-a)(-b)+a(-b)=((-a)+a)(-b)=0(-b)=0$. By transitivity we have $a b+a(-b)=$ $(-a)(-b)+a(-b)$. Cancel $a(-b)$ from both sides to get $a b=(-a)(-b)$.
8. (Chinese Remainder Theorem) For all $a, b \in \mathbb{Z}$ define the notation $[a]_{b}=a+b \mathbb{Z}$. Now let $m, n \in \mathbb{Z}$ be coprime. Prove that the map $\varphi: \mathbb{Z} / m n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ defined by $\varphi\left([a]_{m n}\right):=\left([a]_{m},[a]_{n}\right)$ is a ring isomorphism. (Hint: The hard part is to show surjectivity. Since m, n are coprime we can write $1=x m+y n$. What does φ do to $b x m+a y n$?)
Proof. First we show that φ is well-defined. Indeed, if $[a]_{m n}=[b]_{m n}$ then $[a]_{m}=[b]_{m}$ and $[a]_{n}=$ $[b]_{n}$, hence $\left([a]_{m},[a]_{n}\right)=\left([b]_{m},[b]_{n}\right)$. The fact that φ is a ring homomorphism is straightforward. Finally, let us show that φ is a bijection. To see that it is an injection, suppose that $\left([a]_{m},[a]_{n}\right)=$ $\left([b]_{m},[b]_{n}\right)$, i.e $[a]_{m}=[b]_{m}$ and $[a]_{n}=[b]_{n}$. This means that $m \mid a-b$ and $n \mid a-b$. Since m, n are coprime this implies $m n \mid a-b$, hence $[a]_{m n}=[b]_{m n}$ as desired. To show surjectivity, consider an arbitrary element $\left([a]_{m},[b]_{n}\right)$. Does it get hit by φ ? Well, since m, n are coprime we can write $x m+y n=1$. Then we claim that $\varphi\left([b x m+a y n]_{m n}\right)=\left([a]_{m},[b]_{n}\right)$. Indeed, we have $[b x m+$ $a y n]_{m}=[a y n]_{m}$. Then note that $[y n]_{m}=[1]_{m}$, hence $[a y n]_{m}=[a]_{m}[1]_{m}=[a]_{m}$. The proof that $[b x m+a y n]_{n}=[b]_{n}$ is similar.
Let R be a ring. We say that R is an integral domain if it is commutative and if for all $a, b \in R$ we have $a b=0$ implies $a=0$ or $b=0$ (i.e. R has no "zero divisors"). We say that R is a field if it is commutative and if every nonzero $a \in R$ has a multiplicative inverse.
9. Prove that a finite integral domain is a field. Give an example to show that an infinite integral domain need not be a field. (Hint: Given $a \in R$ consider the map $R \rightarrow R$ defined by $x \mapsto a x$. Is it injective? Surjective?)
Proof. Let R be a finite integral domain and fix $a \in R$ with $a \neq 0$. Then the map $x \mapsto a x$ is injective because $a x=a y \Rightarrow a(x-y)=0 \Rightarrow x-y=0 \Rightarrow x=y$. Since R is finite, the map is also surjective. It follows that there exists some $b \in R$ such that $1=a b$. Hence a is invertible. Since the choice of $a \neq 0$ was arbitrary we conclude that R is a field.

The integers \mathbb{Z} are an example of an (infinite) integral domain that is not a field.

