Math 561 H Fall 2011
Homework 3 Solutions Drew Armstrong

Group Problems.

1. Let G be a group. Given a € G define the centralizer Z(a) := {b € G : ab = ba}. Prove that
Z(a) < G. For which a € G is Z(a) = G?

Proof. To show closure, let b,c € Z(a). That is, suppose that ba = ab and ca = ac. Then we have
(bc)a = bea = bac = abe = a(bc), hence be € Z(a). Next, note that 1 € Z(a) since la = al = a.
Finally, suppose b € Z(a), i.e. ab = ba. Multiplying by b~ on both the left and the right gives
b=labb™! = b~ tbab~!, or b=la = ab~!. We conclude that b=! € Z(a). O

2. We say a,b € G are conjugate if there exists g € G such that a = ghg~!. Recall (HW2.8) that
this is an equivalence relation. Let C(a) := {b€ G : 3g € G,a = ghg~'} denote the conjugacy class
of a € G. Prove that |C(a)| =[G : Z(a)].

Proof. First note that every element of C(a) looks like gag=! for some g € G. We claim that the
map gag~* +— gZ(a) is a bijection from C(a) to the cosets of Z(a). The map is clearly surjective.
Then to see that the map is well-defined and injective, note that

gag™t = hah™' < a(g7'h) = (g7 h)a
g the Z(a)
< gZ(a) = hZ(a).
The direction = shows well-definedness and the direction < shows injectivity. O

3. On HW2 you proved that Aut(Z) is the group with two elements. Now prove that Aut(Z/nZ) is
isomorphic to (Z/nZ)*. (Hint: An automorphism ¢ : Z/nZ — 7Z/nZ is determined by ¢(1). What
are the possibilities?) Taking n = 0, we recover the fact that Aut(Z) ~ Z* = {£1}.

To save space we will just write a for the element a + nZ of Z/nZ. First we will prove a useful
Lemma: The order of a € Z/nZ is n/ged(a,n).

Proof. First note that a(n/ged(a,n)) = n(a/ged(a,n)) = 0 € Z/nZ. Next suppose that ak = 0 €
Z/nZ for some k > 1. We wish to show that n/gcd(a,n) < k. Indeed since ak = 0 € Z/nZ we
have n|ak, which implies that (n/gcd(a,n))|(a/ged(a,n))k, and since n/ged(a,n) and a/ged(a,n)
are coprime, this implies that n/ged(a,n)|k, hence n/ged(a,n) < k. O

Proof. Suppose that ¢;Z/nZ — Z/nZ is an automorphism with ¢(1) = a. By the homomor-
phism property we have p(z) = p(1+---+1) =p(1)+---+¢(1) =a+---+a = azx. Thus the
image of ¢ is the (additive) cyclic subgroup (a) < Z/nZ. Then since ¢ is surjective we must have
(a) = Z/nZ. By the Lemma, this happens if and only if @ and n are coprime, i.e. a € (Z/nZ)*, in
which case the map ¢(x) = az is also invertible with inverse p~!(z) = a 1x.

In summary, there is a bijection between (Z/nZ)* and Aut(Z/nZ) given by sending a € (Z/nZ)*
to the automorphism ¢,(z) = ax. Moreover, this bijection is a group isomorphism since for all

a,b € (Z/nZ)* and z € Z/nZ we have
Pa © P6(2) = Pa(pp(r)) = Pa(br) = a(br) = (ab)r = pap(x).

4. Let H, K be subgroups of G. Prove that:
(a) If H<G then HK :={hk € G: h € H,k € K} is a subgroup of G.



(b) Moreover, it HNK = {1} and if hk = kh for all h € H, k € K then HK is isomorphic to the
direct product group H x K := {(h,k) : h € H,k € K} with the componentwise product.
(Hint: What could the isomorphism possibly be? Really?)

Proof. First we show (a). Given H, K < G with H < G, we will show that HK < G. To see that
HK is closed, consider h1k; and hoko in HK. Is hikihokes € HK? Yes. Since k1hy € k1H = Hky
there exists hg € H such that kihy = hski. Then hihokiko = (hihs)(ki1ke) € HK. Next, observe
that 1 €« HNK hence 1 =1-1€ HK. Finally, let a = hk € HK with h € H and k € K. To see
that ™! = k~'h~! € HK note that k~'h~! € k~'H = Hk™', hence there exists h’ € H such that
E='h=!=nk~Ll. Thatis,a ' =k 'h ! =nk ! € HK.

Next we show (b). Suppose that H, K < G with H <G, H N K = {1} and with hk = kh for
all h € H,k € K. In this case we claim that the “multiplication” map u((h,k)) := hk is a group
isomorphism p: H x K — HK. First note that it is a homomorphism because

p((ha, kr)(he, k2)) = p((hihe, kika)) = hihokiky = hikihoky = p((hy, k1)) p((he, k2)).

Next, to show that u is injective, suppose that p((hi,k1) = hiki = hoks = p((ha, k2)). Then
hiki = hoks implies that hy'hy = keki' € HN K. Since HN K = {1}, we get hy'hy = 1 (or
hi = hg) and kgk:l_l =1 (or k1 = ko), hence (h1,k1) = (hg, k2). Finally, note that u is surjective
by definition. O

5. Let G be a cyclic group of order n. Prove that every subgroup of G is cyclic and has order d for
some d|n. Conversely, prove that for every d|n there exists a subgroup of order d. Bonus: Prove
that there is exactly one subgroup of order d|n.

Proof. First we show that every subgroup of G is cyclic. To see this suppose G = (g) and consider
the surjecitve homomorphism ¢ : Z — G given by ¢(n) := ¢". If H < G is any subgroup, then
H' := ¢~ !(H) is a subgroup of Z. We know (Theorem 2.3.3) that any subgroup of Z is cyclic, hence
H' = aZ for some a € Z. Then the restricted homomorphism ¢ : H' — H (which is surjective
by definition) sends ak € aZ to ¢** = (¢*)*. Hence H is equal to the image (¢?), which is cyclic.
Finally, by Lagrange’s Theorem 2.8.9 we know that the size of H divides the size of G.

Conversely, suppose that G = (g) has size n and consider a divisor d|n. We claim that there exists
a subgroup H < G of size d. To see this consider the surjective homomorphism ¢ : Z — G
defined by ¢(a) := g*. The kernel is nZ. Thus the Correspondence Theorem 2.10.5 says that the
map H — ¢(H) is a bijection from subgroups nZ < H < 7Z to subgroups ¢(H) < G. In particular,
let dk = n and consider the subgroup nZ < k7Z < 7Z. Then ¢(kZ) is a subgroup of G (and is cyclic
by part (a)). What is its order? Part of the Correspondence Theorem says that k = [Z : kZ] = |G :
@(kZ)]. Finally, Lagrange’s Theorem 2.8.9 tells us that |¢(kZ)| = |G|/k =n/k = dk/k = d.

Bonus: Suppose we had two subgroups H, K < G with |H| = |K| = d, where dk = n. Then
the preimages ¢ !(H) and ¢ !(K) are both sugroups of index k in Z. By Theorem 2.3.3 there
is a unique such subgroup; namely kZ. Hence ¢ '(H) = kZ = ¢~ '(K). Applying ¢ then gives
H = p(kZ) =K. O

Ring Problems.

A ring is a tuple (R, +, x,0,1) such that (R,+,0) is an abelian group, (R, x,1) is a semigroup
(associative with identity 1, maybe no inverses, maybe not abelian) and for all a,b,c € R we have
a(b+ ¢) = ab+ ac and (a + b)e = ac + be.

6. Let R and S be rings. What is the correct definition of a ring homomorphism ¢ : R — 57
Hint: You will need ¢(1g) = 1g. Suppose that R and S are isomorphic as rings. Prove that the
corresponding groups of units R* and S* are isomorphic as groups.

Proof. A ring homomorphism should preserve the operations +, x. That is, we need ¢(a + b) =
o(a) + ¢(b) and @(ab) = p(a)p(b) for all a,b € R. We also want ¢(0g) = Og and ¢(1g) = 1g.
The first of these follows from ¢(a + b) = ¢(a) + ¢(b) since a homomorphism of additive groups



automatically preserves zero. However, p(1r) = 1g does not automatically follow from ¢(ab) =
v(a)p(b) since the usual proof requires invertibility, which we don’t have. Hence we define a ring
homomorphism to satisfy:

o p(a+b) =¢p(a)+ @) for all a,b € R,

e o(ab) = p(a)p(b) for all a,b € R,

* o(1g) = 1s.
We say R ~ S as rings if there exists a bijective ring homomorphism (i.e. a ring isomorphism)
@ : R — S. In this case we claim that R* ~ S* as groups. To see this, restrict the map ¢ to R*
and note that for all 7 € R* we have p(r~!) = (r)~! by the usual proof. Hence ¢(r) € S* and by
the same logic we have ¢~ !(r) € R* for all . Thus we have a surjective homomorphism of
multiplicative groups ¢ : R* — S*. Injectivity is inherited from ¢ : R — S. O

7. Let R be a (possibly non-commutative) ring. Prove that:

(a) For all a € R we have 0a = a0 = 0.

(b) For all a,b € R we have (—a)(—b) = ab. (Hint: Think about ab + a(—b). Think about
(—a)(=b)+a(—b). Now if a child asks you why negative x negative = positive, you will have
an answer.)

Proof. First we show (a). Note that for all @ € R we have 0 + 0a = 0a = (0 4+ 0)a = 0a + Oa.
Then we cancel Oa from both sides (which we can since (R, +,0) is a group) to get 0 = Oa. The
proof of 0 = a0 is similar. Next we show (b). Note that ab + a(—b) = a(b + (=b)) = a0 = 0 and
also that (—a)(—=b) + a(—=b) = ((—a) + a)(—=b) = 0(—b) = 0. By transitivity we have ab + a(—b) =
(—a)(=b) + a(—b). Cancel a(—b) from both sides to get ab = (—a)(—b). O

8. (Chinese Remainder Theorem) For all a, b € Z define the notation [a], = a+bZ. Now let m,n € Z
be coprime. Prove that the map ¢ : Z/mnZ — Z/mZ x Z/nZ defined by ¢([a]mn) := ([a]m, [a]n) is
a ring isomorphism. (Hint: The hard part is to show surjectivity. Since m,n are coprime we can
write 1 = zm + yn. What does ¢ do to bxm + ayn?)

Proof. First we show that ¢ is well-defined. Indeed, if [a]n, = [b]mn then [a],, = [b]m, and [a], =
[b]n, hence ([a)m, [a]n) = ([blm, [b]n). The fact that ¢ is a ring homomorphism is straightforward.
Finally, let us show that ¢ is a bijection. To see that it is an injection, suppose that ([a], [a],) =
([6]m;, [b]n), i-e [a]lm = [b]m and [a], = [b],. This means that m|a — b and n|la — b. Since m,n are
coprime this implies mn|a — b, hence [a}mn = [blmn as desired. To show surjectivity, consider
an arbitrary element ([a]pm, [b]n). Does it get hit by ¢? Well, since m,n are coprime we can write
xm + yn = 1. Then we claim that ¢([bxm + ayn|mn) = ([a|m, [b]n). Indeed, we have [bzm +
ayn]m, = [ayn]y,. Then note that [yn],, = [1]m, hence [ayn], = [a]m[1]m = [a]m. The proof that
[bxm + ayn], = [b], is similar. O

Let R be a ring. We say that R is an integral domain if it is commutative and if for all a,b € R we
have ab = 0 implies a = 0 or b = 0 (i.e. R has no “zero divisors”). We say that R is a field if it is
commutative and if every nonzero a € R has a multiplicative inverse.

9. Prove that a finite integral domain is a field. Give an example to show that an infinite integral
domain need not be a field. (Hint: Given a € R consider the map R — R defined by x — az. Is it
injective? Surjective?)

Proof. Let R be a finite integral domain and fix a € R with a # 0. Then the map = — ax is
injective because ax = ay = a(xr —y) =0 =2 —y = 0= z = y. Since R is finite, the map is
also surjective. It follows that there exists some b € R such that 1 = ab. Hence a is invertible.
Since the choice of a # 0 was arbitrary we conclude that R is a field.

The integers Z are an example of an (infinite) integral domain that is not a field. O



