
Math 561 H Fall 2011
Homework 3 Solutions Drew Armstrong

Group Problems.

1. Let G be a group. Given a ∈ G define the centralizer Z(a) := {b ∈ G : ab = ba}. Prove that
Z(a) ≤ G. For which a ∈ G is Z(a) = G?

Proof. To show closure, let b, c ∈ Z(a). That is, suppose that ba = ab and ca = ac. Then we have
(bc)a = bca = bac = abc = a(bc), hence bc ∈ Z(a). Next, note that 1 ∈ Z(a) since 1a = a1 = a.
Finally, suppose b ∈ Z(a), i.e. ab = ba. Multiplying by b−1 on both the left and the right gives
b−1abb−1 = b−1bab−1, or b−1a = ab−1. We conclude that b−1 ∈ Z(a). �

2. We say a, b ∈ G are conjugate if there exists g ∈ G such that a = gbg−1. Recall (HW2.8) that
this is an equivalence relation. Let C(a) := {b ∈ G : ∃ g ∈ G, a = gbg−1} denote the conjugacy class
of a ∈ G. Prove that |C(a)| = [G : Z(a)].

Proof. First note that every element of C(a) looks like gag−1 for some g ∈ G. We claim that the
map gag−1 7→ gZ(a) is a bijection from C(a) to the cosets of Z(a). The map is clearly surjective.
Then to see that the map is well-defined and injective, note that

gag−1 = hah−1 ⇔ a(g−1h) = (g−1h)a

⇔ g−1h ∈ Z(a)

⇔ gZ(a) = hZ(a).

The direction ⇒ shows well-definedness and the direction ⇐ shows injectivity. �

3. On HW2 you proved that Aut(Z) is the group with two elements. Now prove that Aut(Z/nZ) is
isomorphic to (Z/nZ)×. (Hint: An automorphism ϕ : Z/nZ→ Z/nZ is determined by ϕ(1). What
are the possibilities?) Taking n = 0, we recover the fact that Aut(Z) ≈ Z× = {±1}.

To save space we will just write a for the element a + nZ of Z/nZ. First we will prove a useful
Lemma: The order of a ∈ Z/nZ is n/gcd(a, n).

Proof. First note that a(n/gcd(a, n)) = n(a/gcd(a, n)) = 0 ∈ Z/nZ. Next suppose that ak = 0 ∈
Z/nZ for some k ≥ 1. We wish to show that n/gcd(a, n) ≤ k. Indeed since ak = 0 ∈ Z/nZ we
have n|ak, which implies that (n/gcd(a, n))|(a/gcd(a, n))k, and since n/gcd(a, n) and a/gcd(a, n)
are coprime, this implies that n/gcd(a, n)|k, hence n/gcd(a, n) ≤ k. �

Proof. Suppose that ϕ; Z/nZ → Z/nZ is an automorphism with ϕ(1) = a. By the homomor-
phism property we have ϕ(x) = ϕ(1 + · · · + 1) = ϕ(1) + · · · + ϕ(1) = a + · · · + a = ax. Thus the
image of ϕ is the (additive) cyclic subgroup 〈a〉 ≤ Z/nZ. Then since ϕ is surjective we must have
〈a〉 = Z/nZ. By the Lemma, this happens if and only if a and n are coprime, i.e. a ∈ (Z/nZ)×, in
which case the map ϕ(x) = ax is also invertible with inverse ϕ−1(x) = a−1x.

In summary, there is a bijection between (Z/nZ)× and Aut(Z/nZ) given by sending a ∈ (Z/nZ)×

to the automorphism ϕa(x) = ax. Moreover, this bijection is a group isomorphism since for all
a, b ∈ (Z/nZ)× and x ∈ Z/nZ we have

ϕa ◦ ϕb(x) = ϕa(ϕb(x)) = ϕa(bx) = a(bx) = (ab)x = ϕab(x).

�

4. Let H,K be subgroups of G. Prove that:
(a) If H EG then HK := {hk ∈ G : h ∈ H, k ∈ K} is a subgroup of G.



(b) Moreover, if H ∩K = {1} and if hk = kh for all h ∈ H, k ∈ K then HK is isomorphic to the
direct product group H × K := {(h, k) : h ∈ H, k ∈ K} with the componentwise product.
(Hint: What could the isomorphism possibly be? Really?)

Proof. First we show (a). Given H,K ≤ G with H E G, we will show that HK ≤ G. To see that
HK is closed, consider h1k1 and h2k2 in HK. Is h1k1h2k2 ∈ HK? Yes. Since k1h2 ∈ k1H = Hk1

there exists h3 ∈ H such that k1h2 = h3k1. Then h1h2k1k2 = (h1h3)(k1k2) ∈ HK. Next, observe
that 1 ∈ H ∩K hence 1 = 1 · 1 ∈ HK. Finally, let a = hk ∈ HK with h ∈ H and k ∈ K. To see
that a−1 = k−1h−1 ∈ HK note that k−1h−1 ∈ k−1H = Hk−1, hence there exists h′ ∈ H such that
k−1h−1 = h′k−1. That is, a−1 = k−1h−1 = h′k−1 ∈ HK.

Next we show (b). Suppose that H,K ≤ G with H E G, H ∩ K = {1} and with hk = kh for
all h ∈ H, k ∈ K. In this case we claim that the “multiplication” map µ((h, k)) := hk is a group
isomorphism µ : H ×K → HK. First note that it is a homomorphism because

µ((h1, k1)(h2, k2)) = µ((h1h2, k1k2)) = h1h2k1k2 = h1k1h2k2 = µ((h1, k1))µ((h2, k2)).

Next, to show that µ is injective, suppose that µ((h1, k1) = h1k1 = h2k2 = µ((h2, k2)). Then
h1k1 = h2k2 implies that h−1

2 h1 = k2k
−1
1 ∈ H ∩ K. Since H ∩ K = {1}, we get h−1

2 h1 = 1 (or
h1 = h2) and k2k

−1
1 = 1 (or k1 = k2), hence (h1, k1) = (h2, k2). Finally, note that µ is surjective

by definition. �

5. Let G be a cyclic group of order n. Prove that every subgroup of G is cyclic and has order d for
some d|n. Conversely, prove that for every d|n there exists a subgroup of order d. Bonus: Prove
that there is exactly one subgroup of order d|n.

Proof. First we show that every subgroup of G is cyclic. To see this suppose G = 〈g〉 and consider
the surjecitve homomorphism ϕ : Z→ G given by ϕ(n) := gn. If H ≤ G is any subgroup, then
H ′ := ϕ−1(H) is a subgroup of Z. We know (Theorem 2.3.3) that any subgroup of Z is cyclic, hence
H ′ = aZ for some a ∈ Z. Then the restricted homomorphism ϕ : H ′ → H (which is surjective
by definition) sends ak ∈ aZ to gak = (ga)k. Hence H is equal to the image 〈ga〉, which is cyclic.
Finally, by Lagrange’s Theorem 2.8.9 we know that the size of H divides the size of G.

Conversely, suppose that G = 〈g〉 has size n and consider a divisor d|n. We claim that there exists
a subgroup H ≤ G of size d. To see this consider the surjective homomorphism ϕ : Z → G
defined by ϕ(a) := ga. The kernel is nZ. Thus the Correspondence Theorem 2.10.5 says that the
map H 7→ ϕ(H) is a bijection from subgroups nZ ≤ H ≤ Z to subgroups ϕ(H) ≤ G. In particular,
let dk = n and consider the subgroup nZ ≤ kZ ≤ Z. Then ϕ(kZ) is a subgroup of G (and is cyclic
by part (a)). What is its order? Part of the Correspondence Theorem says that k = [Z : kZ] = [G :
ϕ(kZ)]. Finally, Lagrange’s Theorem 2.8.9 tells us that |ϕ(kZ)| = |G|/k = n/k = dk/k = d.

Bonus: Suppose we had two subgroups H,K ≤ G with |H| = |K| = d, where dk = n. Then
the preimages ϕ−1(H) and ϕ−1(K) are both sugroups of index k in Z. By Theorem 2.3.3 there
is a unique such subgroup; namely kZ. Hence ϕ−1(H) = kZ = ϕ−1(K). Applying ϕ then gives
H = ϕ(kZ) = K. �

Ring Problems.

A ring is a tuple (R,+,×, 0, 1) such that (R,+, 0) is an abelian group, (R,×, 1) is a semigroup
(associative with identity 1, maybe no inverses, maybe not abelian) and for all a, b, c ∈ R we have
a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.
6. Let R and S be rings. What is the correct definition of a ring homomorphism ϕ : R → S?
Hint: You will need ϕ(1R) = 1S . Suppose that R and S are isomorphic as rings. Prove that the
corresponding groups of units R× and S× are isomorphic as groups.

Proof. A ring homomorphism should preserve the operations +,×. That is, we need ϕ(a + b) =
ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R. We also want ϕ(0R) = 0S and ϕ(1R) = 1S .
The first of these follows from ϕ(a + b) = ϕ(a) + ϕ(b) since a homomorphism of additive groups



automatically preserves zero. However, ϕ(1R) = 1S does not automatically follow from ϕ(ab) =
ϕ(a)ϕ(b) since the usual proof requires invertibility, which we don’t have. Hence we define a ring
homomorphism to satisfy:

• ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ R,
• ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R,
• ϕ(1R) = 1S .

We say R ≈ S as rings if there exists a bijective ring homomorphism (i.e. a ring isomorphism)
ϕ : R→ S. In this case we claim that R× ≈ S× as groups. To see this, restrict the map ϕ to R×

and note that for all r ∈ R× we have ϕ(r−1) = ϕ(r)−1 by the usual proof. Hence ϕ(r) ∈ S× and by
the same logic we have ϕ−1(r) ∈ R× for all S×. Thus we have a surjective homomorphism of
multiplicative groups ϕ : R× → S×. Injectivity is inherited from ϕ : R→ S. �

7. Let R be a (possibly non-commutative) ring. Prove that:
(a) For all a ∈ R we have 0a = a0 = 0.
(b) For all a, b ∈ R we have (−a)(−b) = ab. (Hint: Think about ab + a(−b). Think about

(−a)(−b)+a(−b). Now if a child asks you why negative × negative = positive, you will have
an answer.)

Proof. First we show (a). Note that for all a ∈ R we have 0 + 0a = 0a = (0 + 0)a = 0a + 0a.
Then we cancel 0a from both sides (which we can since (R,+, 0) is a group) to get 0 = 0a. The
proof of 0 = a0 is similar. Next we show (b). Note that ab + a(−b) = a(b + (−b)) = a0 = 0 and
also that (−a)(−b) + a(−b) = ((−a) + a)(−b) = 0(−b) = 0. By transitivity we have ab + a(−b) =
(−a)(−b) + a(−b). Cancel a(−b) from both sides to get ab = (−a)(−b). �

8. (Chinese Remainder Theorem) For all a, b ∈ Z define the notation [a]b = a+bZ. Now let m,n ∈ Z
be coprime. Prove that the map ϕ : Z/mnZ→ Z/mZ× Z/nZ defined by ϕ([a]mn) := ([a]m, [a]n) is
a ring isomorphism. (Hint: The hard part is to show surjectivity. Since m,n are coprime we can
write 1 = xm+ yn. What does ϕ do to bxm+ ayn?)

Proof. First we show that ϕ is well-defined. Indeed, if [a]mn = [b]mn then [a]m = [b]m and [a]n =
[b]n, hence ([a]m, [a]n) = ([b]m, [b]n). The fact that ϕ is a ring homomorphism is straightforward.
Finally, let us show that ϕ is a bijection. To see that it is an injection, suppose that ([a]m, [a]n) =
([b]m, [b]n), i.e [a]m = [b]m and [a]n = [b]n. This means that m|a − b and n|a − b. Since m,n are
coprime this implies mn|a − b, hence [a]mn = [b]mn as desired. To show surjectivity, consider
an arbitrary element ([a]m, [b]n). Does it get hit by ϕ? Well, since m,n are coprime we can write
xm + yn = 1. Then we claim that ϕ([bxm + ayn]mn) = ([a]m, [b]n). Indeed, we have [bxm +
ayn]m = [ayn]m. Then note that [yn]m = [1]m, hence [ayn]m = [a]m[1]m = [a]m. The proof that
[bxm+ ayn]n = [b]n is similar. �

Let R be a ring. We say that R is an integral domain if it is commutative and if for all a, b ∈ R we
have ab = 0 implies a = 0 or b = 0 (i.e. R has no “zero divisors”). We say that R is a field if it is
commutative and if every nonzero a ∈ R has a multiplicative inverse.

9. Prove that a finite integral domain is a field. Give an example to show that an infinite integral
domain need not be a field. (Hint: Given a ∈ R consider the map R→ R defined by x 7→ ax. Is it
injective? Surjective?)

Proof. Let R be a finite integral domain and fix a ∈ R with a 6= 0. Then the map x 7→ ax is
injective because ax = ay ⇒ a(x − y) = 0 ⇒ x − y = 0 ⇒ x = y. Since R is finite, the map is
also surjective. It follows that there exists some b ∈ R such that 1 = ab. Hence a is invertible.
Since the choice of a 6= 0 was arbitrary we conclude that R is a field.

The integers Z are an example of an (infinite) integral domain that is not a field. �


