Group Problems.

1. Let G be a group. Given $a \in G$ define the centralizer $Z(a):=\{b \in G: a b=b a\}$. Prove that $Z(a) \leq G$. For which $a \in G$ is $Z(a)=G$?
2. We say $a, b \in G$ are conjugate if there exists $g \in G$ such that $a=g b g^{-1}$. Recall (HW2.8) that this is an equivalence relation. Let $C(a):=\left\{b \in G: \exists g \in G, a=g b g^{-1}\right\}$ denote the conjugacy class of $a \in G$. Prove that $|C(a)|=[G: Z(a)]$.
3. On HW2 you proved that $\operatorname{Aut}(\mathbb{Z})$ is the group with two elements. Now prove that $\operatorname{Aut}(\mathbb{Z} / n \mathbb{Z})$ is isomorphic to $(\mathbb{Z} / n \mathbb{Z})^{\times}$. (Hint: An automorphism $\varphi: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ is determined by $\varphi(1)$. What are the possibilities?) Taking $n=0$, we recover the fact that $\operatorname{Aut}(\mathbb{Z}) \approx \mathbb{Z}^{\times}=\{ \pm 1\}$.
4. Let H, K be subgroups of G. Prove that:
(a) If $H \unlhd G$ then $H K:=\{h k \in G: h \in H, k \in K\}$ is a subgroup of G.
(b) Moreover, if $H \cap K=\{1\}$ and if $h k=k h$ for all $h \in H, k \in K$ then $H K$ is isomorphic to the direct product group $H \times K:=\{(h, k): h \in H, k \in K\}$ with the componentwise product. (Hint: What could the isomorphism possibly be? Really?)
5. Let G be a cyclic group of order n. Prove that every subgroup of G is cyclic and has order d for some $d \mid n$. Conversely, prove that for every $d \mid n$ there exists a subgroup of order d. Bonus: Prove that there is exactly one subgroup of order $d \mid n$.

Ring Problems.

A ring is a tuple $(R,+, \times, 0,1)$ such that $(R,+, 0)$ is an abelian group, $(R, \times, 1)$ is a semigroup (associative with identity 1 , maybe no inverses, maybe not abelian) and for all $a, b, c \in R$ we have $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$.
6. Let R and S be rings. What is the correct definition of a ring homomorphism $\varphi: R \rightarrow S$? Hint: You will need $\varphi\left(1_{R}\right)=1_{S}$. Suppose that R and S are isomorphic as rings. Prove that the corresponding groups of units R^{\times}and S^{\times}are isomorphic as groups.
7. Let R be a (possibly non-commutative) ring. Prove that:
(a) For all $a \in R$ we have $0 a=a 0=0$.
(b) For all $a, b \in R$ we have $(-a)(-b)=a b$. (Hint: Think about $a b+a(-b)$. Think about $(-a)(-b)+a(-b)$. Now if a child asks you why negative \times negative $=$ positive, you will have an answer.)
8. (Chinese Remainder Theorem) For all $a, b \in \mathbb{Z}$ define the notation $[a]_{b}=a+b \mathbb{Z}$. Now let $m, n \in \mathbb{Z}$ be coprime. Prove that the $\operatorname{map} \varphi: \mathbb{Z} / m n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ defined by $\varphi\left([a]_{m n}\right):=$ $\left([a]_{m},[a]_{n}\right)$ is a ring isomorphism. (Hint: The hard part is to show surjectivity. Since m, n are coprime we can write $1=x m+y n$. What does φ do to $b x m+a y n ?$)
Let R be a ring. We say that R is an integral domain if it is commutative and if for all $a, b \in R$ we have $a b=0$ implies $a=0$ or $b=0$ (i.e. R has no "zero divisors"). We say that R is a field if it is commutative and if every nonzero $a \in R$ has a multiplicative inverse.
9. Prove that a finite integral domain is a field. Give an example to show that an infinite integral domain need not be a field. (Hint: Given $a \in R$ consider the map $R \rightarrow R$ defined by $x \mapsto a x$. Is it injective? Surjective?)

