Group Problems.

1. Let G be a group. Given $a \in G$ define the centralizer $Z(a) := \{b \in G : ab = ba\}$. Prove that $Z(a) \leq G$. For which $a \in G$ is Z(a) = G?

2. We say $a, b \in G$ are conjugate if there exists $g \in G$ such that $a = gbg^{-1}$. Recall (HW2.8) that this is an equivalence relation. Let $C(a) := \{b \in G : \exists g \in G, a = gbg^{-1}\}$ denote the conjugacy class of $a \in G$. Prove that |C(a)| = [G : Z(a)].

3. On HW2 you proved that $\operatorname{Aut}(\mathbb{Z})$ is the group with two elements. Now **prove** that $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^{\times}$. (Hint: An automorphism $\varphi : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ is determined by $\varphi(1)$. What are the possibilities?) Taking n = 0, we recover the fact that $\operatorname{Aut}(\mathbb{Z}) \approx \mathbb{Z}^{\times} = \{\pm 1\}$.

4. Let H, K be subgroups of G. Prove that:

- (a) If $H \leq G$ then $HK := \{hk \in G : h \in H, k \in K\}$ is a subgroup of G.
- (b) Moreover, if $H \cap K = \{1\}$ and if hk = kh for all $h \in H$, $k \in K$ then HK is isomorphic to the direct product group $H \times K := \{(h,k) : h \in H, k \in K\}$ with the componentwise product. (Hint: What could the isomorphism possibly be? Really?)

5. Let G be a cyclic group of order n. **Prove** that every subgroup of G is cyclic and has order d for some d|n. Conversely, **prove** that for every d|n there exists a subgroup of order d. Bonus: Prove that there is **exactly one** subgroup of order d|n.

Ring Problems.

A ring is a tuple $(R, +, \times, 0, 1)$ such that (R, +, 0) is an abelian group, $(R, \times, 1)$ is a semigroup (associative with identity 1, maybe no inverses, maybe not abelian) and for all $a, b, c \in R$ we have a(b+c) = ab + ac and (a+b)c = ac + bc.

6. Let R and S be rings. What is the correct definition of a ring homomorphism $\varphi : R \to S$? Hint: You will need $\varphi(1_R) = 1_S$. Suppose that R and S are isomorphic as rings. **Prove** that the corresponding groups of units R^{\times} and S^{\times} are isomorphic as groups.

7. Let R be a (possibly non-commutative) ring. Prove that:

- (a) For all $a \in R$ we have 0a = a0 = 0.
- (b) For all $a, b \in R$ we have (-a)(-b) = ab. (Hint: Think about ab + a(-b). Think about (-a)(-b) + a(-b). Now if a child asks you why negative \times negative = positive, you will have an answer.)

8. (Chinese Remainder Theorem) For all $a, b \in \mathbb{Z}$ define the notation $[a]_b = a + b\mathbb{Z}$. Now let $m, n \in \mathbb{Z}$ be coprime. Prove that the map $\varphi : \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ defined by $\varphi([a]_{mn}) := ([a]_m, [a]_n)$ is a **ring isomorphism**. (Hint: The hard part is to show surjectivity. Since m, n are coprime we can write 1 = xm + yn. What does φ do to bxm + ayn?)

Let R be a ring. We say that R is an integral domain if it is commutative and if for all $a, b \in R$ we have ab = 0 implies a = 0 or b = 0 (i.e. R has no "zero divisors"). We say that R is a field if it is commutative and if every nonzero $a \in R$ has a multiplicative inverse.

9. Prove that a **finite** integral domain is a field. Give an example to show that an infinite integral domain need not be a field. (Hint: Given $a \in R$ consider the map $R \to R$ defined by $x \mapsto ax$. Is it injective? Surjective?)