
Math 561 H Fall 2011
Homework 2 Solutions Drew Armstrong

1. Let ϕ : G → H be a homomorphism of groups. Prove that imϕ is a subgroup of H.

Proof. First we show that im ϕ is closed. To see this, suppose that x, y ∈ im ϕ, so there exist
a, b ∈ G such that ϕ(a) = x and ϕ(b) = y. It follows that xy = ϕ(a)ϕ(b) = ϕ(ab), hence xy ∈
im ϕ. Next, recall from Proposition 2.5.3 in the text that ϕ(1G) = 1H and ϕ(a−1) = ϕ(a)−1

for all a ∈ G. It follows that im ϕ contains 1H and is closed under inversion. !

2. Let G be a set with binary operation (a, b) #→ ab and consider the following possible axioms:
(1) ∀ a, b ∈ G, a(bc) = (ab)c.
(2) ∃ e ∈ G,∀ a ∈ G, ae = ea = a.
(3) ∀ a ∈ G,∃ b ∈ G, ab = ba = e.
(3’) ∀ a ∈ G,∃ b ∈ G, ab = e.

Prove that the axioms (3) and (3’) are equivalent. That is, show that (1), (2), and (3)
hold if and only if (1), (2), and (3’) hold. (One direction is easy. For the other direction, let
a ∈ G. Then there exist b, c ∈ G such that ab = e and bc = e. Show that a = c.)

Proof. Assume that (1) and (2) hold. In this case we wish to show that (3)⇔(3’). The fact
that (3) implies (3’) is trivial. So suppose that (3’) holds. That is, every element of the set
G has a right inverse. We wish to show (3) — that every element actually has a two-sided
inverse. To do this, let a ∈ G. By (3’) there exist b, c ∈ G such that ab = e and bc = e. But
then applying (1) and (2) gives

a = ae = a(bc) = (ab)c = ec = c.

It follows that ab = ba = e and hence b is a two-sided inverse for a. !

3. Let H,K be subgroups of G. Prove that H ∩K is also a subgroup of G.

Proof. To show that H ∩K is closed, let a, b ∈ H ∩K. Since H and K are both closed we
have a, b ∈ H ⇒ ab ∈ H and a, b ∈ K ⇒ ab ∈ K. Thus ab is in H and K. In other words,
ab ∈ H ∩ K. Next, we know that 1G ∈ H and 1G ∈ K, hence 1G ∈ H ∩ K. Finally, let
a ∈ H ∩K. Then a ∈ H ⇒ a−1 ∈ H and a ∈ K ⇒ a−1 ∈ K. Hence a−1 ∈ H ∩K. !

4. (a) Consider a homomorphism ϕ : Z+ → G with ϕ(1) = g ∈ G. Describe imϕ and kerϕ.
(b) Describe the set of automorphisms ϕ : Z+ → Z+.

(a) Since ϕ is a homomorphism, note that

ϕ(n) = ϕ(1 + 1 + · · · + 1) = ϕ(1)ϕ(1) · · ·ϕ(1) = gg · · · g = gn

for all positive integers n. Then since ϕ preserves the identity and inverses, it follows that
ϕ(n) = gn for all n ∈ Z. (In particular, ϕ is completely determined by the choice of ϕ(1).)
We conclude that im ϕ is the cyclic subgroup 〈g〉 ≤ G generated by the element g ∈ G. Now
suppose that |〈g〉| = a. If a < ∞ then we have ϕ(n) = gn = e if and only if n = ak for some
k ∈ Z, hence ker ϕ = aZ = {ak : k ∈ Z}. If a = ∞ then note that gn = e if and only if n = 0,
hence ker ϕ = {0} = 0Z. (This formula could be uniform if you’re willing to define ∞Z = 0Z.)

(b) Now consider a homomorphism ϕ : Z+ → Z+ (that is, let G = Z). By part (a) the map
ϕ is completely determined by the choice of ϕ(1) = m ∈ Z. For which m is ϕ an automorphism
(i.e. a bijection)? For ϕ to be surjective we must have im ϕ = Z. Since im ϕ = 〈m〉 = mZ,



this will happen if and only if m = 1 or m = −1. In both of these cases m has order ∞ in Z
so the kernel is ker ϕ = {0}, and we conclude that ϕ is also injective.

Conclusion: There are exactly two automorphisms ϕ : Z+ → Z+; call them ϕ1(1) := 1 and
ϕ2(1) := −1. Thus Aut(Z+) is a group of order 2 with group table:

◦ ϕ1 ϕ2

ϕ1 ϕ1 ϕ2

ϕ2 ϕ2 ϕ1

What is the identity element of this group?

5. Given a group G, define its center:

Z(G) := {g ∈ G : ∀h ∈ G, gh = hg}.
Prove that Z(G) is a normal subgroup of G. (We write Z(G) " G.)

Proof. There are a few ways to think about this. The most concrete way uses Definition 2.5.10
in the text which says that a subgroup N ≤ G is normal iff for all a ∈ N and g ∈ G we have
gag−1 ∈ N . So let a ∈ Z(G) and g ∈ G. We wish to show that gag−1 ∈ Z(G). But by
definition we have ag = ga. Hence gag−1 = agg−1 = a ∈ Z(G) as desired.

A more abstract proof uses that fact that N ≤ G is normal iff there exists a group ho-
momorphism ϕ : G → G′ such that N = ker ϕ. In this case we can define a homomorphism
φ : G → Aut(G) by sending a group element g ∈ G to the conjugation map φg : G → G defined
by φg(h) := ghg−1 for all h ∈ G. (One needs to check that indeed φ is a homomorphism.)
Then note that ker φ = Z(G). !

Problem 6 had a problem, so I’ve deleted it. I meant to ask this: Prove that the
“center” of the set of n × n real matrices, defined by Z(Mn(R)) = {A ∈ Mn(R) : ∀X ∈
Mn(R), AX = XA}, is equal to the set of scalar matrices {cI : c ∈ R}. (The analogous
statement for invertible matrices is also true, but harder to show.)

Proof. Let S = {cI : c ∈ R} denote the set of scalar matrices. We wish to show that S =
Z(Mn(R)). First note that S ⊆ Z(Mn(R)). Indeed, given cI ∈ S we have cIX = cX = XcI
for all X ∈ Mn(R). To complete the proof we must show that Z(GLn(R)) ⊆ S. So suppose
A ∈ Z(Mn(R)) and let aij denote the entry of A in the i-th row and j-th column. Let Eij

denote the matrix with a 1 in the (i, j) position and zeroes elsewhere. Since A ∈ Z(Mn(R))
we have AEij = EijA, which reads as:





j

a1i

a2i
...

i aii
...

ani





=





j

i aj1 aj2 · · · ajj · · · ajn





Here i and j label the i-th row and the j-th column of each matrix. Blank space indicates
that all the other entries are zero. Since the matrices are equal component-by-component
we conclude that all of the displayed symbols are zero except for aii = ajj . Applying this
argument for all 1 ≤ i < j ≤ n shows that the diagonal entries of A are all equal and the
off-diagonal entries are all zero. That is, A ∈ S.

!



7. Consider the matrix Rθ :=
(

cos θ − sin θ
sin θ cos θ

)
.

(a) Given x ∈ R2 show that Rθ x is the rotation of x by θ degrees counterclockwise. (Hint:
It suffices to let x = e1 and x = e2.)

(b) If A ∈ SO2(R) prove that A = Rθ for some θ ∈ R.
(c) Verify that the map ϕ(eiθ) := Rθ is an isomorphism U(1) ≈ SO2(R).

Proof. For part (a), Let Tθ : R2 → R2 denote the map that rotates a vector by θ degrees
counterclockwise. Then note that Tθ(e1) = (cos θ, sin θ)T and Tθ(e2) = (− sin θ, cos θ)T as in
the following figure:

Finally, since rotation is a linear map, we have

Tθ

(
x
y

)
= Tθ(x

(
1
0

)
+ y

(
0
1

)
) = xTθ

(
1
0

)
+ yTθ

(
0
1

)

= x

(
cos θ
sin θ

)
+ y

(
− sin θ
cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

) (
x
y

)
.

Thus we have Tθ(x) = Rθx for all x ∈ R2, as desired. For part (b) suppose that A =
(

a b
c d

)

is in SO(2). Note that A−1 =
(

d −b
−c a

)
, hence the condition A−1 = AT implies that a = d

and b = −c. Thus A is of the form A = ( a −c
c a ) with determinant a2 + c2 = 1. This means

that (a, c) ∈ R2 is a point on the unit circle. Let θ be the angle that the corresponding vector
makes with the x-axis, as in the following picture:

We conclude that a = cos θ and c = sin θ, as desired. For part (c), consider the map ϕ : U(1) →
SO(2) given by ϕ(eiθ) = Rθ. To show that ϕ is injective, suppose that ϕ(eiα) = ϕ(eiβ) — i.e.
Rα = Rβ — for some α,β ∈ R. The fact that Rα = Rβ means that the two rotations do the
same thing. In other words, α − β = 2πk for some k ∈ Z. This implies that cos(α) = cos(β)
and sin(α) = sin(β). By Euler’s formula (eiθ = cos θ + i sin θ for all θ ∈ R) we have eiα = eiβ.
The fact that ϕ is surjective follows directly from part (b). Finally, to see that ϕ is a
homomorphism note that RαRβ = Rα+β. One could show this, for instance, by quoting the
angle-sum triginometric formulas. But I think it is better to observe that RαRβ is the function



that rotates a vector by β, then rotates by α, which is the same thing as rotating by α + β.
We conclude that

ϕ(eiαeiβ) = ϕ(ei(α+β)) = Rα+β = RαRβ = ϕ(eiα)ϕ(eiβ),

as desired. !

[Problem 7(b) has an analogue in 3-dimensions: If A ∈ SO(3) then A is a rotation by some
angle about an axis in R3. (See “Euler’s Theorem” 5.1.25 in the text.) Since SO(3) is a group,
this theorem has a remarkable consequence — which is not obvious, either algebraically or geo-
metrically: The composition of rotations about any two axes in R3 is a rotation about some other
axis in R3.]

8. Given a, b ∈ G we say that a and b are conjugate if there exists g ∈ G such that a = gbg−1.
Prove that conjugacy is an equivalence relation on G. (The equivalence classes are called
conjugacy classes.) Prove: If a, b ∈ G are conjugate then they have the same order.

Proof. To show transitivity, suppose that a is conjugate to b and b is conjugate to c. That is,
there exist g, h ∈ G such that a = gbg−1 and b = hch−1. Then

a = gbg−1 = ghch−1g−1 = (gh)c(gh)−1,

hence a is conjugate to c. To show symmetry, suppose a is conjugate to b. That is, there
exists g ∈ G such that a = gbg−1. But then b = (g−1)a(g−1)−1, hence b is conjugate to a.
Finally, note that a = eae−1 for all a ∈ G, hence a is conjugate to itself. We conclude that
conjugacy is an equivalence relation.

Now consider a, b ∈ G with a = gbg−1 for some g ∈ G. We claim that a and b have the
same order. Indeed, consider the conjugation map φg : G → G defined by φg(h) = ghg−1 for
all h ∈ G. It is easy to see that φg restricts to a bijection φg : 〈b〉 → 〈a〉 of cyclic subgroups.
(You proved a special case on the first homework.) !


