1. Let $\varphi: G \rightarrow H$ be a homomorphism of groups. Prove that $\operatorname{im} \varphi$ is a subgroup of H.
2. Let G be a set with binary operation $(a, b) \mapsto a b$ and consider the following possible axioms:
(1) $\forall a, b \in G, a(b c)=(a b) c$.
(2) $\exists e \in G, \forall a \in G, a e=e a=a$.
(3) $\forall a \in G, \exists b \in G, a b=b a=e$.
(3') $\forall a \in G, \exists b \in G, a b=e$.
Prove that the axioms (3) and (3^{\prime}) are equivalent. That is, show that (1), (2), and (3) hold if and only if (1), (2), and (3') hold. (One direction is easy. For the other direction, let $a \in G$. Then there exist $b, c \in G$ such that $a b=e$ and $b c=e$. Show that $a=c$.)
3. Let H, K be subgroups of G. Prove that $H \cap K$ is also a subgroup of G.
4. (a) Consider a homomorphism $\varphi: \mathbb{Z}^{+} \rightarrow G$ with $\varphi(1)=g \in G$. Describe im φ and $\operatorname{ker} \varphi$.
(b) Describe the set of automorphisms $\varphi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$.
5. Given a group G, define its center:

$$
Z(G):=\{g \in G: \forall h \in G, g h=h g\} .
$$

Prove that $Z(G)$ is a normal subgroup of G. (We write $Z(G) \unlhd G$.)
6. Prove that the center of $G L_{n}(\mathbb{R})$ is the set $\{c I: c \in \mathbb{R}, c \neq 0\}$ of "scalar matrices". (Hint: Let $E_{i, j}$ be the matrix with 1 in its i, j-position and zeroes elsewhere. What does $A E_{i, j}=E_{i, j} A$ mean? What does $A\left(E_{i, j}+E_{j, i}\right)=\left(E_{i, j}+E_{j, i}\right) A$ mean? $)$
7. Consider the matrix $R_{\theta}:=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.
(a) Given $\mathbf{x} \in \mathbb{R}^{2}$ show that $R_{\theta} \mathbf{x}$ is the rotation of \mathbf{x} by θ degrees counterclockwise. (Hint: It suffices to let $\mathbf{x}=\mathbf{e}_{1}$ and $\mathbf{x}=\mathbf{e}_{2}$.)
(b) If $A \in S O_{2}(\mathbb{R})$ prove that $A=R_{\theta}$ for some $\theta \in \mathbb{R}$.
(c) Verify that the map $\varphi\left(e^{i \theta}\right):=R_{\theta}$ is an isomorphism $U(1) \approx S O_{2}(\mathbb{R})$.
8. Given $a, b \in G$ we say that a and b are conjugate if there exists $g \in G$ such that $a=g b g^{-1}$. Prove that conjugacy is an equivalence relation on G. (The equivalence classes are called conjugacy classes.) Prove: If $a, b \in G$ are conjugate then they have the same order.

