
Math 561 H Fall 2011
Exam 3 — Wed Nov 30 Drew Armstrong

There are 3 problems and 5 pages. This is a closed book test. Any student caught cheating
will receive a score of zero.

1. Suppose that a group G acts on a set X by homomorphism ϕ : G → Aut(X), and
define a relation on X by

x ∼ y ⇐⇒ ∃ g ∈ G such that ϕg(x) = y.

(a) Prove that ∼ is an equivalence on X. (The ∼-classes are called G-orbits.)

Proof. For all x ∈ X note that x ∼ x since ϕ1(x) = x. Hence ∼ is reflexive.
Next suppose that x ∼ y; i.e. there exists g ∈ G such that ϕg(x) = y. Then
ϕg−1(y) = x, hence y ∼ x, so ∼ is symmetric. Finally, suppose that x ∼ y and
y ∼ z; i.e. there exist g, h ∈ G such that ϕg(x) = y and ϕh(y) = z. Then we have
ϕhg(x) = ϕh(ϕg(x)) = ϕh(y) = z, hence x ∼ z, and ∼ is transitive. �

(b) Suppose that ϕg(x) = y (i.e. x ∼ y). Use the group element g to define a function
f : Stab(x)→ Stab(y). (Hint: Conjugate by g.)

Proof. Define the map f : Stab(x) → Stab(y) by f(h) := ghg−1, and note that if
h ∈ Stab(x) — i.e. ϕh(x) = x — then indeed f(h) = ghg−1 ∈ Stab(y) since

ϕghg−1(y) = ϕg(ϕh(ϕg−1(y))) = ϕg(ϕh(x)) = ϕg(x) = y.

�

(c) Prove that f is bijection.

Proof. Note that the map ψ(h) := g−1hg maps Stab(y) → Stab(x) and satisfies
f ◦ ψ = ψ ◦ f = 1. Hence f−1 = ψ and f is a bijection. �

(d) Prove that f is a homomorphism, hence Stab(x) ≈ Stab(y).

Proof. Given h, k ∈ Stab(x), note that

f(h)f(k) = (ghg−1)(gkg−1) = g(hk)g−1 = f(hk).

�

2. For α ∈ Rn define the translation tα : Rn → Rn by tα(x) := x + α, and consider the
group GL(Rn) of invertible linear maps ϕ : Rn → Rn.

(a) For all α ∈ Rn and ϕ ∈ GL(Rn), prove that ϕ ◦ tα = tϕ(α) ◦ ϕ.

Proof. For all x ∈ Rn we have

ϕ ◦ tα(x) = ϕ(tα(x)) = ϕ(x+ α) = ϕ(x) + ϕ(α) = tϕ(α)(ϕ(x)) = tϕ(α) ◦ ϕ(x).

�

(b) Let Rn
+ := {tα : α ∈ Rn} be the group of translations of Rn, and let

Aff(Rn) := {tα ◦ ϕ : tα ∈ Rn
+, ϕ ∈ GL(Rn)}.

Use part (a) to verify that Aff(Rn) is a group.



Proof. Let t0 ∈ Rn
+ be translation by the zero vector and let I ∈ GL(Rn) be the

identity linear map. Then t0 ◦I ∈ Aff(Rn) is the identity map on Rn. Now consider
an arbitrary element tα ◦ ϕ ∈ Aff(Rn) and observe that its inverse satisfies

(tα ◦ ϕ)−1 = ϕ−1 ◦ t−1
α = ϕ−1 ◦ t−α = tϕ−1(−α) ◦ ϕ−1 ∈ Aff(Rn).

Finally, consider tα ◦ ϕ and tβ ◦ µ in Aff(Rn) and note that

(tα ◦ ϕ) ◦ (tβ ◦ ϕ) = tα ◦ tϕ(β) ◦ ϕ ◦ µ = tα+ϕ(β) ◦ (ϕ ◦ µ) ∈ Aff(Rn).

�

(c) Use part (a) to prove that Rn
+ EAff(Rn).

Proof. Consider an arbitrary element tα ∈ Rn
+ and an arbitrary element tβ ◦ ϕ ∈

Aff(Rn). Then we have

(tβ ◦ ϕ) ◦ tα ◦ (tβ ◦ ϕ)−1 = tβ ◦ ϕ ◦ tα ◦ ϕ−1 ◦ t−β
= tβ ◦ tϕ(α) ◦ (ϕ ◦ ϕ−1) ◦ t−β
= tβ ◦ tϕ(α) ◦ t−β
= tϕ(α) ∈ Rn

+.

�

3. Let T be the group of rotational symmetries of a regular tetrahedron, shown below.

(a) T acts transitively on the set of 4 vertices. Use Orbit-Stabilizer to compute |T |.

Proof. Let v be a vertex, so |Orb(v)| = 4. Note that Stab(v) is a cyclic group of
size 3. Hence |T | = |Orb(v)||Stab(v)| = 4 · 3 = 12. �

(b) Let N E T be a normal subgroup. Based on Lagrange’s Theorem, what are the
possible sizes of N?

Proof. Lagrange’s Theorem says that |N | divides |T | = 12. Hence |N | is in the set
{1, 2, 3, 4, 6, 12}. �

(c) The group T has 3 conjugacy classes. List their sizes.

[I’m very sorry. There are actually 4 conjugacy classes. I realize that this error could
have thrown people off the trail and so I graded Problem 3 very carefully. Fortunately,
this difference doesn’t affect parts (d), (e), (f), (g) very much. Also fortunately (or
maybe unfortunately), it didn’t seem to matter much — people who missed this problem
tended to have bigger issues.]

Proof. I would have accepted 1, 3, 8 or 1, 3, 4, 4 as completely correct. Because: As
always, the identity is its own conjugacy class or size 1. There is one rotation around
each of the 6 edges, but the same rotation is shared by a pair of opposite edges,
hence this class has size 3. There are two non-identity rotations about each vertex
(or its opposite face), for a total of 8 elements. I naively assumed these formed a



class of size 8, but actually the rotations by 2π/3 and −2π/3 about a vertex are
not conjugate in T , so we get two classes of size 4. Check: 1 + 3 + 4 + 4 = 12. �

(d) Again let N E T . Based on parts (b) and (c), which values of |N | are possible?

Proof. Since N is closed under conjugation, it is a union of conjugacy classes —
and since 1 ∈ N , one of these classes must be the identity class. By part (c), |N |
is equal to 1 plus numbers from {3, 4, 4}. We conclude that |N | ∈ {1, 4, 5, 8, 9, 12}.
Combining with part (b) yields |N | ∈ {1, 4, 12}. [If T is not simple, then it must
have a normal subgroup of size 4. In fact it does, but you don’t need to show this.] �

(e) Now let T act on the set F of four faces of the tetrahedron. Each g ∈ T partitions F
into “cycles” — which are the orbits of 〈g〉 acting on F — and the number of cycles
is constant for g in a given conjugacy class of T . For each of the 4 conjugacy
classes of T , list the number of associated cycles.

(f) Now we will color the faces of the tetrahedron using at most k colors. There are k4

colorings if the tetrahedron is not allowed to move. For each of the 4 conjugacy
classes of T , list the number of colorings that are fixed by an element of
the class.

I will collect the answers (c), (e) and (f) in the following table.

rotate around size of class number of cycles number of fixed colorings

1 4 k4

edge 3 2 k2

vertex/face 4 2 k2

vertex/face 4 2 k2

(g) Finally, use Burnside’s Lemma to compute the number of T -orbits of face
colorings with at most k-colors. (Hint: When k = 2 the answer is 5.)

Proof. By Burnside’s Lemma, the number of orbits of colorings is the average num-
ber of colorings fixed by an element of T . Using the data in the table, the number
of orbits is

1
12

[k4 + 3k2 + 4k2 + 4k2] =
k4 + 11k2

12
.

Check: Putting k = 2 we obtain (16 + 11 · 4)/12 = 5 black-and-white colorings
of the tetrahedron. In fact, there is (up to rotation) exactly one way to color the
tetrahedron with i black faces and 4− i white faces, for i = 0, 1, 2, 3, 4. �


