Math 561 H Fall 2011
Exam 3 — Wed Nov 30 Drew Armstrong

There are 3 problems and 5 pages. This is a closed book test. Any student caught cheating
will receive a score of zero.

1. Suppose that a group G acts on a set X by homomorphism ¢ : G — Aut(X), and
define a relation on X by
x ~y <= Jg € G such that p,(z) =y.
(a) Prove that ~ is an equivalence on X. (The ~-classes are called G-orbits.)

Proof. For all x € X note that z ~ x since pi(x) = z. Hence ~ is reflexive.
Next suppose that x ~ y; i.e. there exists g € G such that p4(x) = y. Then
¢g-1(y) = =, hence y ~ x, so ~ is symmetric. Finally, suppose that z ~ y and
y ~ z; i.e. there exist g,h € G such that ¢4(z) =y and ¢ (y) = 2. Then we have
Ohg(x) = pn(pg(x)) = @n(y) = 2, hence x ~ z, and ~ is transitive. O

(b) Suppose that p4(z) =y (i.e. © ~ y). Use the group element g to define a function
f : Stab(x) — Stab(y). (Hint: Conjugate by g.)

Proof. Define the map f : Stab(x) — Stab(y) by f(h) := ghg™!, and note that if
h € Stab(x) — i.e. pp(z) = x — then indeed f(h) = ghg~' € Stab(y) since

Pahg-1(Y) = @a(n(pg-1(y))) = pg(pn()) = pg(x) = y.

(c) Prove that f is bijection.

Proof. Note that the map ¥(h) := g~ 'hg maps Stab(y) — Stab(x) and satisfies
fovy=1of=1 Hence f~! =1 and f is a bijection. 0

(d) Prove that f is a homomorphism, hence Stab(z) ~ Stab(y).
Proof. Given h, k € Stab(x), note that

F(R) f(k) = (ghg™ ") (gkg™") = g(hk)g~" = f(hk).
O

2. For o € R" define the translation ¢, : R — R" by t,(z) := z 4+ «, and consider the
group GL(R™) of invertible linear maps ¢ : R — R™.
(a) For all @ € R" and ¢ € GL(R"), prove that pot, =t,4) o .

Proof. For all x € R™ we have

pota(r) = pta(z)) = p(z + a) = p(z) + (@) =ty (P(T)) =ty © P(T).

(b) Let R := {t, : &« € R"} be the group of translations of R", and let
Aff(R") :={taop: to € R}, p € GL(R")}.
Use part (a) to verify that Aff(R") is a group.



()

Proof. Let to € R, be translation by the zero vector and let I € GL(R") be the
identity linear map. Then tgol € Aff(R") is the identity map on R™. Now consider
an arbitrary element ¢, o ¢ € Aff(R™) and observe that its inverse satisfies

(tacw) =g ot t =9 ot g =ty1_gy 0 ! € AFF(R™).
Finally, consider t, o ¢ and tg o p in Aff(R™) and note that
(taop)o (tﬁ op)=tqo0 tp() © P O = tatyp(s) © (pon) € AE(R™).

Use part (a) to prove that R} < Aff(R").

Proof. Consider an arbitrary element t, € R’} and an arbitrary element tg50 ¢ €
Aff(R™). Then we have

(tgop)otac(tgop)™ =tgopotsop™
= tﬁ o tcp(a) o (<p o 30_1) o t_g
=lgotya)ot_p
= to() € Ri.

1ot_6

O

3. Let T be the group of rotational symmetries of a regular tetrahedron, shown below.

(a)

(b)

T acts transitively on the set of 4 vertices. Use Orbit-Stabilizer to compute |T'|.

Proof. Let v be a vertex, so |Orb(v)| = 4. Note that Stab(v) is a cyclic group of
size 3. Hence |T'| = |Orb(v)||Stab(v)| =4 -3 = 12. O

Let N <T be a normal subgroup. Based on Lagrange’s Theorem, what are the
possible sizes of N7

Proof. Lagrange’s Theorem says that |N| divides |T'| = 12. Hence |N| is in the set
{1,2,3,4,6,12}. 0

The group T has 3 conjugacy classes. List their sizes.

[I'm very sorry. There are actually 4 conjugacy classes. | realize that this error could
have thrown people off the trail and so | graded Problem 3 very carefully. Fortunately,
this difference doesn't affect parts (d), (e), (f), (g) very much. Also fortunately (or
maybe unfortunately), it didn't seem to matter much — people who missed this problem
tended to have bigger issues.|

Proof. 1 would have accepted 1, 3,8 or 1, 3,4, 4 as completely correct. Because: As
always, the identity is its own conjugacy class or size 1. There is one rotation around
each of the 6 edges, but the same rotation is shared by a pair of opposite edges,
hence this class has size 3. There are two non-identity rotations about each vertex
(or its opposite face), for a total of 8 elements. I naively assumed these formed a



class of size 8, but actually the rotations by 27/3 and —27/3 about a vertex are
not conjugate in 7', so we get two classes of size 4. Check: 1+3+4+4=12. O

Again let N Q7T. Based on parts (b) and (c), which values of |N| are possible?

Proof. Since N is closed under conjugation, it is a union of conjugacy classes —
and since 1 € N, one of these classes must be the identity class. By part (c), |N|
is equal to 1 plus numbers from {3,4,4}. We conclude that |[N| € {1,4,5,8,9,12}.
Combining with part (b) yields |[N| € {1,4,12}. [If T is not simple, then it must
have a normal subgroup of size 4. In fact it does, but you don't need to show this.] O

Now let T  act on the set F' of four faces of the tetrahedron. Each g € T partitions F
into “cycles” — which are the orbits of (g) acting on F' — and the number of cycles
is constant for g in a given conjugacy class of T'. For each of the 4 conjugacy
classes of T, list the number of associated cycles.

Now we will color the faces of the tetrahedron using at most k colors. There are k*
colorings if the tetrahedron is not allowed to move. For each of the 4 conjugacy
classes of T', list the number of colorings that are fixed by an element of
the class.

I will collect the answers (c), (e) and (f) in the following table.

rotate around | size of class | number of cycles | number of fixed colorings
1 4 k4
edge 3 2 k2
vertex/face 4 2 k2
vertex/face 4 2 k2

Finally, use Burnside’s Lemma to compute the number of T-orbits of face
colorings with at most k-colors. (Hint: When k& = 2 the answer is 5.)

Proof. By Burnside’s Lemma, the number of orbits of colorings is the average num-
ber of colorings fixed by an element of T'. Using the data in the table, the number
of orbits is . K112
4 2 2 2

12[k: + 3k* + 4k* + 4k = T
Check: Putting k¥ = 2 we obtain (16 + 11 - 4)/12 = 5 black-and-white colorings
of the tetrahedron. In fact, there is (up to rotation) exactly one way to color the
tetrahedron with ¢ black faces and 4 — ¢ white faces, for i = 0,1, 2, 3, 4. O



