There are 3 problems and 5 pages. This is a closed book test. Any student caught cheating will receive a score of zero.

1. Suppose that a group $G$ acts on a set $X$ by homomorphism $\varphi: G \rightarrow \operatorname{Aut}(X)$, and define a relation on $X$ by

$$
x \sim y \Longleftrightarrow \exists g \in G \text { such that } \varphi_{g}(x)=y .
$$

(a) Prove that $\sim$ is an equivalence on $X$. (The $\sim$-classes are called $G$-orbits.)

Proof. For all $x \in X$ note that $x \sim x$ since $\varphi_{1}(x)=x$. Hence $\sim$ is reflexive. Next suppose that $x \sim y$; i.e. there exists $g \in G$ such that $\varphi_{g}(x)=y$. Then $\varphi_{g^{-1}}(y)=x$, hence $y \sim x$, so $\sim$ is symmetric. Finally, suppose that $x \sim y$ and $y \sim z$; i.e. there exist $g, h \in G$ such that $\varphi_{g}(x)=y$ and $\varphi_{h}(y)=z$. Then we have $\varphi_{h g}(x)=\varphi_{h}\left(\varphi_{g}(x)\right)=\varphi_{h}(y)=z$, hence $x \sim z$, and $\sim$ is transitive.
(b) Suppose that $\varphi_{g}(x)=y$ (i.e. $x \sim y$ ). Use the group element $g$ to define a function $f: \operatorname{Stab}(x) \rightarrow \operatorname{Stab}(y)$. (Hint: Conjugate by $g$.)
Proof. Define the map $f: \operatorname{Stab}(x) \rightarrow \operatorname{Stab}(y)$ by $f(h):=g h g^{-1}$, and note that if $h \in \operatorname{Stab}(x)$ - i.e. $\varphi_{h}(x)=x$ - then indeed $f(h)=g h g^{-1} \in \operatorname{Stab}(y)$ since

$$
\varphi_{g h g^{-1}}(y)=\varphi_{g}\left(\varphi_{h}\left(\varphi_{g^{-1}}(y)\right)\right)=\varphi_{g}\left(\varphi_{h}(x)\right)=\varphi_{g}(x)=y
$$

(c) Prove that $f$ is bijection.

Proof. Note that the map $\psi(h):=g^{-1} h g$ maps $\operatorname{Stab}(y) \rightarrow \operatorname{Stab}(x)$ and satisfies $f \circ \psi=\psi \circ f=1$. Hence $f^{-1}=\psi$ and $f$ is a bijection.
(d) Prove that $f$ is a homomorphism, hence $\operatorname{Stab}(x) \approx \operatorname{Stab}(y)$.

Proof. Given $h, k \in \operatorname{Stab}(x)$, note that

$$
f(h) f(k)=\left(g h g^{-1}\right)\left(g k g^{-1}\right)=g(h k) g^{-1}=f(h k) .
$$

2. For $\alpha \in \mathbb{R}^{n}$ define the translation $t_{\alpha}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $t_{\alpha}(x):=x+\alpha$, and consider the group $\mathrm{GL}\left(\mathbb{R}^{n}\right)$ of invertible linear maps $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
(a) For all $\alpha \in \mathbb{R}^{n}$ and $\varphi \in \mathrm{GL}\left(\mathbb{R}^{n}\right)$, prove that $\varphi \circ t_{\alpha}=t_{\varphi(\alpha)} \circ \varphi$.

Proof. For all $x \in \mathbb{R}^{n}$ we have

$$
\varphi \circ t_{\alpha}(x)=\varphi\left(t_{\alpha}(x)\right)=\varphi(x+\alpha)=\varphi(x)+\varphi(\alpha)=t_{\varphi(\alpha)}(\varphi(x))=t_{\varphi(\alpha)} \circ \varphi(x) .
$$

(b) Let $\mathbb{R}_{+}^{n}:=\left\{t_{\alpha}: \alpha \in \mathbb{R}^{n}\right\}$ be the group of translations of $\mathbb{R}^{n}$, and let

$$
\operatorname{Aff}\left(\mathbb{R}^{n}\right):=\left\{t_{\alpha} \circ \varphi: t_{\alpha} \in \mathbb{R}_{+}^{n}, \varphi \in \operatorname{GL}\left(\mathbb{R}^{n}\right)\right\}
$$

Use part (a) to verify that $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$ is a group.

Proof. Let $t_{0} \in \mathbb{R}_{+}^{n}$ be translation by the zero vector and let $I \in \mathrm{GL}\left(\mathbb{R}^{n}\right)$ be the identity linear map. Then $t_{0} \circ I \in \operatorname{Aff}\left(\mathbb{R}^{n}\right)$ is the identity map on $\mathbb{R}^{n}$. Now consider an arbitrary element $t_{\alpha} \circ \varphi \in \operatorname{Aff}\left(\mathbb{R}^{n}\right)$ and observe that its inverse satisfies

$$
\left(t_{\alpha} \circ \varphi\right)^{-1}=\varphi^{-1} \circ t_{\alpha}^{-1}=\varphi^{-1} \circ t_{-\alpha}=t_{\varphi^{-1}(-\alpha)} \circ \varphi^{-1} \in \operatorname{Aff}\left(\mathbb{R}^{n}\right) .
$$

Finally, consider $t_{\alpha} \circ \varphi$ and $t_{\beta} \circ \mu$ in $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$ and note that

$$
\left(t_{\alpha} \circ \varphi\right) \circ\left(t_{\beta} \circ \varphi\right)=t_{\alpha} \circ t_{\varphi(\beta)} \circ \varphi \circ \mu=t_{\alpha+\varphi(\beta)} \circ(\varphi \circ \mu) \in \operatorname{Aff}\left(\mathbb{R}^{n}\right) .
$$

(c) Use part (a) to prove that $\mathbb{R}_{+}^{n} \unlhd \mathrm{Aff}\left(\mathbb{R}^{n}\right)$.

Proof. Consider an arbitrary element $t_{\alpha} \in \mathbb{R}_{+}^{n}$ and an arbitrary element $t_{\beta} \circ \varphi \in$ $\operatorname{Aff}\left(\mathbb{R}^{n}\right)$. Then we have

$$
\begin{aligned}
\left(t_{\beta} \circ \varphi\right) \circ t_{\alpha} \circ\left(t_{\beta} \circ \varphi\right)^{-1} & =t_{\beta} \circ \varphi \circ t_{\alpha} \circ \varphi^{-1} \circ t_{-\beta} \\
& =t_{\beta} \circ t_{\varphi(\alpha)} \circ\left(\varphi \circ \varphi^{-1}\right) \circ t_{-\beta} \\
& =t_{\beta} \circ t_{\varphi(\alpha)} \circ t_{-\beta} \\
& =t_{\varphi(\alpha)} \in \mathbb{R}_{+}^{n} .
\end{aligned}
$$

3. Let $T$ be the group of rotational symmetries of a regular tetrahedron, shown below.

(a) $T$ acts transitively on the set of 4 vertices. Use Orbit-Stabilizer to compute $|T|$.

Proof. Let $v$ be a vertex, so $|\operatorname{Orb}(v)|=4$. Note that $\operatorname{Stab}(v)$ is a cyclic group of size 3. Hence $|T|=|\operatorname{Orb}(v)||\operatorname{Stab}(v)|=4 \cdot 3=12$.
(b) Let $N \unlhd T$ be a normal subgroup. Based on Lagrange's Theorem, what are the possible sizes of $N$ ?
Proof. Lagrange's Theorem says that $|N|$ divides $|T|=12$. Hence $|N|$ is in the set $\{1,2,3,4,6,12\}$.
(c) The group $T$ has 3 conjugacy classes. List their sizes.
[I'm very sorry. There are actually 4 conjugacy classes. I realize that this error could have thrown people off the trail and so I graded Problem 3 very carefully. Fortunately, this difference doesn't affect parts (d), (e), (f), (g) very much. Also fortunately (or maybe unfortunately), it didn't seem to matter much - people who missed this problem tended to have bigger issues.]

Proof. I would have accepted $1,3,8$ or $1,3,4,4$ as completely correct. Because: As always, the identity is its own conjugacy class or size 1 . There is one rotation around each of the 6 edges, but the same rotation is shared by a pair of opposite edges, hence this class has size 3 . There are two non-identity rotations about each vertex (or its opposite face), for a total of 8 elements. I naively assumed these formed a
class of size 8 , but actually the rotations by $2 \pi / 3$ and $-2 \pi / 3$ about a vertex are not conjugate in $T$, so we get two classes of size 4 . Check: $1+3+4+4=12$.
(d) Again let $N \unlhd T$. Based on parts (b) and (c), which values of $|N|$ are possible?

Proof. Since $N$ is closed under conjugation, it is a union of conjugacy classes and since $1 \in N$, one of these classes must be the identity class. By part (c), $|N|$ is equal to 1 plus numbers from $\{3,4,4\}$. We conclude that $|N| \in\{1,4,5,8,9,12\}$. Combining with part (b) yields $|N| \in\{1,4,12\}$. [If $T$ is not simple, then it must have a normal subgroup of size 4 . In fact it does, but you don't need to show this.]
(e) Now let $T$ act on the set $F$ of four faces of the tetrahedron. Each $g \in T$ partitions $F$ into "cycles" - which are the orbits of $\langle g\rangle$ acting on $F$ - and the number of cycles is constant for $g$ in a given conjugacy class of $T$. For each of the 4 conjugacy classes of $T$, list the number of associated cycles.
(f) Now we will color the faces of the tetrahedron using at most $k$ colors. There are $k^{4}$ colorings if the tetrahedron is not allowed to move. For each of the 4 conjugacy classes of $T$, list the number of colorings that are fixed by an element of the class.

I will collect the answers (c), (e) and (f) in the following table.

| rotate around | size of class | number of cycles | number of fixed colorings |
| :---: | :---: | :---: | :---: |
|  | 1 | 4 | $k^{4}$ |
| edge | 3 | 2 | $k^{2}$ |
| vertex/face | 4 | 2 | $k^{2}$ |
| vertex/face | 4 | 2 | $k^{2}$ |

(g) Finally, use Burnside's Lemma to compute the number of $T$-orbits of face colorings with at most $k$-colors. (Hint: When $k=2$ the answer is 5.)

Proof. By Burnside's Lemma, the number of orbits of colorings is the average number of colorings fixed by an element of $T$. Using the data in the table, the number of orbits is

$$
\frac{1}{12}\left[k^{4}+3 k^{2}+4 k^{2}+4 k^{2}\right]=\frac{k^{4}+11 k^{2}}{12}
$$

Check: Putting $k=2$ we obtain $(16+11 \cdot 4) / 12=5$ black-and-white colorings of the tetrahedron. In fact, there is (up to rotation) exactly one way to color the tetrahedron with $i$ black faces and $4-i$ white faces, for $i=0,1,2,3,4$.

