There are 3 problems with a total of 9 sections. This is a closed book test. Any student caught cheating will receive a score of zero. In any of the 9 sections, you may **assume** the results from the other sections.

- **1.** Consider a subgroup $H \leq G$ and two elements $a, b \in G$.
 - (a) **Prove** that aH = bH implies $a^{-1}b \in H$. (Hint: Note that $b \in bH$.)

Proof. Suppose that aH = bH. Since $b \in bH = aH$, there exists $h \in H$ such that b = ah. But then $a^{-1}b = h \in H$.

(b) **Prove** that $a^{-1}b \in H$ implies aH = bH. (You need $aH \subseteq bH$ and $bH \subseteq aH$.)

Proof. Suppose that $a^{-1}b = h \in H$. In order to show aH = bH we must show $aH \subseteq bH$ and $bH \subseteq aH$. So consider an arbitrary element $ak \in aH$ with $k \in H$. Then we have $ak = (bh^{-1})k = b(h^{-1}k) \in bH$, hence $aH \subseteq bH$. The proof of $bH \subseteq aH$ is similar.

- **2.** Let $G = \langle g \rangle$ be a cyclic group with a subgroup $H \leq G$.
 - (a) **Prove** that $\varphi(n) := g^n$ defines a surjective homomorphism $\varphi : \mathbb{Z} \to G$.

Proof. By definition, every element of $G = \langle g \rangle$ has the form g^n for some $n \in \mathbb{Z}$, hence the map is surjective. It is a homomorphism because $\varphi(m+n) = g^{m+n} = g^m g^n = \varphi(m)\varphi(n)$ for all $m, n \in \mathbb{Z}$.

(b) **Prove** that $\varphi^{-1}(H) := \{n \in \mathbb{Z} : \varphi(n) \in H\}$ is a **subgroup** of \mathbb{Z} . It follows that $\varphi^{-1}(H) = a\mathbb{Z}$ for some $a \in \mathbb{Z}$ (you don't need to prove this).

Proof. First note that $0 \in \varphi^{-1}(H)$ since $\varphi(0) = g^0 = 1_G \in H$. Next, suppose that $n \in \varphi^{-1}(H)$; i.e. $\varphi(n) \in H$. But then $\varphi(-n) = \varphi(n)^{-1}$ is also in H, hence $-n \in \varphi^{-1}(H)$. Finally, let $m, n \in \varphi^{-1}(H)$; i.e. $\varphi(m)$ and $\varphi(n)$ are in H. But then $\varphi(m+n) = \varphi(m)\varphi(n)$ is also in H, hence $m+n \in \varphi^{-1}(H)$.

(c) **Prove** that $H = \langle g^a \rangle$ and hence H is cyclic.

Proof. Since $\varphi^{-1}(H) \leq \mathbb{Z}$, we have $\varphi^{-1}(H) = a\mathbb{Z}$ for some $a \in \mathbb{Z}$. Then by definition we have $\varphi(a\mathbb{Z}) = H$. That is, every element of H has the form $\varphi(ak) = g^{ak} = (g^a)^k$ for some $k \in \mathbb{Z}$. We conclude that $H = \langle g^a \rangle$. (In particular, H is cyclic.)

- **3.** Consider two finite subgroups $H, K \leq G$ with $K \leq G$ a **normal** subgroup.
 - (a) **Prove** that $HK := \{hk : h \in H, k \in K\}$ is a subgroup of G.

Proof. First note that $1_G \in HK$ because $1_G \in H \cap K$, hence $1_G = 1_G \cdot 1_G \in HK$. Next, consider $g \in HK$. Then there exist $h \in H$, $k \in K$ such that g = hk. We wish to show that $g^{-1} = k^{-1}h^{-1} \in HK$. But $k^{-1}h^{-1} \in Kh^{-1} = h^{-1}K$ means there exists $k' \in K$ such that $k^{-1}h^{-1} = h^{-1}k' \in HK$. Finally, consider h_1k_1 and h_2k_2 in HK. We wish to show that $h_1k_1h_2k_2 \in HK$. Indeed, since $k_1h_2 \in Kh_2 = h_2K$, there exists $k'' \in K$ such that $k_1h_2 = h_2k''$. Hence $h_1k_1h_2k_2 = h_1h_2k''k_2 \in HK$. \Box

(b) Since $K \leq HK$ we can form the quotient group (HK)/K. **Prove** that the map $\varphi(h) := hK$ is a **surjective homomorphism** $\varphi : H \to (HK)/K$.

Proof. The map is a homomorphism since $\varphi(ab) = (ab)K = (aK)(bK) = \varphi(a)\varphi(b)$. Then note that each coset in HK/K looks like (hk)K = hK for some $h \in H$, $k \in K$. In this case we have $\varphi(h) = hK = (hk)K$, so the map is surjective. \Box

(c) **Prove** that the **kernel** of φ is $H \cap K$.

Proof. Note that $\varphi(h) = hK = K$ if and only if $h \in K$. Hence $h \in H$ is in the kernel if and only if h is also in K. We conclude that ker $\varphi = H \cap K$. (In particular, this proves that $H \cap K \leq H$.)

(d) Use the First Isomorphism Theorem and Lagrange's Theorem to prove that

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|}.$$

Proof. By the First Isomorphism Theorem we have $H/\ker \varphi \approx \mathrm{im}\varphi$, which by parts (b) and (c) says that $H/(H \cap K) \approx (HK)/K$. Applying Lagrange's Theorem to both sides gives $|H|/|H \cap K| = |HK|/|K|$. Then multiply both sides by |K|. \Box