There are 3 problems with a total of 9 sections. This is a closed book test. Any student caught cheating will receive a score of zero. In any of the 9 sections, you may assume the results from the other sections.

1. Consider a subgroup $H \leq G$ and two elements $a, b \in G$.
(a) Prove that $a H=b H$ implies $a^{-1} b \in H$. (Hint: Note that $b \in b H$.)

Proof. Suppose that $a H=b H$. Since $b \in b H=a H$, there exists $h \in H$ such that $b=a h$. But then $a^{-1} b=h \in H$.
(b) Prove that $a^{-1} b \in H$ implies $a H=b H$. (You need $a H \subseteq b H$ and $b H \subseteq a H$.)

Proof. Suppose that $a^{-1} b=h \in H$. In order to show $a H=b H$ we must show $a H \subseteq b H$ and $b H \subseteq a H$. So consider an arbitrary element $a k \in a H$ with $k \in H$. Then we have $a k=\left(b h^{-1}\right) k=b\left(h^{-1} k\right) \in b H$, hence $a H \subseteq b H$. The proof of $b H \subseteq a H$ is similar.
2. Let $G=\langle g\rangle$ be a cyclic group with a subgroup $H \leq G$.
(a) Prove that $\varphi(n):=g^{n}$ defines a surjective homomorphism $\varphi: \mathbb{Z} \rightarrow G$.

Proof. By definition, every element of $G=\langle g\rangle$ has the form g^{n} for some $n \in \mathbb{Z}$, hence the map is surjective. It is a homomorphism because $\varphi(m+n)=g^{m+n}=$ $g^{m} g^{n}=\varphi(m) \varphi(n)$ for all $m, n \in \mathbb{Z}$.
(b) Prove that $\varphi^{-1}(H):=\{n \in \mathbb{Z}: \varphi(n) \in H\}$ is a subgroup of \mathbb{Z}. It follows that $\varphi^{-1}(H)=a \mathbb{Z}$ for some $a \in \mathbb{Z}$ (you don't need to prove this).
Proof. First note that $0 \in \varphi^{-1}(H)$ since $\varphi(0)=g^{0}=1_{G} \in H$. Next, suppose that $n \in \varphi^{-1}(H)$; i.e. $\varphi(n) \in H$. But then $\varphi(-n)=\varphi(n)^{-1}$ is also in H, hence $-n \in \varphi^{-1}(H)$. Finally, let $m, n \in \varphi^{-1}(H)$; i.e. $\varphi(m)$ and $\varphi(n)$ are in H. But then $\varphi(m+n)=\varphi(m) \varphi(n)$ is also in H, hence $m+n \in \varphi^{-1}(H)$.
(c) Prove that $H=\left\langle g^{a}\right\rangle$ and hence H is cyclic.

Proof. Since $\varphi^{-1}(H) \leq \mathbb{Z}$, we have $\varphi^{-1}(H)=a \mathbb{Z}$ for some $a \in \mathbb{Z}$. Then by definition we have $\varphi(a \mathbb{Z})=H$. That is, every element of H has the form $\varphi(a k)=$ $g^{a k}=\left(g^{a}\right)^{k}$ for some $k \in \mathbb{Z}$. We conclude that $H=\left\langle g^{a}\right\rangle$. (In particular, H is cyclic.)
3. Consider two finite subgroups $H, K \leq G$ with $K \unlhd G$ a normal subgroup.
(a) Prove that $H K:=\{h k: h \in H, k \in K\}$ is a subgroup of G.

Proof. First note that $1_{G} \in H K$ because $1_{G} \in H \cap K$, hence $1_{G}=1_{G} \cdot 1_{G} \in H K$. Next, consider $g \in H K$. Then there exist $h \in H, k \in K$ such that $g=h k$. We wish to show that $g^{-1}=k^{-1} h^{-1} \in H K$. But $k^{-1} h^{-1} \in K h^{-1}=h^{-1} K$ means there exists $k^{\prime} \in K$ such that $k^{-1} h^{-1}=h^{-1} k^{\prime} \in H K$. Finally, consider $h_{1} k_{1}$ and $h_{2} k_{2}$ in $H K$. We wish to show that $h_{1} k_{1} h_{2} k_{2} \in H K$. Indeed, since $k_{1} h_{2} \in K h_{2}=h_{2} K$, there exists $k^{\prime \prime} \in K$ such that $k_{1} h_{2}=h_{2} k^{\prime \prime}$. Hence $h_{1} k_{1} h_{2} k_{2}=h_{1} h_{2} k^{\prime \prime} k_{2} \in H K$.
(b) Since $K \unlhd H K$ we can form the quotient group $(H K) / K$. Prove that the map $\varphi(h):=h K$ is a surjective homomorphism $\varphi: H \rightarrow(H K) / K$.

Proof. The map is a homomorphism since $\varphi(a b)=(a b) K=(a K)(b K)=\varphi(a) \varphi(b)$. Then note that each coset in $H K / K$ looks like $(h k) K=h K$ for some $h \in H$, $k \in K$. In this case we have $\varphi(h)=h K=(h k) K$, so the map is surjective.
(c) Prove that the kernel of φ is $H \cap K$.

Proof. Note that $\varphi(h)=h K=K$ if and only if $h \in K$. Hence $h \in H$ is in the kernel if and only if h is also in K. We conclude that ker $\varphi=H \cap K$. (In particular, this proves that $H \cap K \unlhd H$.
(d) Use the First Isomorphism Theorem and Lagrange's Theorem to prove that

$$
|H K|=\frac{|H| \cdot|K|}{|H \cap K|}
$$

Proof. By the First Isomorphism Theorem we have $H / \operatorname{ker} \varphi \approx \operatorname{im} \varphi$, which by parts (b) and (c) says that $H /(H \cap K) \approx(H K) / K$. Applying Lagrange's Theorem to both sides gives $|H| /|H \cap K|=|H K| /|K|$. Then multiply both sides by $|K|$.

