There are 4 problems and 4 pages. This is a closed book test. Any student caught cheating will receive a score of zero. The problems are (mostly) cumulative. In any problem, you may assume the results from earlier problems.

1. Let $\varphi: G \rightarrow H$ be a map between groups. Define what it means for φ to be
(a) [$\mathbf{2}$ points] an injection,

$$
\forall a, b \in G, \varphi(a)=\varphi(b) \Rightarrow a=b
$$

(b) [2 points] a surjection,

$$
\forall h \in H, \exists g \in G, \varphi(g)=h
$$

(c) $[\mathbf{2}$ points] a homomorphism,

$$
\forall a, b \in G, \varphi(a b)=\varphi(a) \varphi(b)
$$

(d) [2 points] an isomorphism.

$$
\varphi \text { is an injection, a surjection, and a homomorphism }
$$

2. If $\varphi: G \rightarrow H$ is a homomorphism, prove that
(a) $\left[\mathbf{2}\right.$ points] $\varphi\left(1_{G}\right)=1_{H}$,

Proof. Note that $1_{G} 1_{G}=1_{G}$ and apply φ to get $\varphi\left(1_{G}\right) \varphi\left(1_{G}\right)=\varphi\left(1_{G}\right)$. Then multiply both sides (say on the left) by $\varphi\left(1_{G}\right)^{-1}$ to get $\varphi\left(1_{G}\right)=1_{H}$.
(b) [2 points] $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$ for all $a \in G$,

Proof. Note that $a a^{-1}=1_{G}$ and apply φ to get $\varphi(a) \varphi\left(a^{-1}\right)=\varphi\left(1_{G}\right)$. By part (a) this implies $\varphi(a) \varphi\left(a^{-1}\right)=1_{H}$. Now multiply both sides on the left by $\varphi(a)^{-1}$ to get $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$.
(c) [3 points] $\operatorname{ker} \varphi$ is a subgroup of G.

Proof. To show that $\operatorname{ker} \varphi$ is closed, let $a, b \in \operatorname{ker} \varphi$. That is, we have $\varphi(a)=\varphi(b)=$ 1_{H}. Then since φ is a homomorphism we have $\varphi(a b)=\varphi(a) \varphi(b)=1_{H} 1_{H}=1_{H}$, hence $a b \in \operatorname{ker} \varphi$. To show that $\operatorname{ker} \varphi$ is closed under inversion, let $a \in \operatorname{ker} \varphi$. Then by part (b) we have $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}=1_{H}^{-1}=1_{H}$, hence $a^{-1} \in \operatorname{ker} \varphi$. Finally, part (a) implies that $\operatorname{ker} \varphi$ contains the identity 1_{G}.
3. If $\varphi: G \rightarrow H$ is a homomorphism, prove that
(a) [3 points] if φ is injective then $\operatorname{ker} \varphi=\left\{1_{G}\right\}$,

Proof. Suppose that φ is injective and let $a \in \operatorname{ker} \varphi$. Then $\varphi(a)=1_{H}=\varphi\left(1_{G}\right)$ by 2.(a). Then injectivity implies $a=1_{G}$. Hence $\operatorname{ker} \varphi=\left\{1_{G}\right\}$.
(b) [4 points] if $\operatorname{ker} \varphi=\left\{1_{G}\right\}$ then φ is injective.

Proof. Suppose that $\operatorname{ker} \varphi=\left\{1_{G}\right\}$ and let $\varphi(a)=\varphi(b)$. Then by 2.(b) we have $\varphi\left(a^{-1} b\right)=\varphi\left(a^{-1}\right) \varphi(b)=\varphi(a)^{-1} \varphi(b)=\varphi(b)^{-1} \varphi(b)=1_{H}$, hence $a^{-1} b \in \operatorname{ker} \varphi$. Since $\operatorname{ker} \varphi=\left\{1_{G}\right\}$ this implies that $a^{-1} b=1_{G}$, or $a=b$. Hence φ is injective.
4. Let H be a subgroup of G. Define a relation on G by setting $a \sim b \Leftrightarrow a^{-1} b \in H$.
(a) [3 points] Prove that \sim is an equivalence relation.

Proof. To show transitivity, let $a \sim b$ and $b \sim c$. That is, we have $a^{-1} b \in H$ and $b^{-1} c \in H$. Since H is closed under the group operation this implies $a^{-1} c=$ $\left(a^{-1} b\right)\left(b^{-1} c\right) \in H$, hence $a \sim c$ as desired. To show symmetry, let $a \sim b$. That is, we have $a^{-1} b \in H$. Since H is closed under inversion this implies that $b^{-1} a=$ $\left(a^{-1} b\right)^{-1} \in H$, hence $b \sim a$ as desired. Finally, note that $a^{-1} a=1_{G} \in H$ and hence $a \sim a$ for all $a \in G$.
(b) [3 points] Prove that there exists a bijection between any two \sim-classes.

Proof. Given $a, b \in G$, consider the equivalence classes $[a]=\left\{g \in G: g^{-1} a \in H\right\}$ and $[b]=\left\{g \in G: g^{-1} b \in H\right\}$. I claim that the map $f: G \rightarrow G$ defined by $f(g)=b a^{-1} g$ restricts to a bijection $f:[a] \rightarrow[b]$. First suppose that $g \in[a]$, i.e. $g^{-1} a \in H$. Then $f(g)^{-1} b=\left(b a^{-1} g\right)^{-1} b=g^{-1} a \in H$, hence $f(g) \in[b]$. That is, f really does map $[a]$ into $[b]$. To show that f is injective, suppose that $f(g)=f(h)$ for some $g, h \in[a]$. That is, $b a^{-1} g=b a^{-1} h$. Multiply both sides on the left by $a b^{-1}$ to get $g=h$. Finally, to show that f is surjective, consider any $h \in[b]$ (i.e. $h^{-1} b \in H$) and note that $f\left(a b^{-1} h\right)=h$. We are done if we can show that $a b^{-1} h \in[a]$. But this is true because $\left(a b^{-1} h\right)^{-1} a=h^{-1} b \in H$.

