Complete any 5 problems.

1. Principal Axes. Consider the following polynomial in two variables:

$$
f(\mathbf{x})=1+\left(\begin{array}{cc}
1 & 0
\end{array}\right) \mathbf{x}+\mathbf{x}^{T}\left(\begin{array}{cc}
0 & 2 \\
2 & -3
\end{array}\right) \mathbf{x}=1+x+4 x y-3 y^{2} .
$$

(a) Find a matrix Q satisfying $Q^{T} Q=I$ and $\operatorname{det}(Q)=1$ and a vector $\mathbf{t} \in \mathbb{R}^{2}$ such that the change of variables $\mathbf{x}=Q \mathbf{u}+\mathbf{t}$ satisfies

$$
f(\mathbf{x})=f(Q \mathbf{u}+\mathbf{t})=a+b u^{2}+c v^{2} \quad \text { for some } a, b, c \in \mathbb{R}^{2} .
$$

(b) Graph the equation $f(x, y)=0$ in the u, v-plane. [Hint: It's a hyperbola.]
(c) Graph the equation $f(x, y)=0$ in the x, y-plane. [Hint: Your matrix Q is a rotation matrix R_{θ}. The trace of a rotation matrix is $\operatorname{tr}\left(R_{\theta}\right)=2 \cos \theta$.]
2. Gambler's Ruin. Two gamblers have $\$ 3$ between them. Every time a game is played, Player A gives $\$ 1$ to Player B with probability $2 / 3$ and Player B gives $\$ 1$ to Player A with probability $1 / 3$. The game continues until one of the players goes broke.
(a) Suppose that each player starts with a whole number of dollars. Then this game is a Markov chain with four states: $(0,3),(1,2),(2,1),(3,0)$. Write down the 4×4 transition matrix in partitioned form:

$$
M=\left(\begin{array}{l|l}
I & R \\
\hline O & Q
\end{array}\right)
$$

[Hint: Order the states as $(0,3),(3,0),(1,2),(2,1)$. The $i j$ entry of M is the probability that state j leads to state i. Each column of M should sum to 1.]
(b) Compute the limit of M^{n} as $n \rightarrow \infty$. [Hint: Use a result from Homework 2.]
(c) If the game begins in state $(1,2)$, what is the probability that A will eventually win? What if the game starts in state $(2,1)$?
3. Diagonalization of the Transpose. Consider a square $n \times n$ matrix A.
(a) Show that A and A^{T} have the same eigenvalues. [Hint: For any scalar λ we have $(\lambda I-A)^{T}=\lambda I^{T}-A^{T}=\lambda I-A^{T}$.]
(b) Find a 2×2 example showing that A and A^{T} need not have the same eigenvectors.
(c) Suppose that A has a basis of eigenvectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ with $A \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$. Let X be the invertible matrix with columns $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and let $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$ be the columns of $\left(X^{-1}\right)^{T}$. In this case show that $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$ is a basis of eigenvectors of A^{T} with $A^{T} \mathbf{y}_{i}=\lambda_{i} \mathbf{y}_{i}$. [Hint: Let Λ be the diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n}$. The matrix equation $A X=X \Lambda$ encodes the n vector equations $A \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$. What matrix equation encodes the vector equations $A \mathbf{y}_{i}=\lambda_{i} \mathbf{y}_{i}$?]
4. Equilibrium of a Markov Chain. Consider the following stochastic matrix:

$$
M=\left(\begin{array}{ccc}
1 / 2 & 1 / 3 & 0 \\
1 / 4 & 0 & 1 / 2 \\
1 / 4 & 2 / 3 & 1 / 2
\end{array}\right) .
$$

(a) Show that $(1,1,1)$ is an eigenvector of M^{T} with eigenvalue 1. [Hint: This just expresses the fact that the entries in each column of M sum to 1.]
(b) Since M and M^{T} have the same eigenvalues, it follows from (a) that 1 is an eigenvalue of M. Find an eigenvector $M \mathbf{p}=\mathbf{p}$ whose entries sum to 1 .
(c) The Perron-Frobenius Theorem says that the 1-eigenspaces of M and M^{T} are one dimensional, and that the other eigenvalues of M and M^{T} satisfy $|\lambda|<1$. Then from the Jordan Form we can find an invertible matrix $P=(\mathbf{p}|\mathbf{q}| \mathbf{r})$ satisfying

$$
M=P\left(\begin{array}{c|cc}
1 & 0 & 0 \\
\hline 0 & M^{\prime} \\
0 &
\end{array}\right) P^{-1}
$$

where $\left(M^{\prime}\right)^{n} \rightarrow O$ as $n \rightarrow \infty$. Use this equation to show that

$$
M^{n} \rightarrow \mathbf{p}\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)=(\mathbf{p}|\mathbf{p}| \mathbf{p}) \quad \text { as } n \rightarrow \infty .
$$

[Hint: Let \mathbf{x} be the first column of $\left(P^{-1}\right)^{T}$. Take transposes in the given equation to show that $M^{T} \mathbf{x}=1 \mathbf{x}$. Since the 1 -eigenspace of M^{T} is one dimensional it follows from part (a) that \mathbf{x} is a scalar multiple of $(1,1,1)$. Now use the fact that $\mathbf{x}^{T} \mathbf{p}$ is the top left entry of $P^{-1} P=I$ to show that $\mathbf{x}=(1,1,1)$.]
5. Dynamical Systems. Every real 2×2 matrix is similar to one of the following:

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), \quad B=\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right), \quad C=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right),
$$

where a and b are real numbers.
(a) Compute the eigenvalues of A, B, C.
(b) Compute the exponential matrices $\exp (A t), \exp (B t), \exp (C t)$. [Hint: Each of B and C can be written as a sum of commuting matrices:

$$
\left.B=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)+\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right)+\left(\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right) .\right]
$$

(c) Let $\mathbf{x}(t)=(x(t), y(t))$. Use (a) to solve the dynamical systems $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), \mathbf{x}^{\prime}(t)=$ $B \mathbf{x}(t)$ and $\mathbf{x}^{\prime}(t)=C \mathbf{x}(t)$, with initial condition $\mathbf{x}(0)=\left(x_{0}, y_{0}\right)$. Only use real numbers in your answers.
6. Jordan Blocks. Consider a $k \times k$ Jordan block matrix of the form

$$
J=\left(\begin{array}{ccccc}
\lambda & 1 & & & \\
& \lambda & \ddots & & \\
& & \ddots & \ddots & \\
& & & \lambda & 1 \\
& & & & \lambda
\end{array}\right) \quad \text { for some scalar } \lambda
$$

where the blank entries are zero. We can also write $J=\lambda I+N$, where N is the $k \times k$ matrix with 1 s on the superdiagonal and zeroes elsewhere:

$$
N=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & \ddots & & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
& & & & 0
\end{array}\right)
$$

(a) Find an explicit formula for the nth powers N^{n}. Note that $N^{n}=O$ when $n \geq k$. [Hint: Work out the case $k=4$ by hand. You will see a pattern.]
(b) Assuming $n \geq k$, use part (a) to show that

$$
J^{n}=\left(\begin{array}{ccccc}
\lambda^{n} & \binom{n}{1} \lambda^{n-1} & \binom{n}{2} \lambda^{n-2} & \cdots & \binom{n}{k-1} \lambda^{n-k+1} \\
& \lambda^{n} & \binom{n}{1} \lambda^{n-1} & & \vdots \\
& & \ddots & \ddots & \vdots \\
& & & \lambda^{n} & \binom{n}{1} \lambda^{n-1} \\
& & & & \lambda^{n}
\end{array}\right) .
$$

[Hint: Since λI and N commute, the binomial theorem gives $(\lambda I+N)^{n}=\sum_{i}\binom{n}{i} \lambda^{n-i} N^{i}$.]
(c) Use part (a) to show that

$$
\exp (J t)=\left(\begin{array}{ccccc}
e^{\lambda t} & t e^{\lambda t} & \frac{t^{2}}{2} e^{\lambda t} & \cdots & \frac{t^{k-1}}{(k-1)!} e^{\lambda t} \\
& e^{\lambda t} & t e^{\lambda t} & & \vdots \\
& & \ddots & \ddots & \vdots \\
& & & e^{\lambda t} & t e^{\lambda t} \\
& & & & e^{\lambda t}
\end{array}\right)
$$

[Hint: Since λI and N commute, we have $\exp (J t)=\exp (I \lambda t) \exp (N t)$.]
7. The Rayleigh Quotient. Given a real $m \times n$ matrix A we want to find a nonzero vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ that maximizes the Rayleigh quotient $r(\mathbf{x}):=\|A \mathbf{x}\|^{2} /\|\mathbf{x}\|^{2}$.
(a) Consider the symmetric $n \times n$ matrix $S=A^{T} A$ with $i j$ entry $s_{i j}$. Show that

$$
\|A \mathbf{x}\|^{2}=\mathbf{x}^{T} S \mathbf{x}=\sum_{i, j} s_{i j} x_{i} x_{j} .
$$

(b) Use part (a) to show that

$$
\frac{\partial r}{\partial x_{i}}=\frac{2\|\mathbf{x}\|^{2}(S \mathbf{x})_{i}-2\|A \mathbf{x}\|^{2} x_{i}}{\|\mathbf{x}\|^{4}}
$$

where $(S \mathbf{x})_{i}=\sum_{j} s_{i j} x_{j}$ is the i th entry of the vector $S \mathbf{x} \in \mathbb{R}^{n}$.
(c) Use part (b) to show that the gradient vector $\nabla r(\mathbf{x})$ is zero if and only if

$$
A^{T} A \mathbf{x}=r(\mathbf{x}) \mathbf{x} .
$$

Since $A^{T} A$ has real non-negative eigenvalues, it follows that the maximum value of $r(\mathbf{x})$ is the largest eigenvalue of $A^{T} A$, and the vectors \mathbf{x} that maximize $r(\mathbf{x})$ are the corresponding eigenvectors.
8. Total Least Squares. Consider the following three data points in the x, y-plane:

$$
X=\left(\begin{array}{l|l|c}
\mathbf{x}_{1} & \mathbf{x}_{2} \mid \mathbf{x}_{3}
\end{array}\right)=\left(\begin{array}{c|c|c}
-1 & 0 & 1 \\
-4 / 3 & 5 / 3 & -1 / 3
\end{array}\right) .
$$

[Note: This data is centered at the origin: $\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}=\mathbf{0}$.] Given a vector $\mathbf{a} \in \mathbb{R}^{2}$, the orthogonal distance from data point \mathbf{x}_{i} to the line $t \mathbf{a}$ is $\left\|\left(I-P_{\mathbf{a}}\right) \mathbf{x}_{i}\right\|$, where $P_{\mathbf{a}}=\mathbf{a a}^{T} / \mathbf{a}^{T} \mathbf{a}$ is the matrix that projects onto ta. Our goal is to minimize the sum of the squared distances:

$$
\sum\left\|\left(I-P_{\mathbf{a}}\right) \mathbf{x}_{i}\right\|^{2} .
$$

(a) Show that

$$
\sum\left\|\mathbf{x}_{i}\right\|^{2}=\sum\left\|P_{\mathbf{a}} \mathbf{x}_{i}\right\|^{2}+\sum\left\|\left(I-P_{\mathbf{a}}\right) \mathbf{x}_{i}\right\|^{2} .
$$

[Hint: Show that \mathbf{x}_{i} is the sum of orthogonal vectors $P_{\mathbf{a}} \mathbf{x}_{i}$ and $\left(I-P_{\mathbf{a}}\right) \mathbf{x}_{i}$.] Since the sum on the left side is fixed by the data, we want to find \mathbf{a} to maximize $\sum\left\|P_{\mathbf{a}} \mathbf{x}_{i}\right\|^{2}$.
(b) Show that

$$
\sum_{i}\left\|P_{\mathbf{a}} \mathbf{x}_{i}\right\|^{2}=\frac{\left\|X^{T} \mathbf{a}\right\|^{2}}{\|\mathbf{a}\|^{2}}
$$

(c) It follows from the problem on the Rayleigh quotient that $\sum_{i}\left\|P_{\mathbf{a}} \mathbf{x}_{i}\right\|^{2}$ is maximized when \mathbf{a} is an eigenvector for the largest eigenvalue of $X X^{T}$. Use this to find \mathbf{a}. Sketch the data points and the best fit line.
9. Euler's Rotation Theorem. Let A be a real 3×3 matrix satisfying $A^{T} A=I$ and $\operatorname{det}(A)=1$. We will show that A is a rotation.
(a) Show that 1 is an eigenvalue of A. [Hint: The characteristic polynomial factors as $\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right)$ for some $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}$, not necessarily distinct. Since A is real, the non-real eigenvalues come in conjugate pairs. Since $A^{T} A=I$ we have $\left|\lambda_{j}\right|=1$ for all j. And since $\operatorname{det}(A)=1$ we have $\lambda_{1} \lambda_{2} \lambda_{3}=1$.]
(b) From part (a) there exists a real unit vector $\mathbf{u} \in \mathbb{R}^{3}$ satisfying $A \mathbf{u}=\mathbf{u}$. Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ be any orthonormal basis for the plane \mathbf{u}^{\perp}, so that $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is an orthonormal basis for \mathbb{R}^{3}. Show that $A \mathbf{v}$ and $A \mathbf{w}$ are also in the plane \mathbf{u}^{\perp}. [Hint: Show that $(A \mathbf{x})^{T}(A \mathbf{y})=\mathbf{x}^{T} \mathbf{y}$ for any vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$. Now put $\mathbf{x}=\mathbf{u}$ and $\mathbf{y}=\mathbf{v}, \mathbf{w}$.]
(c) It follows from (b) that

$$
A=Q\left(\begin{array}{c|c}
1 & 0 \\
\hline & 0 \\
\hline 0 & A^{\prime} \\
0 &
\end{array}\right) Q^{-1}
$$

Where $Q^{T} Q=I$ is the real orthogonal matrix with columns $\mathbf{u}, \mathbf{v}, \mathbf{w}$, and A^{\prime} is some real 2×2 matrix. Show that $\left(A^{\prime}\right)^{T} A^{\prime}=I$ and $\operatorname{det}\left(A^{\prime}\right)=1$. [Hint: Show that $Q^{-1} A Q$ has these properties.]
(d) Finally, show that

$$
A^{\prime}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

for some angle θ. [Hint: From (c) the columns of A^{\prime} are an orthonormal basis for \mathbb{R}^{2}.] It follows that A is a rotation around the vector \mathbf{u} by angle θ. In retrospect, we could have found the angle right away because $\operatorname{tr}(A)=1+2 \cos \theta$.
(e) The following matrix satisfies $A^{T} A=I$ and $\operatorname{det}(A)=1$, hence it is a rotation \exists^{1}

$$
A=\frac{1}{7}\left(\begin{array}{ccc}
3 & 2 & 6 \\
-6 & 3 & 2 \\
-2 & -6 & 3
\end{array}\right) .
$$

Find the axis \mathbf{u} and the angle of rotation θ.
10. The Moore-Penrose Pseudoinverse. Two $m \times n$ matrices A and B are called pseudoinverses when the following properties hold:

[^0](1) $A B A=A$ and $B A B=B$,
(2) $A B=B^{*} A^{*}$ and $B A=A^{*} B^{*}$.
(a) Suppose that A, B are pseudoinverses, and A, C are pseudoinverses. In this case, prove that $B=C$, hence A has a unique pseudoinverse, which we call A^{+}. [Hint: Use properties (1) and (2) to show that B and C are both equal to $C A B$. The proofs begin with $B=B A B=A^{*} B^{*} B=\cdots$ and $C=C A C=C C^{*} A^{*} \cdots$.]
(b) If A has independent columns, show that $A^{+}=\left(A^{*} A\right)^{-1} A^{*}$. If A has independent rows, show that $A^{+}=A^{*}\left(A A^{*}\right)^{-1}$. If A is square and invertible, show that $A^{+}=A^{-1}$.
(c) Let A be an $m \times n$ matrix of rank r, and consider a singular value decomposition $A=U \Sigma V^{*}$. This means that:

- The matrices U, Σ, V have shapes $m \times r, r \times r, n \times r$.
- The matrices U and V satisfy $U^{*} U=V^{*} V=I_{r}$.
- The matrix Σ is diagonal and invertible.

In this case, prove that

$$
A^{+}=V \Sigma^{-1} U^{*} .
$$

More ideas...
Diagonalization of Companion Matrices. Application to differential equations.
Vandermonde Matrices. Inspired by companion matrices.
The Fourier Matrix. Inspired by Vandermonde matrices. I still feel bad that we didn't have time for discrete Fourier transforms.

Real and Imaginary Parts of a Normal Operator.

Simultaneous Diagonalization. Commuting diagonalizable operators are simultaneously diagonalizable.

[^0]: ${ }^{1}$ Where did I find an orthogonal matrix with rational entries? If $S^{T}=-S$ then one can check that $A=(I-S)^{-1}(I+S)$ satisfies $A^{T} A=I$ and $\operatorname{det}(A)=1$. Furthermore, if S has rational entries then A has rational entries. This construction is called the Cayley transform.

