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1 Eigenvalues and Eigenvectors

1.1 A Motivating Example

In order to motivate the concepts of eigenvalues and eigenvectors I will develop one specific
example in detail. Some of the steps will seem miraculous, and only make sense later when
we discuss the general theory.

Our example comes from the theory of “Markov chains”. Consider the following matrix:

A =

(
.8 .3
.2 .7

)
.
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This matrix has the special property that each of its columns sums to 1. In matrix notation:1(
1 1

)
A =

(
1 1

)(.8 .3
.2 .7

)
=
(
.8 + .2 .3 + .7

)
=
(
1 1

)
.

By induction, this implies that every power of A has columns that sum to 1:(
1 1

)
An =

(
1 1

)
(AAn−1)

= (
(
1 1

)
A)An−1

=
(
1 1

)
An−1

...

=
(
1 1

)
.

Such a matrix is called a Markov matrix or a stochastic matrix. We can interpret the matrix
entries as probabilities. Suppose that a certain particle can be in one of two states. At each
discrete time step, the particle can change states, according to the following probabilities:

That is, if the particle is currently in state 1 then it has an 80% chance to stay in state 1 and
a 20% chance to transition to state 2. If the particle is in state 2 then it has a 70% chance to
stay and a 30% chance to stay. This is why the columns of A must sum to 1.

Now let’s consider the first few powers of A:

A =

(
.8 .3
.2 .7

)
,

A2 =

(
.7 .45
.3 .55

)
,

A3 =

(
.65 .525
.35 .475

)
,

...

A10 =

(
0.600390625 0.5994140625
0.399609375 0.4005859375

)
.

1Jargon: Later we will say that
(
1 1

)
is a “left eigenvector” of A with “eigenvalue” 1.
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Do you see any pattern here? It seems likely that

An →
(
.6 .6
.4 .4

)
as n→∞,

but the entries of the matrices look complicated. Nevertheless, at the end of this section we
will obtained exact formulas for the entries of each power An.

We have shown that each column of each power An sums to 1. This fact has a probabilistic in-
terpretation. Let pk and qk be the probabilities that the particle is in state 1 or 2, respectively,
after k seconds, and let p0, q0 denote the initial probabilities. Then I claim that2

pn =

(
pn
qn

)
= A

(
pn−1
qn−1

)
= Apn−1.

To prove this we use the law of total probability (which I won’t explain here). Given any two
events S and T , we have the following identities:

P (S) = P (T )P (S|T ) + P (T ′)P (S|T ′),
P (S′) = P (T )P (S′|T ) + P (T ′)P (S′|T ′).

Let Sn be the event that “the particle is in state 1 after n seconds”, so that

pn = P (Sn) and qn = P (S′n).

The transition matrix A tells us that

P (Sn|Sn−1) = .8,

P (S′n|Sn−1) = .2,

P (Sn|S′n−1) = .3,

P (S′n|S′n−1) = .7,

which are independent of n. Hence we have

pn = P (Sn)

= P (Sn−1)P (Sn|Sn−1) + P (S′n−1)P (Sn|S′n−1)
= pn−1(.8) + qn−1(.3)

and

qn = P (S′n)

= P (Sn−1)P (S′n|Sn−1) + P (S′n−1)P (S′n|S′n−1)
= pn−1(.2) + qn−1(.7),

2Alternatively, suppose that we have an ensemble of particles and let xn, yn denote the expected number
of particles in each state. Then the same theory will hold.
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as desired. But enough about probability.

Given the initial distribution p0 = (p0, q0), the distribution after n seconds is given by

pn = Apn−1,

= AApn−2
...

= AA · · ·Ap0

= Anp0.

Our goal is to find explicit formulas for pn and qn in terms of p0 and q0.

Now comes the key trick. We have the following mysterious identitites:

A

(
3
2

)
=

(
3
2

)
and A

(
1
−1

)
=

1

2

(
1
−1

)
. (∗)

Jargon: We say that (3, 2) and (1,−1) are “eigenvectors” of A with corresponding “eigenval-
ues” 1 and 1/2. More generally, if Ax = λx for some vector x and scalar λ, then the action
of An on x is easy to compute:

Anx = (An−1A)x

= An−1(Ax)

= An−1(λx)

= λAn−1x

...

= λnx.

Once we know (∗), the rest of the solution is straightforward. First we want to express our
initial condition p0 as a linear combination of eigenvectors. In other words, we want to find a
and b such that

p0 = a

(
3
2

)
+ b

(
1
−1

)
=

(
3 1
2 −1

)(
a
b

)
.

Since the two eigenvectors are not parallel, the matrix of eigenvectors is invertible, hence(
a
b

)
=

(
3 1
2 −1

)−1(
p0
q0

)
= −1

5

(
−1 −1
−2 3

)(
p0
q0

)
4



= −1

5

(
−p0 − q0
−2p0 + 3q0

)
=

(
1/5

p0 − 3/5

)
. p0 + q0 = 1

Then we obtain the solution:

p0 =
1

5

(
3
2

)
+

(
p0 −

3

5

)(
1
−1

)
Anp0 =

1

5
An
(

3
2

)
+

(
p0 −

3

5

)
An
(

1
−1

)
pn =

1

5

(
3
2

)
+

(
p0 −

3

5

)(
1

2

)n(
1
−1

)
(
pn
qn

)
=

(
3/5 + (p0 − 3/5)/2n

2/5− (p0 − 3/5)/2n

)
.

As n → ∞ we observe that pn → (3/5, 2/5), regardless of the initial probabilities p0 and q0.
The fact that the initial condition is irrelevant is sometimes called the “ergodic property” (or
the “mixing property”).

But we can do more. Suppose that Ax1 = λ1x1 and Ax2 = λ2x2 for some eigenvectors x1,x2

and eigenvalues λ1, λ2. We can express both of these conditions simultaneously by forming
the matrices

X =
(

x1 x2

)
and Λ =

(
λ1 0
0 λ2

)
.

Then we have

AX = A
(

x1 x2

)
=
(
Ax1 Ax2

)
=
(
λ1x1 λ2x2

)
=
(

x1 x2

)(λ1 0
0 λ2

)
= XΛ.

This equation holds even when A is n × n and X is n × 2. If A is 2 × 2 and if the vectors
x1,x2 are not parallel, then the matrix X is square and invertible, hence

AX = XΛ

A = XΛX−1.

In this case, we say that we have “diagonalized” the matrix A. In our case, we have(
.8 .3
.2 .7

)
=

(
3 1
2 −1

)(
1 0
0 1/2

)(
3 1
2 −1

)−1
.
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The powers of A behave well with respect to this factorization. This follows from two key
properties. First, the powers of a diagonal matrix are easy to compute:

Λn =

(
λ1 0
0 λ2

)n
=

(
λn1 0
0 λn2

)
.

Second, there is a miraculous cancellation in the powers of XΛX−1:

An = (XΛX−1)n

= (XΛX−1)(XΛX−1) · · · (XΛX−1)

= XΛ(X−1X)Λ(X−1X) · · · (X−1X)ΛX−1

= XΛΛ · · ·ΛX−1

= XΛnX−1.

Putting these together gives us explicit formulas for the entries of An:(
.8 .3
.2 .7

)n
=

(
3 1
2 −1

)(
1 0
0 1/2

)n(
3 1
2 −1

)−1
=

(
3 1
2 −1

)(
1n 0
0 (1/2)n

)(
3 1
2 −1

)−1
=

(
3 1
2 −1

)(
1n 0
0 (1/2)n

)(
−1

5

)(
−1 −1
−2 3

)
=

(
3 1
2 −1

)(
1n 0
0 (1/2)n

)(
−1

5

)(
−1 −1
−2 3

)
=

1

5

(
3 1
2 −1

)(
1 0
0 (1/2)n

)(
1 1
2 −3

)
=

1

5

(
3 1
2 −1

)(
1 1

2/2n −3/2n

)
=

1

5

(
3 + 2/2n 3− 3/2n

2− 2/2n 2 + 3/2n

)
.

These exact formulas would be very difficult to obtain without the trick of eigenvalues and
eigenvectors. By letting n go to infinity, we confirm our experimental observation that

An → 1

5

(
3 3
2 2

)
=

(
.6 .6
.4 .4

)
as n→∞.

Finally, let me mention an alternative expression for An that is often more useful. For any
vectors x1,x2,y1,y2 and scalars λ1, λ2, one can check that

(
x1 x2

)(λ1 0
0 λ2

)( yT1

yT2

)
= λ1x1y

T
1 + λ2x2y

T
2 .
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Thus in our case we have(
.8 .3
.2 .7

)n
=

(
3
2

)(
1/5 1/5

)
+

(
1

2

)n(
1
−1

)(
2/5 −3/5

)
.

This expression emphasizes the fact that An converges to a rank 1 matrix:

An →
(

3
2

)(
1/5 1/5

)
as n→∞.

Remember: This section is just for motivation. I will explain all of the ideas later.

1.2 The Characteristic Polynomial

Let A be a square matrix over R or C. We say that λ ∈ C is an eigenvalue of A when there
exists a nonzero vector x satisfying Ax = λx. Let me emphasize this:

λ is an eigenvalue of A ⇐⇒ there exists some x 6= 0 satisfying Ax = λx.

If Ax = λx then we say that x is a λ-eigenvector of A.

It is not immediately clear that eigenvalues exist. Our first result will show that any matrix
has at least one eigenvalue. To do this we will rewrite the definition of eigenvalues in terms
of determinants.3 The following equivalences follow from results in the previous chapter:

λ is an eigenvalue of A ⇐⇒ Ax = λx for some x 6= 0

⇐⇒ (λx−Ax) = 0 for some x 6= 0

⇐⇒ λIx−Ax = 0 for some x 6= 0

⇐⇒ (λI −A)x = 0 for some x 6= 0

⇐⇒ the nullspace N (λI −A) contains a nonzero vector

⇐⇒ dimN (λI −A) ≥ 1

⇐⇒ the matrix λI −A is not invertible

⇐⇒ det(λI −A) = 0.

This last equivalence is the most convenient way to study eigenvalues. In summary,

λ is an eigenvalue of A ⇐⇒ det(λI −A) = 0.

If λ is an eigenvalue of an n×n matrix A, we observe that the set of λ-eigenvectors is a subspace
of Rn. Indeed, the λ-eigenvectors of A are just the vectors in the nullspace N (λI − A). We
say that

N (λI −A) = the λ-eigenspace of A.

3There is a popular textbook called Linear Algebra Done Right in which the author goes to great lengths to
avoid the use of determinants in the theory of eigenvalues. There is another well-known textbook called Linear
Algebra Done Wrong, which I greatly prefer.
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When λ is not an eigenvalue the matrix λI−A is invertible, so in this case the “λ-eigenspace”
is trivial: N (λI−A) = {0}. Before going further with the theory, we compute the eigenvalues
of a general 2× 2 matrix:

A =

(
a b
c d

)
.

We have

det(λI −A) = det

(
λ

(
1 0
0 1

)
−
(
a b
c d

))
= det

(
λ− a −b
−c λ− d

)
= (λ− a)(λ− d)− (−b)(−c)
= λ2 − (a+ d)λ+ (ad− bc).

Hence the eigenvalues of A are

λ =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
.

Let ∆ = (a+ d)2 − 4(ad− bc) denote the discriminant of this quadratic polynomial. If ∆ = 0
then the matrix A has only one eigenvalue. Now suppose that A has real entries. If ∆ > 0 then
A has two distinct real eigenvalues and if ∆ < 0 then A has two distinct complex eigenvalues.

After finding the eigenvalues, it is an easy matter to find all of the eigenvectors. Consider our
example from the previous section:

A =

(
.8 .3
.2 .7

)
.

The eigenvalues are the roots of the polynomial equation

det(λI −A) = 0

λ2 − (.8 + .7)λ+ (.8)(.7)− (.2)(.3) = 0

λ2 − 1.5λ+ 0.5 = 0,

which are

λ =
1

2
(1.5±

√
(1.5)2 − 4(0.5))

=
1

2
(1.5±

√
0.25)

=
1

2
(1.5± 0.5)

= 1 and 1/2.
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To find the 1-eigenvectors, we use row reduction to compute the nullspace of 1I −A. First we
observe that the matrix 1I −A has dependent rows (hence also dependent columns):

1I −A =

(
1 0
0 1

)
−
(
.8 .3
.2 .7

)
=

(
.2 −.3
−.2 .3

)
.

Indeed, this must be the case because 1 is an eigenvalue. Then we compute the RREF:

(1I −A)x = 0  

(
.2 −.3
−.2 .3

)
x =

(
0
0

)
RREF
 

(
1 −3/2
0 0

)
x =

(
0
0

)
.

It follows that there is a line of 1-eigenvectors:4

x = t

(
3/2
1

)
.

Next we compute the (1/2)-eigenspace:(
1

2
I −A

)
x = 0  

(
−.3 −.3
−.2 −.2

)
x =

(
0
0

)
RREF
 

(
1 1
0 0

)
x =

(
0
0

)
.

Thus we have also have a line of (1/2)-eigenvectors:5

x = t

(
−1
1

)

The procedure is the same for larger matrices. Given the eigenvalues, we can find all of the
eigenvectors by row reduction. The hard part is to find the eigenvalues.6 In general, we define
the characteristic polynomial of a square matrix A:

χA(λ) := det(λI −A).

This is, indeed, a polynomial in λ. Furthermore, if A is n× n then χA(λ) is a polynomial of
degree n. In general the coefficients are quite complicated, but two of the coefficients have
special names. We have

χA(λ) = λn − tr(A)λn−1 + · · ·+ (−1)ndet(A),

where the trace of a square matrix is defined as the sum of its diagonal entries:

tr(A) = tr

a11 · · · a1n
...

...
an1 · · · ann

 := a11 + a22 + · · ·+ ann.

4In the previous section I chose x = (3, 2) to avoid fractions.
5In the previous example I chose x = (1,−1) because I didn’t want a negative sign in the first coordinate.
6Solving polynomials equations is a non-linear problem. There are no exact algorithms, but there are

reasonably good approximation schemes. The state of the art for computing eigenvalues is the QR algorithm,
which doesn’t use the characteristic polynomial at all.
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We already know this formula for 2× 2 matrices, and the general case is not hard to check.

If matrices A and B satisfy B = XAX−1 for some invertible matrix X, then I claim that A
and B have the same characteristic polynomial:

χXAX−1(λ) = χA(λ).

To prove this, we note that

χB(λ) = det(λI −B)

= det(λXX−1 −XAX−1)
= det(X(λI −A)X−1)

= ����det(X)det(λI −A)�����
det(X)−1

= det(λI −A)

= χA(λ).

By comparing the coefficients of χA(λ) and χB(λ), it follows that7

tr(XAX−1) = tr(A) and det(XAX−1) = det(A).

The eigenvalues of a square matrix A are the roots of the characteristic polynomial. It follows
from the Fundamental Theorem of Algebra that

Every square matrix has at least one eigenvalue.

Indeed, since the characteristic polynomial χA(λ) has degree n, the FTA says that there exist
complex numbers λ1, . . . , λn ∈ C such that

χA(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn).

We can expand this to get

χA(λ) = λn − (λ1 + · · ·+ λn)λn−1 + · · ·+ (−1)nλ1 · · ·λn.

Then comparing the coefficients with our previous expansion for χA(λ) gives

tr(A) = λ1 + · · ·+ λn and det(A) = λ1 · · ·λn.

That is, the trace of A equals the sum of the eigenvalues (with multiplicities) and the deter-
minant of A equals the product of the eigenvalues (with multiplicities). This is often useful.

Remarks:

7Of course, we already knew this property of the determinant.

10



• I guess we could say that every n × n matrix has n eigenvalues, but they need not be
distinct. For example, the identity matrix In has characteristic polynomial

det(λIn − In) = det

λ− 1
. . .

λ− 1

 = (λ− 1)n,

hence 1 is the only eigenvalue. The corresponding eigenspace is all of Rn. Indeed, every
vector x ∈ Rn is a 1-eigenvector of the identity matrix: Inx = x = 1x.

• A real matrix has at least one complex eigenvalue, but it need not have any real eigen-
values. For example, consider the matrix that rotates counterclockwise by 90◦:

A =

(
0 −1
1 0

)
.

The characteristic polynomial is

det(λI −A) =

(
λ 1
−1 λ

)
= λ2 + 1,

hence the eigenvalues are ±i. The corresponding eigenspaces are

N (iI −A) = t

(
1
−i

)
and N (−iI −A) = t

(
1
i

)
.

Hence A is a real matrix with no real eigenvalues and no real eigenvectors.

1.3 Diagonalization

We say that a square matrix A is diagonalizable when it has a basis of eigenvectors. So far we
have seen only diagonalizable matrices. Here is the simplest example of a matrix that is not
diagonalizable:

A =

(
1 1
0 1

)
.

The characteristic polynomial is

det(λI −A) = det

(
λ− 1 −1

0 λ− 1

)
= (λ− 1)2,

hence 1 is the only eigenvalue. But the 1-eigenspace is only one dimensional:

(1I −A)x = 0  

(
0 −1
0 0

)
x =

(
0
0

)
 x = t

(
1
0

)
.

Non-diagonalizable matrices are quite a nuisance. Fortunately, they are rare. The next result
shows that any n× n matrix with n distinct eigenvalues is diagonalizable.
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Theorem (Distinct Eigenvalues Implies Diagonalizable). Let A be an n × n matrix.
Suppose that the characteristic polynomial factors as

χA(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn),

where the complex numbers λ1, . . . , λn ∈ C are distinct. Furthermore, let x1, . . . ,xn ∈ Cn be
some nonzero vectors satisfying Axi = λixi.

8 Then I claim that x1, . . . ,xn is a basis for Cn.

Warning: This theorem is not sharp. If the characteristic polynomial of a matrix has a
repeated factor then the matrix may or may not be diagonalizable. For example, the following
two matrices both have characteristic polynomial (λ− 1)2:(

1 1
0 1

)
and

(
1 0
0 1

)
.

The matrix on the left is not diagonalizable, but the matrix on the right is diagonalizable. In-
deed, every vector is a 1-eigenvector for the identity matrix. I will give a sharp characterization
of diagonalizability in the next section.

Proof. It is enough to show that the set x1, . . . ,xn is linearly independent. Then the subspace
of Cn spanned by x1, . . . ,xn is n-dimensional, hence it must be the whole space.

First we observe that the vectors x1, . . . ,xn are distinct. Indeed, suppose we had xi = xj = x
for some i 6= j. This would imply that

Ax = Ax

λix = λjx

(λi − λj)x = 0.

But by assumption we have λi − λj 6= 0 and x 6= 0, which gives a contradiction. This is no
big deal; it just says that a given vector can’t be an eigenvector for two different eigenvalues.

We will prove by induction on k that the set of vectors x1, . . . ,xk is independent for any
1 ≤ k ≤ n, and it will follow that the set x1, . . . ,xn is independent. The result is trivial
for k = 1 because any set containing one vector is by convention called independent. It is
not logically necessary, but let’s also consider the case k = 2, to get a feel for the general
argument. Suppose that we have

b1x1 + b2x2 = 0

for some scalars b1, b2 ∈ C. Our goal is to show that b1 = 0 and b2 = 0. First multiply both
sides on the left by A to obtain

A(b1x1 + b2x2) = A0

b1Ax1 + b2Ax2 = 0

8Such vectors exist because λ1, . . . , λn are eigenvalues.
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b1λ1x1 + b2λ2x2 = 0.

Subtract λ2 times the first equation from this equation to obtain

(b1λ1x1 + b2λ2x2)− λ2(b1x1 + b2x2) = 0

b1(λ1 − λ2)x1 + b2(λ2 − λ2)x2 = 0

b1(λ1 − λ2)x1 = 0.

Since λ1 − λ2 6= 0 and x1 6= 0 this implies that b1 = 0. But then substituting into the first
equation gives

b1x1 + b2x2 = 0

0x1 + b2x2 = 0

b2x2 = 0,

which implies that b2 = 0 because x2 6= 0.

Now we prove the general case. Fix some k ≥ 2 and suppose that we have

b1x1 + b2x2 + · · ·+ bkxk = 0 (1)

for some scalars b1, . . . , bk ∈ C. Our goal is to show that b1 = b2 = · · · = bk = 0. To do this
we multiply both sides on the left by A to obtain

A(b1x1 + b2x2 + · · ·+ bkxk) = A0

b1Ax1 + b2Ax2 + · · ·+ bkAxk = 0

b1λ1x1 + b2λ2x2 + · · ·+ bkλkxk = 0. (2)

Then we consider the equation (2)− λk(1):(
k∑
i=1

biλixi

)
− λk

(
k∑
i=1

bixi

)
= 0

k∑
i=1

bi(λi − λk)xk = 0

0xk +

k−1∑
i=1

bi(λi − λk)xi = 0

k−1∑
i=1

bi(λi − λk)xi = 0.

By induction, the vectors x1, . . . ,xk−1 are independent, hence for any 1 ≤ i ≤ k − 1 we must
have bi(λi − λk) = 0. But by assumption we have λi 6= λk, and hence bi = 0, for any 1 ≤ i ≤
k − 1. Finally, we substitute back into equation (1) to obtain 0x1 + · · · + 0xk−1 + bkxk = 0,
which implies that bk = 0 because xk 6= 0. �
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This result implies that “almost all” matrices are diagonalizable. To see this, we will use the
concept of the discriminant of a polynomial. For example, consider the general 2× 2 matrix

A =

(
a b
c d

)
.

The characteristic polynomial is

χA(λ) = λ2 − (a+ d)λ+ (ad− bc),

and hence the eigenvalues are

λ =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
.

The quantity ∆(a, b, c, d) = (a+d)2−4(ad−bc) is called the discriminant of the characteristic
polynomial. If ∆ 6= 0 then we observe that A has two distinct eigenvalues, hence is diago-
nalizable. If we choose the entries a, b, c, d of the matrix A at random then it would be quite
unlikely to have ∆(a, b, c, d) = 0. To be more precise, we can view the set of 2× 2 matrices as
a 4-dimensional vector space:

C2×2 = the vector space of 2× 2 matrices with complex entries.

Inside this 4-dimensional vector space, the set of matrices satisfying ∆(a, b, c, d) = 0 forms a “3-
dimensional subset”.9 By analogy, consider a 2-dimensional plane in R3. A randomly chosen
point in R3 will not lie on this plane. Similarly, a randomly chosen point in a 4-dimensional
vector space will not lie in a given 3-dimensional shape.

This discussion generalizes to square matrices of any size. Given an n×n matrix A with entries
aij , there is a certain polynomial ∆(A) in the n2 variables aij such that ∆(A) = 0 if and only
if A has a repeated eigenvalue. Since the equation ∆(A) = 0 defines an (n2 − 1)-dimensional
subset of the n2-dimensional space of n × n matrices, a randomly chosen matrix will have
distinct eigenvalues, and hence will be diagonalizable.

Why do we call it diagonalization? Let A be a diagonalizable n×n matrix and let x1, . . . ,xn ∈
Cn be a basis of eigenvectors with corresponding eigenvalues Axi = λixi. (Here we do not
assume that the eigenvalues are distinct.) We can write the n equations Axi = λixi simulta-
neously as a matrix equation:(

Ax1 · · · Axn
)

=
(
λ1x1 · · · λnxn

)
A
(

x1 · · · xn
)

=
(

x1 · · · xn
)λ1 . . .

λn


9For a general polynomial f(x1, . . . , xn) in n variables, the set of points x ∈ Cn satisfying f(x) = 0 forms

an (n− 1)-dimensional subset. I don’t want to be too precise about this.
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AX = XΛ,

where Λ is a diagonal matrix containing the eigenvalues. Since the columns of X are inde-
pendent by assumption, the matrix X is invertible and we can write

A = XΛX−1 or X−1AX = Λ.

Thus we have used the eigenvector matrix X to convert A into the diagonal matrix Λ. In
other words, we have “diagonalized” A. We will see below that this is extremely useful.

1.4 Evaluating a Polynomial at a Matrix

Matrices can be added, multiplied by scalars, and raised to powers. This allows us to consider
polynomials of matrices. More precisely, we can “evaluate” polynomials at matrices. Consider
a polynomial in one variable, with complex coefficients:

f(x) = b0 + b1x+ · · ·+ bkx
k.

Then for any n× n matrix A we define the n× n matrix f(A) by10

f(A) := b0In + b1A+ b2A
2 + · · ·+ bkA

k.

This evaluation behaves well with respect to eigenvalues and eigenvectors. That is, for any
vector x and scalar λ, we have

Ax = λx =⇒ f(A)x = f(λ)x.

Indeed, if Ax = λx then we can show by induction that Amx = λmx for any m ≥ 0:

• Base Case. A0x = Inx = x = λ0x.

• Induction Step. If Am−1x = λm−1x then

Amx = A(Am−1x) = Am(λm−1x) = λm−1(Ax) = λm−1λx = λmx.

Then for any polynomial f(x) = b0 + b1x+ · · ·+ bkx
k we have

f(A)x = (b0In + b1A+ · · ·+ bkA
k)x

= b0Inx + b1Ax + · · ·+ bkA
kx

= b0x + b1λx + · · ·+ bkλ
kx

= (b0 + b1λ+ · · ·+ bkλ
k)x

= f(λ)x.

10Here we use the convention that A0 = In.
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Now suppose that the matrix A is a “root” of the polynomial f(x). That is, suppose that
f(A) is the zero matrix. Then every eigenvalue of A is also a root of f(x):

f(A) = O =⇒ every eigenvalue of A satisfies f(λ) = 0.

Indeed, if Ax = λx and f(A) = O then we have

f(λ)x = f(A)x = Ox = 0.

And if x 6= 0 then this implies f(λ) = 0. Here are some examples.

Projections. Any matrix satisfying P 2 = P has eigenvalues in the set {0, 1}. Indeed, if
P 2 − P = O then any eigenvalue λ of P satisfies

λ2 − λ = 0

λ(λ− 1) = 0

λ = 0 or 1.

This doesn’t mean that both eigenvalues must occur. For example, the zero matrix satisfies
O2 = O and its only eigenvalue is 0, while the identity matrix satisfies I2 = I and its only
eigenvalue is 1.

At the end of this section we will show that any matrix satisfying P 2 = P is diagonalizable.
Assuming this for now, we can prove that any n× n matrix satisfying P 2 = P is a (possibly
non-orthogonal) projection matrix. To do this, let x1, . . . ,xn be a basis of eigenvectors. Since
the only possible eigenvalues are 1 and 0, we can sort the eigenvectors so that Pxi = 1xi = xi
for 0 ≤ i ≤ r and Pxi = 0xi = 0 for r < i ≤ n.11 This gives the factorization

P = X

(
Ir Or,n−r

On−r,r On−r, n− r

)
X−1.

Now let A be the n× r matrix consisting of the first r columns of X and let B be the r × n
matrix consisting of the first r rows of X−1. Then we have

P =
(
A ∗

)( Ir Or,n−r

On−r,r On−r, n− r

)(
B

∗

)
=
(
A ∗

)( B

O

)
= AB +O = AB.

And we also have(
Ir Or,n−r

On−r,r In−r,n−r

)
= In = X−1X =

(
B

∗

)(
A ∗

)
=

(
BA ∗

∗ ∗

)
,

which implies that BA = Ir. In summary:

P 2 = P =⇒ P = AB for some A,B satisfying BA = Ir, where r = rank(P ).

This is the projection onto the column space U = C(A), in a direction parallel to the null
space V = N (B). Picture:

11We allow the possibilities r = 0 (all eigenvalues are 0) and r = n (all eigenvalues are 1).
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The projection is orthogonal if and only if V = U⊥. In this case we have N (B) = C(A)⊥ =
N (AT ), which impliess that R(A) = N (B)T = N (AT )⊥ = R(AT ). Since R(B) = R(AT ) we
can find an invertible r×r matrix S of row operations such that B = SAT . But then BA = Ir
implies SATA = Ir and hence S = (ATA)−1. Finally, we conclude that

P = AB = ASAT = A(ATA)−1AT ,

which agrees with our previous formula for orthogonal projections.

Reflections. Any matrix satisfying F 2 = I has eigenvalues in the set {1,−1}. Indeed, if
F 2 − I = O then any eigenvalue λ of F satisfies

λ2 − 1 = 0

λ2 = 1

λ = 1 or − 1.

Consider the unique matrix P satisfying F = 2P − I and P = (F + I)/2. We observe that

P 2 =
1

4
(F 2 + 2F + I2) =

1

2
(I + 2F + I) =

1

4
(2F + 2I) =

1

2
(F + I) = P,

so that P is a projection. Let U and V be the 1-eigenspace and 0-eigenspace of P as in
the previous example, then U is the 1-eigenspace of F and V is the (−1)-eigenspace of F .
Geometrically, F is the reflection across the subspace U in the direction of V . Picture:
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In terms of matrices, if F is a matrix of rank r satisfying F 2 = I then we can find two r×(n−r)
matrices A,B satisfying BA = Ir, such that

F = 2P − I = 2AB − I.

This is the reflection across the column space U = C(A), parallel to the nullspace V = N (B).

Rotations. Any matrix satisfying Rn = I has eigenvalues in the set {e2πik/n : k ∈ Z}. Indeed,
since Rn − I = O, any eigenvalue λ of R must satisfy λn − 1 = 0, and hence must be an nth
root of unity. Such matrices can be quite complicated. For a simple example, we consider the
2× 2 rotation matrix:

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

The characteristic polynomial is

χRθ(λ) = λ2 − 2 cos θλ+ 1,

hence the eigenvalues are12

λ =
2 cos θ ±

√
4 cos2 θ − 4

2

=
2 cos θ ± 2

√
cos2 θ − 1

2
12It’s a bit reckless to take square roots in this way, but it gives the correct answer.

18



=
2 cos θ ± 2

√
− sin2 θ

2

=
2 cos θ ± 2i sin θ

2
= cos θ ± i sin θ

= e±iθ.

The case θ = 0 corresponds to the identity matrix, with eigenvalues (1, 1) and the case θ = π
corresponds to the negative identity matrix, with eigenvalues (−1,−1). In all other cases, the
eigenvalues (and hence also the eigenvectors) are not real. If θ = 2π/n then the eigenvalues
λ = e±2πi/n satisfy λn = 1. This agrees with the fact that

(R2π/n)n = I.

Next, we give an alternative proof for the existence of eigenvalues, which does not use deter-
minants.13

Theorem (Existence of Eigenvalues). Let A be any n × n matrix with real or complex
entries and consider an arbitrary nonzero vector v ∈ Cn. Since Cn is n-dimensional, the
following n+ 1 vectors must be linearly dependent:14

v, Av, A2x, . . . , Anv.

In other words, we can find scalars b0, b1, . . . , bn, not all zero, such that

b0v + b1Av + b2A
2v + · · ·+ bnA

nv = 0.

In fact, one of the scalars b1, . . . , bn must be nonzero, otherwise we would have b0v = 0 and
b0 6= 0, which contradicts the fact that v 6= 0. We can rewrite the previous equation as

(b0I + b1A+ b2A
2 + · · ·+ bnA

n)v = 0,

f(A) = 0,

for the polynomial f(x) = b0+b1x+b2x
2+ · · · bnxn, which has degree between 1 and n because

not all of b1, . . . , bn are zero. Let’s say deg(f) = k. By the Fundamental Theorem of Algebra
we can factor f(x) as

f(x) = (x− α1)(x− α2) · · · (x− αk),

for some complex numbers α1, . . . , αk ∈ C, not necessarily distinct. Now the equation f(A)v =
0 becomes15

(A− α1I)(A− α2I) · · · (A− αkI)v = 0.

13This proof is the motivation for Axler’s approach in Linear Algebra Done Right.
14Indeed, any collection of n+ 1 vectors in Cn is linearly dependent.
15There is a subtle point hiding here. Given a polynomial f(x) and square matrices A,B, it is not generally

true that f(AB) = f(A)f(B). However, if AB = BA then we do have f(AB) = f(A)f(B). Since the matrices
A− α1I, . . . , A− αkI commute with each other, we are okay in this case.
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To save notation, let’s write Ai = A− αiI. Thus we have

A1A2 · · ·Akv = 0.

Since v 6= 0, this implies that the matrix A1 · · ·Ak is not invertible. And since a product of
invertible matrices is invertible, this implies that at least one of the factors, say Ai, is not
invertible. Finally, since Ai = A− αiI is not invertible, we conclude that αi is an eigenvalue
of A. In particular, we have shown that A has an eigenvalue. �

Building on this idea, we can give a sharper result about diagonalization. The proof is tricky
so you can feel free to skip it.

Theorem (Existence of Diagonalization). A square matrix A is diagonalizable if and
only if we have f(A) = O for some polynomial with no repeated roots.

Proof. First suppose that A has a basis of eigenvectors x1, . . . ,xn with corresponding eigen-
values Axi = λixi. Some of these eigenvalues might be repeated. Let µ1, . . . , µk be the list of
eigenvalues with repetition removed, and consider the polynomial

f(x) = (x− µ1) · · · (x− µk),

which has no repeated roots. We will show that f(A) = O. To do this, we observe that the
matrices (A− µiI) and (A− µjI) commute for any i, j:

(A− µiI)(A− µjI) = A2 − (µi + µj)A+ µiµjI = (A− µjI)(A− µi − I).

We will use this to show that f(A)v = 0 for any eigenvector v. Then since there exists a basis
of eigenvectors, it will follow from this that f(A)v = 0 for any vector v, and hence f(A) is
the zero matrix. So let v be an eigenvector with eigenvalue µi.

16 Then we have17

f(A)v =

∏
j

(A− µjI)

v

=

∏
j 6=i

(A− µj)

 (A− µi)v

=

∏
j 6=i

(A− µj)

 (Av − µv)

=

∏
j 6=i

(A− µj)

0

= 0.

16Recall that every eigenvalue is in the list µ1, . . . , µk.
17We used commutativity to pull the factor A− µiI to the right.
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Thus we have shown that a diagonalizable matrix A satisfies an equation f(A) = O for some
polynomial f(x) with no repeated roots.

Conversely, suppose that an n×n matrix A satisfies f(A) = O for some polynomial f(x) with
no repeated roots. Suppose that deg(f) = k and write

f(x) = (x− λ1) · · · (x− λk)

for some distinct complex numbers λ1, . . . , λk ∈ C. We want to show that A has a basis of
eigenvectors. First we define the null spaces

Eλi = N (A− λiI) = {x : Ax = λix}.

Note that Eλi 6= {0} if and only if λi is an eigenvalue, in which case Eλi is the corresponding
eigenspace. We don’t really care if all of the numbers λi are eigenvalues. Indeed, some of
them might not be. Our goal is merely to show that the spaces Eλ1 , . . . , Eλk are big enough
to fill up all of Cn. To be precise, we will show that

• Eλi ∩ Eλj = {0} for all i 6= j,

• Cn = {x1 + · · ·+ xk : xi ∈ Eλi for all i}.

Then by concatenating bases for Eλ1 , . . . , Eλk we will obtain a basis for Cn that consists of
eigenvectors of A. For the first statement, suppose that x ∈ Eλi∩Eλj so that λix = Ax = λjx.
If x 6= 0 then this implies that λi = λj and hence i 6= j, because the λi are distinct. The
second statement is trickier. First we consider the partial fraction expansion of 1/f(x):

1

f(x)
=

1

(x− λ1) · · · (x− λk)
=
∑
i

αi
x− λi

,

for some scalars α1, . . . , αk ∈ C, not necessarily distinct.18 Now consider the polynomials

pi(x) =
αif(x)

x− λi
= αi

∏
j 6=i

(x− λj),

and note that

p1(x) + · · · pk(x) =
α1f(x)

x− λ1
+ · · ·+ αkf(x)

x− λk
= f(x) ·

∑
i

αi
x− λi

= f(x) · 1

f(x)

= 1.

18I won’t prove the existence of the partial fraction expansion. It depends on the theory of greatest common
divisors in the ring of polynomials.
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Finally, consider any vector x ∈ Cn and write xi := pi(A)x. On the one hand, by evaluating
the polynomial equation (x− λi)pi(A) = αif(x) at A we have

(A− λiI)xi = (A− λiI)pi(A)x = αif(A)x = Ox = 0,

and hence xi ∈ Eλi . On the other hand, by evaluating the polynomial equation p1(x) + · · ·+
pk(x) = 1 at A we have

x1 + · · ·+ xk = p1(A)x + · · ·+ pk(A)x

= (p1(A) + · · · pk(A))x

= Ix

= x,

as desired. �

That was a tricky proof, but it’s a useful theorem. In particular, it implies that any matrix
satisfying P 2 = P , and hence P 2−P = O, is diagonalizable because the polynomial x2− x =
x(x−1) has distinct roots. Furthermore, any matrix satisfying Rn = I, and hence Rn−I = O,
is diagonalizable because the polynomial xn − 1 has distinct roots:

xn − 1 = (x− 1)(x− e2πi/n)(x− e4πi/n) · · · (x− e2πi(n−1)/n).

Finally, we examine what goes wrong for a specific non-diagonalizable matrix. Consider the
following small matrices with repeated eigenvalues:

A =

(
λ 0
0 λ

)
and B =

(
λ 1
0 λ

)
Each of these has characteristic polynomial (x− λ)2:

(x− λ)2 = det

(
x− λ 0

0 x− λ

)
= det

(
x− λ −1

0 x− λ

)
.

In the next section we will show that every matrix satisfies its own characteristic polynomial,
which we can easily verify for these two matrices:

(A− λI)2 =

(
0 0
0 0

)2

=

(
0 0
0 0

)
and (B − λI)2 =

(
0 1
0 0

)2

=

(
0 0
0 0

)
.

The matrix A also satisfies the polynomial f(x) = x − λ, which has no repeated roots. This
confirms that A is diagonalizable; in fact, it is diagonal. On the other hand, the matrix B
is not diagonalizable. This is easy to check directly. Instead, we will prove it indirectly, by
showing that B cannot satisfy any polynomial with distinct roots. The basic reason is that

(B − λI)2 = O but B − λI 6= O.
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Indeed, consider any polynomial g(x) = (x− λ1) · · · (x− λk) with distinct roots λ1, . . . , λk. If
g(B) = O then one of the matrices B−λjI must be non-invertible, so that λj is an eigenvalue
and hence λj = λ. Since the λi are distinct, this implies that the λi with i 6= j are not
eigenvalues. Then since g(B) = O equals B − λI times a product of invertible matrices
B − λiI for i 6= j, we conclude that B − λI = O. Contradiction.

Remark: In the next chapter we will say more about non-diagonalizable matrices.

1.5 The Functional Calculus

Why are diagonalizable matrices good? As we mentioned in the first section, if we can diag-
onalize a matrix A then we can find explicit formulas for the entries of its powers Ak. More
generally, diagonalizing a matrix allows us to compute any polynomial evaluation of the matrix
f(A). We can even compute convergent power series, such as

exp(A) := I +A+
1

2
A2 + · · ·+ 1

k!
Ak + · · · .

To begin, suppose that an n× n matrix A has a basis of eigenvectors x1, . . . ,xn, with corre-
sponding eigenvalues Axi = λixi. (The eigenvalues are not necessarily distinct.) Then, as we
showed in the previous section, we can write

A = XΛX−1 =
(

x1 · · · xn
)λ1 . . .

λn

( x1 · · · xn
)−1

.

This factorization is compatible with polynomial evaluation. That is, for any polynomial f(x),
I claim that

f(A) = X · f(Λ) ·X−1.

If A (hence also Λ) is invertible, then we can even allow negative powers of x in the polynomial.
Such expressions are called Laurent polynomials:

f(x) = b−`x
−` + b−`+1x

−`+1 + · · ·+ bk−1x
k−1 + bkx

k for some k, ` ≥ 0.

Actually, we will prove the more general fact that A = XBX−1 implies f(A) = X ·f(B) ·X−1
for any polynomial f(x), and for any Laurent polynomial f(x) when A (hence also B) is
invertible. The first step is to prove that

(XBX−1)k = XBkX−1 for all k ≥ 0, and also for k < 0 when B is invertible.

For this we use induction. When k = 0 we have XB0X−1 = XInX
−1 = XX−1 = In =

(XBX−1)0. Then for k ≥ 1 we have

(XBX−1)k = (XBX−1)(XBX−1)k−1

= (XBX−1)(XBk−1X−1) induction
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= XB(X−1X)Bk−1X−1

= XBBk−1X−1

= XBkX−1.

If B is invertible, then for all k ≥ 0 we also have

(XBX−1)−k = [(XBX−1)−1]k = (XB−1X−1)k = X(B−1)kX−1 = XB−kX−1.

Finally, for any polynomial f(x) = b0 + b1x+ · · ·+ bkx
k we have

f(A) = b0I + b1A+ b2A
2 + · · ·+ bkA

k

= b0I + b1(XBX
−1) + b2(XBX

−1)2 + · · ·+ bk(XBX
−1)k

= b0(XX
−1) + b1(XBX

−1) + b2(XB
2X−1) + · · ·+ bk(XB

kX−1)

= X(b0I + b1B + b2B
2 + · · ·+ bkB

k)X−1

= X · f(B) ·X−1.

The proof for Laurent polynomials is the same.

So far, this is not very useful. It becomes useful because of the following basic observation.

Multiplication of Diagonal Matrices is Easy. The formula for a general matrix product
AB is complicated. However, multiplication of diagonal matrices is easy:a1 . . .

an


b1 . . .

bn

 =

a1b1 . . .

anbn

 .

It follows that for any diagonal matrix Λ and any (Laurent) polynomial f(x) we have

f(Λ) = f

λ1 . . .

λn

 =

f(λ1)
. . .

f(λn)

 .

This is the reason why diagonalization is a powerful technique.

Here is a first application. Recall the following results from the previous two sections:

• If the characteristic polynomial χA(x) has distinct roots then A is diagonalizable.

• If f(A) = O for some polynomial f(x) with distinct roots then A is diagonalizable.

The next theorem ties these results together.
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The Cayley-Hamilton Theorem. Let A be a square matrix with characteristic polynomial
χA(x) = det(xI −A). Then we have

χA(A) = O.

This is a strange idea, so let’s first examine the 2× 2 case. Consider the matrix

A =

(
a b
c d

)
,

with characteristic polynomial

χA(λ) = λ2 − (a+ d)λ+ (ad− bc).

Then one can check (as Cayley and Hamilton did) that

χA(A) = A2 − (a+ d)A+ (ad− bc)I

=

(
a b
c d

)2

− (a+ d)

(
a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
= some calculations

=

(
0 0
0 0

)
.

Why on earth should this be true? It is because of diagonalization.

Proof of Cayley-Hamilton. Suppose first that A is diagonalizable, with A = XΛX−1. For
any eigenvalue λ of A, the characteristic polynomial satisfies χA(λ) = 0 by definition. Hence

χA(A) = X · χA(Λ) ·X−1 = X

χA(λ1)
. . .

χA(λn)

X−1 = XOX−1 = O.

The result for non-diagonalizable matrices follows by continuity. That is, any non-diagonalizable
matrix is a limit of diagonalizable matrices. And the entries of the matrix χA(A) are contin-
uous functions of the entries of A. But each entry of χA(A) is zero for any diagonal matrix.
Hence the entries of the limit are zero.19 �

Remark: The Cayley-Hamilton is actually more general than this. It holds over any commu-
tative ring. As written, our proof only works over the complex numbers.

Next we consider two examples of infinite power series.

19This is a typical way to deal with non-diagonalizable matrices, i.e., view them as limits of diagonalizable
matrices in the space Cn×n of square matrices.
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The Geometric Series. Consider an n×n matrix A. Suppose that A is diagonalizable with

A = XΛX−1 = X

λ1 . . .

λn

X−1.

Evaluating A at the polynomial f(x) = 1− x gives

I −A = X(I − Λ)X−1 = X

1− λ1
. . .

1− λn

X−1.

If none of the eigenvalues is 1 then I − Λ (hence also I −A) is invertible, and we obtain

(I −A)−1 = X(I − Λ)−1X−1 = X

1/(1− λ1)
. . .

1/(1− λn)

X−1.

On the other hand, for all k ≥ 0 we can evaluate A at f(x) = 1 + x+ · · ·+ xk to obtain

I +A+ · · ·+Ak = X(I + Λ + · · ·+ Λk)X−1

= X

1 + λ1 + · · ·+ λk1
. . .

1 + λn + · · ·+ λkn

X−1.

Finally, suppose that the eigenvalues satisfy 0 < |λi| < 1 for all i. Then the usual geometric
series for scalars implies that

I + Λ + · · ·+ Λk → (I − Λ)−1 as k →∞.

The convergence is componentwise in each entry of the matrix. For a fixed invertible matrix
X, the function B 7→ XBX−1 is continuous in the matrix entries, hence

X(I + Λ + · · ·+ Λk)X−1 → X(I − Λ)−1X−1 as k →∞.

In summary, for a diagonalizable matrix A with eigenvalues satisfying 0 < |λ| < 1, we have

I +A+ · · ·+Ak → (I −A)−1 componentwise.

And by continuity, the result also holds for non-diagonalizable matrices.20 On a previous
homework you proved a weaker version of this result, using more difficult techniques. Diago-
nalization makes things easier because it turns matrix arithmetic into scalar arithmetic.

20Basically, this is because the eigenvalues depend continuously on the matrix entries. I don’t want to get
specific about it.
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The Matrix Exponential. Given a square matrix A, the functional calculus allows us to
define f(A) for any power series f(x) = a0 + a1x + a22 + · · · , as long as this power series
converges when evaluated at the eigenvalues of A. For example, consider the power series
definition of the exponential function

exp(x) = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · .

It is a basic theorem of analysis that exp(x) converges for any complex number x ∈ C. In
order to define exp(A) we first suppose that A is diagonalizable:

A = XΛX−1 = X

λ1 . . .

λn

X−1.

For any k ≥ 0 we have

k∑
i=0

1

i!
Ai = X

(
k∑
i=0

1

i!
Λi

)
X−1 = X


∑k

i=0
1
i!λ

i
1

. . . ∑k
i=0

1
i!λ

i
n

X−1.

Since the power series for exp(x) converges everywhere, we have

k∑
i=1

1

i!
· Λi →

exp(λ1)
. . .

exp(λn)

 as k →∞.

Then since conjugation by the fixed matrix X is continuous, we conclude that

k∑
i=1

1

i!
·Ai → X

exp(λ1)
. . .

exp(λn)

X−1 as k →∞.

This establishes the existence of the matrix exponential for any diagonalizable matrix A:21

exp(A) = I +A+
1

2!
A2 +

1

3!
A3 + · · · .

Let me warn you that

exp(A+B) 6= exp(A) exp(B) for general matrices A,B.

21We can also prove existence for non-diagonalizable matrices using a continuity argument, though this
proof doesn’t tell us how to compute exp(A) in the non-diagonalizable case. The computation of exp(A) for
non-diagonalizable A uses the Jordan canonical form.
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The proof of exp(x+y) = exp(x) exp(y) relied on the fact that scalars commute. If AB = BA
then this same proof carries over, and we have

exp(A+B) = exp(A) exp(B) for matrices satisfying AB = BA.

Later we will see that the matrix exponential is the key to solving differential equations. In
that context we will consider the series

exp(At) = I +At+
t2

2!
A2 +

t3

3!
A3 + · · · ,

where t is a real variable representing time.

For now, we present two example computations. First consider the matrix

A =
1

6

(
5 4
2 −2

)
.

The characteristic polynomial is

det(xI −A) = (x− 5/6)(x+ 2/6)− (−4/6)(−2/6)

= x2 − (1/2)x− (1/2)

= (x− 1)(x+ 1/2),

hence the eigenvalues are 1 and −1/2. Since this 2 × 2 matrix has 2 distinct eigenvalues, we
know that it is diagonalizable. After some computation we find the eigenvectors:

A

(
4
1

)
= 1

(
4
1

)
and A

(
1
−2

)
= −1

2

(
1
−2

)
.

Hence we obtain the diagonalization:

A =

(
4 1
1 −2

)(
1 0
0 −1/2

)(
4 1
1 −2

)−1
=

1

9

(
4 1
1 −2

)(
1 0
0 −1/2

)(
2 1
1 −4

)
.

Finally, we obtain the exponential:

exp(A) =
1

9

(
4 1
1 −2

)(
exp(1) 0

0 exp(−1/2)

)(
2 1
1 −4

)
.

The last example is more interesting. Consider the matrix that rotates by 90◦:

R =

(
0 −1
1 0

)
.

For any real number θ, we will show that

exp(Rθ) =

(
cos θ − sin θ
sin θ cos t

)
= cos θ ·

(
1 0
0 1

)
+ sin θ ·

(
0 −1
1 0

)
,
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which is the matrix that rotates by θ. This is a matrix version of Euler’s formula

eiθ = cos θ + i sin θ,

where the 90◦ rotation matrix R plays the role of the imaginary unit i. We begin by computing
the eigenvalues. The characteristic polynomial is

det(xI −R) = det

(
x 1
−1 x

)
= x2 + 1,

hence there are two distinct eigenvalues: i and −i. It is no surprise that these are complex
conjugates, since the complex eigenvalues of real matrices come in conjugate pairs. (See the
homework.) With a bit of work, one finds the eigenvectors

R

(
1
−i

)
= i

(
1
−i

)
and R

(
1
i

)
= −i

(
1
i

)
,

and hence the exponential:

exp(Rθ) =

(
1 1
−i i

)(
exp(iθ) 0

0 exp(−iθ)

)(
1 1
−i i

)−1
.

Then some simplification using Euler’s formula eiθ = cos θ + i sin θ gives the desired result.

But this makes the result look like a miracle. We can gain more insight by looking at the real
and imaginary parts of the complex eigenvalues. Let x = (1,−i), so that x = (1, 0)− i(0, 1).
Since Rx = ix we must also have exp(Rθ)x = exp(iθ)x,22 and hence

exp(Rθ)

(
1
0

)
− i exp(Rθ)

(
0
1

)
= exp(Rθ)

(
1
−i

)
= exp(iθ)

(
1
−i

)
= (cos θ + i sin θ)

(
1
−i

)
Euler’s formula

=

(
cos θ + i sin θ
sin θ − i cos θ

)
=

(
cos θ
sin θ

)
− i
(
− sin θ
cos θ

)
.

Since the matrix exp(Rθ) has real entries, comparing real and imaginary parts gives

exp(Rθ)

(
1
0

)
=

(
cos θ
sin θ

)
and exp(Rθ)

(
0
1

)
=

(
− sin θ
cos θ

)
,

which is the desired result.

Remark: In general, complex eigenvalues of real matrices lead to rotation. We will examine
this in the next section.

22The proof that Ax = λx implies f(A)x = f(λ)x for polynomials f(x) carries over to power series.
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1.6 Complex Eigenvalues and Eigenvectors of Real Matrices

For any complex number a+ ib ∈ C with a, b ∈ R we will denote its complex conjugate by

α = a+ ib = a− ib.

Recall that complex conjugation satisfies the following properties:

• α+ β = α+ β,

• αβ = α · β,

• αk = (α)k,

• α = α if and only if α ∈ R.

Given a polynomial f(x) = b0+b1x+ · · ·+bnxn with real coefficients and a complex number
α ∈ C, it follows from these properties that

f(α) = b0 + b1α+ · · ·+ bnαn

= b0 + b1 · α+ · · ·+ bn · αn

= b0 + b1α+ · · ·+ bn(α)n

= f(α).

In particular, we see that α is a root of f(x) if and only if α is a root of f(x). Indeed, if
f(α) = 0 then

f(α) = f(α) = 0 = 0,

and if f(α) = 0 then

f(α) = f(α) = f(α) = 0 = 0.

It follows from this that

the non-real roots of a real polynomial come in conjugate pairs.

And, as an interesting consequence,

every real polynomial of odd degree has as least one real root.

We will apply these observations to eigenvalues of real matrices.

Complex Eigenvalues of a Real Matrix. Let A be an n × n matrix with real entries,
so the characteristic polynomial χA(x) = det(xI − A), has real coefficients. According to
the previous result, the characteristic polynomial can be factored as

χA(x) = (x− λ1) · · · (x− λn−2m)(x− α1)(x− α1) · · · (x− αm)(x− αm),

for some real numbers λi ∈ R and non-real complex numbers αi ∈ C. If n is even, then the
matrix A need not have any real eigenvalues. For example, the real matrix(

0 −1
1 0

)
,
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has characteristic polynomial (x− i)(x+ i). On the other hand, if n is odd then the number
n− 2m must be ≥ 1, so that A has at least one real eigenvalue.

Complex Eigenvectors. If a real matrix A has a real eigenvalue λ, then the corresponding
eigenvectors are real.23 Indeed, the space of λ-eigenvectors is the null space N (λI−A), which
can be computed by elimination over R. What about complex eigenvalues? Suppose that a
real n × n matrix A has a complex eigenvalue λ ∈ C, and let x ∈ Cn be a corresponding
eigenvector:

Ax = λx.

If λ is not real then x cannot have real entries. Indeed, if x ∈ Rn then since A has real entries
we would have λx = Ax ∈ Rn which implies that λ ∈ R. Let us suppose that λ = a+ ib with
a, b ∈ R and b 6= 0. Then we can write

x = u + iv

for unique real vectors u,v ∈ Rn with v 6= 0. By expanding the equation Ax = λx we obtain

Au + iAv = A(u + iv)

= Ax

= λx

= (a+ ib)(u + iv)

= (au− bv) + i(bu + av).

Since the vectors Au, Av, au−bv and bu + av have real entries, it follows by comparing real
and imaginary parts that {

Au = au − bv,
Av = bu + av,

which can be expressed as a matrix equation:

A
(

u v
)

=
(

u v
)( a b
−b a

)
.

Next, I claim that the vectors u and v are linearly independent over C.24 To see this, we note
that the conjugate vector x = u − iv is an eigenvector of A corresponding to the conjugate
eigenvalue λ = a− ib. Indeed, since A has real entries, conjugating both sides of the equation
Ax = λx gives25

Ax = Ax = Ax = λx = λx.

Since λ 6= λ, the vectors x,x ∈ C correspond to different eigenvalues, hence they are linearly
independent over C. But then since(

x x
)

=
(

u v
)(1 1

i −i

)
, where

(
1 1
i −i

)
is invertible,

23Technically, every λ-eigenvector is a scalar multiple of a real vector. You could take a real λ-eigenvector x
and scale it to get a complex λ-eigenvector ix, but why would you want to do that?

24In this section we will only discuss linear independence over C, which implies linear independence over R.
25The equation Ax = Ax needs to be checked. It follows from the standard properties.
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we conclude that u and v are linearly independent. In particular, we have

A =
(

u v
)( a b
−b a

)(
u v

)−1
.

Furthermore, for any y ∈ Cn we have

(
y x x

)
=
(

y u v
)1

1 1
i −i

 ,

which implies that the set y,x,x is independent if and only if y,u,v is independent.

Real Diagonalizable Matrices. Finally, we discuss diagonalization of real matrices. Let A
be a real n× n matrix. As we saw above, the characteristic polynomial can be factored as

χA(x) = (x− λ1) · · · (x− λn−2m)(x− α1)(x− α1) · · · (x− αm)(x− αm),

where λ1, . . . , λn−2m are real and α1, . . . , αm ∈ C are non-real.

Suppose that A is diagonalizable over C. This means that we can find nonzero vectors
y1, . . . ,yn−2m ∈ Cn and x1, . . . ,xm ∈ Cn such that Ayi = λiyi and Axi = αixi, hence
also Axi = αixi, and such that

y1, . . . ,yn−2m,x1,x1, . . . ,xm,xm

is a basis for Cn. If X is the n×n (invertible) matrix with these column vectors, then we have

A = X



λ1
. . .

λn−2m
α1

α1

. . .

αm
αm


X−1.

Now we will eliminate the complex numbers from this factorization. Since the eigenvalues
λ1, . . . , λn−2m are real, we can choose the eignevectors y1, . . . ,yn−2m to be real. Next we
write xi = ui + ivi for real vectors ui,vi with vi 6= 0. From the previous remarks we see that

y1, . . . ,yn−2m,u1,v1, . . . ,um,vm
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is a basis for Cn consisting of real vectors. Furthermore, if Y is the (invertible) matrix with
these columns, then we have

A = Y



λ1
. . .

λn−2m
a1 b1
−b1 a1

. . .

am bm
−bm am


Y −1.

This is not quite a “diagonalization”, but it has the virtue using only real numbers.

1.7 Normal Matrices

In this chapter we have studied the evaluation of polynomials (also power series and Laurent
polynomials) at matrices. This discussion has left out one important operation; namely, the
transpose and conjugate transpose. In this final section we consider the relationship between
eigenvalues and (conjugate) transposition.

The main role is played by normal matrices. We say that a matrix A is normal when it
commutes with its (conjugate) transpose:

A∗A = AA∗.

These matrices are extremely common in applications and include the following four families:

• Real symmetric matrices AT = A.

• Complex Hermitian matrices A∗ = A.

• Real orthogonal matrices AT = A−1.

• Complex unitary matrices A∗ = A−1.

Of course, these families could be dealt with separately. The reason to combine them under
the concept of normal matrices is because of the following fundamental theorem, which we
will prove in the next chapter.

The Spectral Theorem. Let A be a square matrix over R or C. Then

A∗A = AA∗ ⇐⇒ A has an orthonormal basis of eigenvectors.

Actually, some people think it undignified to call this the Spectral Theorem. They say that
the true Spectral Theorem applies to operators on infinite dimensional Hilbert spaces. Recall,
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if V is a real or complex Hilbert space and if A : V → V is a bounded26 linear operator then
there exists a unique bounded linear operator A∗ : V → V satisfying

〈Ax,y〉 = 〈x, A∗y〉 for all x,y ∈ V .

As with many results in functional analysis, the proof is 80% algebra and 20% analysis, which
is mostly plausible from geometric intuition.

Anyway, it is convenient to state and prove the results of this section in a language that
applies also to Hilbert spaces. Our first theorem was proved by Cauchy in 1829, as part of his
extension of the Principal Axes Theorem to higher dimensions. Cauchy’s original proof was
quite complicated, but today’s proof is a one-liner.27

Cauchy’s Reality Theorem. A real symmetric matrix has real eigenvalues.

Actually, we will prove the following more general statement, since it has the same proof.

Theorem. A self-adjoint operator on a complex inner product space has real eigenvalues.

Proof. Let V be a real or complex inner product space and let A : V → V be an operator
satisfying A∗ = A. If Ax = λx for some scalar λ and nonzero vector x 6= 0 then we have

λ‖x‖2 = λ〈x,x〉
= 〈x, λx〉
= 〈x, Ax〉
= 〈A∗x,x〉
= 〈Ax,x〉 A∗ = A

= 〈λx,x〉
= λ〈x,x〉
= λ‖x‖2.

Since ‖x‖ 6= 0 this implies that λ = λ, and hence λ is real. �

The next theorem has a similar proof.

Theorem. Unitary (and real orthogonal) operators have eigenvalues of length 1. That is,
they have eigenvalues of the form eiθ.

Proof. Let V be a real or complex inner product space and let A : V → V be an operator
satisfying A∗A = I. If Ax = λx for some scalar λ and nonzero vector x 6= 0 then we have

‖x‖2 = 〈x,x〉
26This means that A sends the unit ball to a bounded set. It is equivalent to A being continuous.
27“Dazzled by the brilliance of the new theory of determinants, mathematicians overlooked simple inner

product considerations”, Hawkins, The Mathematics of Frobenius in Context, page 98.
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= 〈x, Ix〉
= 〈x, A∗Ax〉 A∗A = I

= 〈Ax, Ax〉
= 〈λx, λx〉
= λ〈λx,x〉
= λλ〈x,x〉
= |λ|2‖x‖2.

Since ‖x‖ 6= 0 this implies that |λ| = 1. �

Though it doesn’t involve eigenvalues, we should probably include the following result.

Theorem. Unitary operators preserve lengths and angles.

Proof. This follows from the fact that unitary operators preserve the inner product. If
A∗A = I then for all vectors x,y we have

〈Ax, Ay〉 = 〈x, A∗Ay〉 = 〈x, Iy〉 = 〈x,y〉.

�

We have seen that the important families of normal matrices have quite restricted eigenvalues:

• Real symmetric matrices AT = A and complex Hermitian matrices A∗ = A matrices
have real eigenvalues.

• Real orthogonal matrices ATA = I and complex unitary matrices A∗A = I have eigen-
values of the form eiθ.

On the other hand, a general normal matrix can have any eigenvalues you want. Indeed,
consider any complex numbers λ1, . . . , λn ∈ C and let Λ be the diagonal matrix with these
numbers on the diagonal. Then for any unitary matrix U∗U = I, the matrix

A = UΛU∗

is normal and has eigenvalues λ1, . . . , λn.

What about eigenvectors? In this case, the key property is shared by all normal operators.
This result is a precursor to the Spectral Theorem.

Theorem (Normal with Distinct Eigenvalues ⇒ Orthogonal Eigenvectors). Let
A∗A = AA∗ be a normal operator on an inner product space. Then

Ax = λx and Ay = µy with λ 6= µ =⇒ 〈x,y〉 = 0.

We will work up to the proof by a series of lemmas.
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Lemma 1. If A∗A = AA∗ then 〈Ax, Ay〉 = 〈A∗x, A∗y〉 for all x,y.

Proof. We have 〈Ax, Ay〉 = 〈x, A∗Ay〉 = 〈x, AA∗y〉 = 〈A∗x, A∗y〉. �

Lemma 2. If A∗A = AA∗ then we have Ax = 0 if and only if A∗x = 0.

Proof. Putting y = x in Lemma 1 gives ‖Ax‖2 = 〈Ax, Ax〉 = 〈A∗x, A∗x〉 = ‖A∗x‖2. Hence

Ax = 0 ⇐⇒ ‖Ax‖ = 0 ⇐⇒ ‖A∗x‖ = 0 ⇐⇒ A∗x = 0.

�

Lemma 3. Let A∗A = AA∗. Then for any vector x and scalar λ we have

Ax = λx ⇐⇒ A∗x = λx.

Proof. Consider the matrix B = λI −A, with B∗ = λI −A∗. Then B is normal:

B∗B = (λI −A∗)(λI −A)

= λλI − λA− λA∗ +A∗A

= λλI − λA− λA∗ +AA∗ A∗A = AA∗

= (λI −A)(λI −A∗)
= BB∗.

Hence applying Lemma 2 gives

Ax = λx ⇐⇒ Bx = 0 ⇐⇒ B∗x = 0 ⇐⇒ A∗x = λx.

Proof of the Theorem. Let A∗A = AA∗ and suppose that Ax = λx and Ay = µy with
λ 6= µ. Then from Lemma 3 we have A∗x = λx, hence

λ〈x,y〉 = 〈λx,y〉
= 〈A∗x,y〉 Lemma 3

= 〈x, Ay〉
= 〈x, µy〉
= µ〈x,y〉.

Finally, since (λ− µ)〈x,y〉 and λ 6= µ we have 〈x,y〉. �

In particular, this shows that an n×n normal matrix A∗A = AA∗ with n distinct eigenvalues
has an orthogonal basis of eigenvectors. The Spectral Theorem says that this is still true even
if A has repeated eigenvalues. The hard part is to show that there are enough eigenvectors
to fill up the whole space. See the next chapter.
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2 Factorization Theorems

2.1 Gram-Schmidt and QR Factorization

Most of the theorems in this chapter deal with orthonormal bases. In this section we lay
the groundwork by showing how any basis can be converted into an orthonormal basis. The
procedure is quite general. First we consider an infinite dimensional inner product space V
over R or C. Afterwards we will consider finite dimensional spaces and matrices.

Given any linearly independent set a1,a2, . . . ∈ V the Gram-Schmidt procedure produces
linearly independent vectors b1,b2, . . . ∈ V with the following properties:28

• 〈bi,bj〉 = 0 for i 6= j,

• Span{a1, . . . ,ak} = Span{b1, . . . ,bk}.

The definition is recursive:

• First set b1 := a1.

• Then for any k ≥ 1 set bk+1 := ak+1 − Projk(ak+1), where Projk : V → V is the
orthogonal projection onto the subspace spanned by b1, . . . ,bk. To be precise, we set

bk+1 := ak+1 −
〈ak+1,b1〉
〈b1,b1〉

b1 − · · · −
〈ak+1,bk〉
〈bk,bk〉

bk.

You will prove on the homework that this procedure has the desired properties. Afterwards,
we can easily turn b1,b2, . . . ∈ V into an orthonormal set by dividing each bk by its length.

Before applying this to matrices, we give one application to infinite dimensional function
spaces. Consider the real Hilbert space L2[−1, 1] with inner product

〈f(x), g(x)〉 =

∫ 1

−1
f(x)g(x) dx.

And consider the “obvious” basis 1, x, x2, . . . ∈ L2[−1, 1].29 Note that these functions are not
orthogonal. For example,

〈1, x2〉 =

∫ 1

−1
x2 dx =

1

3
x3
∣∣∣∣1
−1

=
1

3
(1)3 − 1

3
(−1)3 =

1

3
+

1

3
=

2

3
6= 0.

Applying the Gram-Schmidt procedure to the non-orthogonal basis 1, x, x2, . . . produces the
orthogonal basis of Legendre polynomials: P0(x), P1(x), P2(x), . . .. These are used in physics
in the study of spherically symmetric potentials. For example, they determine the “shapes”

28If a1,a2, . . . is a Hilbert space basis, with appropriate convergence properties, then the vectors b1,b2, . . .
will also be a Hilbert space basis, though we won’t prove this.

29It can be shown that this is, indeed, a Hilbert space basis.
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of electron orbitals. To be precise, we first define the associated Legendre function for integers
`,m ∈ Z with 0 ≤ m ≤ `:

Pm` (x) = (1− x2)m/2 · d
m

dxm
P`(x).

Then the radial equation for the shape of the (`,m)-orbital is30

ρ = (constant) · |Pm` (cos θ)|.

Now we turn to matrices. The matrix form of Gram-Schmidt is called QR factorization.
Given an invertible n×n matrix A, we will produce a unitary matrix Q∗Q = I and an upper-
triangular matrix R such that A = QR. If A has real entries then Q and R will have real
entries. In this case QTQ = I is real orthogonal.

Let a1, . . . ,an be a basis for Cn. Then the Gram-Schmidt basis b1, . . . ,bn satisfies

a1 = b1,

a2 = b2 +
〈a2,b1〉
〈b1,b1〉

b1,

...

an = bn +
〈an,bn−1〉
〈bn−1,bn−1〉

bn−1 + · · ·+ 〈an,b1〉
〈b1,b1〉

b1,

which can be expressed as a matrix equation:

A = BU

(
a1 · · · an

)
=
(

b1 · · · bn
)


1 〈a2,b1〉
〈b1,b1〉 · · · · · ·

〈an,b1〉
〈b1,b1〉

1
...

. . .
...

1 〈an,bn−1〉
〈bn−1,bn−1〉

1


By construction, the columns of B are orthogonal. We can make them orthonormal by
scaling the kth columns bk by 1/‖bk‖. If S is the diagonal matrix with entries 1/‖bk‖, then
the matrix Q = BS has orthonormal columns qk = bk/‖bk‖, hence Q∗Q = I. To convert
A = BU into A = QR we define R = S−1U so that

A = BU

= B(SS−1)U

= (BS)(S−1U)

= QR.

30This example is just for fun. See Griffiths, Introduction to Quantum Mechanics, Equation 4.32.

38



It turns out that the matrix R = S−1U has a nice form. To see this, we first observe that

〈ak,bk〉 = 〈bk + stuff orthogonal to bk,bk〉 = 〈bk,bk〉 = ‖bk‖2,

which implies that

〈ak,qk〉 =

〈
ak,

bk
‖bk‖

〉
=

1

‖bk‖
〈ak,bk〉 =

1

‖bk‖
‖bk‖2 = ‖bi‖.

Furthermore, for any 1 ≤ i < k we have

‖bi‖ ·
〈ak,bi〉
〈bi,bi〉

= ‖bi‖ ·
〈ak,bi〉
‖bi‖2

=
1

‖bi‖
· 〈ak,bi〉 =

〈
ak,

bi
‖bi‖

〉
= 〈ak,qi〉.

Putting these together gives

R = S−1U

=

‖b1‖
. . .

‖bn‖




1 〈a2,b1〉
〈b1,b1〉 · · · · · ·

〈an,b1〉
〈b1,b1〉

1
...

. . .
...

1 〈an,bn−1〉
〈bn−1,bn−1〉

1



=

〈a1,q1〉 · · · 〈an,q1〉
. . .

...
〈an,qn〉

 .

In summary, for any n× n invertible matrix A with columns ai, we can find an n× n unitary
matrix Q∗Q = I with columns qi, such that

(
a1 · · · an

)
=
(

q1 · · · qn
)〈a1,q1〉 · · · 〈an,q1〉

. . .
...

〈an,qn〉


A = QR.

And if A is real then we can choose Q and R with real entries.

Due to rounding errors, the matrix Q computed from Gram-Schmidt is only approximately
orthogonal. It is worth mentioning another method, due to Householder, that gives an exactly
orthogonal matrix. This method also has an interesting theoretical consequence:

Any real orthogonal matrix ATA = I is a composition of reflections.

This method uses the Householder reflection matrices:

Hv = I − 2
vvT

‖v‖2
for v ∈ Rn.

39



Recall that

Pv = v(vvT )−1vT =
vvT

vTv
=

vvT

‖v‖2

is the matrix that projects orthogonally onto the line spanned by v, hence I−Pv is the matrix
that projects onto the orthogonal hyperplane v⊥ = {x ∈ Rn : xTv = 0}. From the remarks
in the previous chapter, this implies that 2Pv − I is the matrix that reflects across the line v
and 2(I−Pv)− I = I−2Pv = Hv is the matrix that reflects across the hyperplane v⊥. Since
P 2
v = Pv and P Tv = Pv, we find that

H−1v = Hv and HT
v = Hv.

In particular, Hv is an orthogonal matrix.

The key trick of the Householder algorithm is that Hva = r for any a, r satisfying ‖a‖ = ‖r‖
and a− r = v. Picture:

Here is the algorithm.

Householder QR. We are given an invertible matrix A with first column a ∈ Rn.

• Let r := (‖a‖, 0, . . . , 0), v := a− r and H1 := Hv, so that H1a = r. Then we have

H1A =
(
H1a ∗ · · · ∗

)
=
(

r ∗ · · · ∗
)

=


‖a‖ ∗ · · · ∗

0
...
0

A′

 ,

for some matrix A′ of size (n− 1)× (n− 1).
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• Let a′ ∈ Rn−1 be the first column of A′, let r′ = (‖a′‖, 0, . . . , 0) ∈ Rn−1 and let v′ =
a′ − r′, so that Hv′a

′ = r′. Then the matrix

H2 :=


1 0 · · · 0

0
...
0

Hv′

 ,

satisfies

H2H1A =


1 0 · · · 0

0
...
0

Hv′



‖a‖ ∗ · · · ∗

0
...
0

A′



=


‖a‖ ∗ · · · ∗

0
...
0

H2A
′



=



‖a‖ ∗ ∗ · · · ∗

0 ‖a′‖ ∗ · · · ∗

0
...
0

0
...
0

A′′


,

for some matrix A′′ of size (n− 2)× (n− 2). We observe that the matrix H2 is itself a

Householder reflection matrix. To see this, let w =
(

0 (v′)T
)T

, so that ‖w‖ = ‖v′‖.
Then we have

Hw = I − 2
wwT

‖w‖

= I − 2

‖v′‖

(
0

v′

)(
0 (v′)T

)

=


1 0 · · · 0

0
...
0

In−1

−


0 0 · · · 0

0
...
0

−2v′(v′)T

‖v′‖


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=


1 0 · · · 0

0
...
0

In−1 − 2v′(v′)T

‖v′‖



=


1 0 · · · 0

0
...
0

Hv′


= H2.

• Continuing in this way for n− 1 steps gives an upper triangular matrix:

Hn−1 · · ·H2H1A =



‖a‖ ∗ · · · · · · ∗

‖a′‖
...

. . .
...

‖a(n−1)‖ ∗
b

 = R,

where each Hi is a Householder matrix Hvi for some vector vi ∈ R. Note that the
diagonal entries of R are nonzero since we have assumed that A is invertible. The real
number b can be positive or negative.

• Finally, since each Householder reflection is equal to its own inverse, we obtain

Hn−1 · · ·H2H1A = R

A = H1H2 · · ·Hn−1R

A = QR.

As a consequence, we will prove that every real orthogonal matrix is a composition of reflec-
tions. Suppose that ATA = I and consider the Householder factorization

Hn−1 · · ·H2H1A = R.

Now each matrix on the left is orthogonal. Since a product of orthogonal matrices is orthog-
onal, we conclude that R is also orthogonal. In particular, the rows of R are orthonormal.
Since R is also upper-triangular, this implies that R is diagonal:

R =


‖a‖

‖a′‖
. . .

‖a(n−1)‖
b


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Finally, since each row of R has length 1, we conclude that

R =


1

1
. . .

1
±1


If the last entry is +1 then R = I and we obtain

A = H1H2 · · ·Hn−1I = H1H2 · · ·Hn−1,

which shows that A is a product of n − 1 reflection matrices. If the last entry of R is −1,
then Hn := R equals the Householder matrix Hen , where en = (0, . . . , 0, 1). In this case we
see that A is a product of n reflection matrices:

A = H1H2 · · ·Hn−1R = H1H2 · · ·Hn−1Hn.

Remark: There is some restriction on n. Since each reflection matrix has determinant −1, a
product of n reflection matrices has determinant (−1)n. Hence an orthogonal matrix A satis-
fying det(A) = +1 can only be expressed as an even product of reflections and an orthogonal
matrix satisfying det(A) = −1 can only be expressed as an odd product of reflections.

2.2 Schur Triangularization

Given a square matrix A, we always want to find a simpler matrix B that is similar to
A. That is, we want to find a simpler matrix B and an invertible matrix X such that
A = XBX−1. Then for any polynomial function f(x) (more generally, for power series or
Laurent polynomials) we can compute

f(A) = X · f(B) ·X−1.

The nicest possible situation is when B is diagonal and X is orthogonal or unitary: X−1 =
XT or X−1 = X∗. This is the subject of the Spectral Theorem in the next section. But
diagonalization is not always possible. There are three different theorems for dealing with
non-diagonalizable matrices:

• Schur triangularization.

• Jordan normal form.

• Singular value decomposition.

We will deal with all three of these in this chapter. We begin with Schur triangularization.
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We say that a matrix is upper-triangular if all entries below the main diagonal are zero:31

T =


t11 ∗ · · · ∗

t22
...

. . . ∗
tnn


These matrices have some nice properties:

• The eigenvalues of T are the diagonal entries. Indeed, the characteristic polynomial is

χT (x) = (x− t11)(x− t22) · · · (x− tnn).

• Products and sums of upper-triangular matrices behave as products and sums for the
diagonal entries. Thus for any polynomial f(x) we have

f(T ) =


f(t11) ∗ · · · ∗

f(t22)
...

. . . ∗
f(tnn)


Unfortunately, the entries above the diagonal are messy.

• If T is invertible then T−1 is also upper-triangular, and the previous formula also applies
for Laurent polynomials f(x).

• If the largest eigenvalue satisfies |λ| < 1 then one can show that T k → O as k → ∞,
though the proof is a bit tricky.32

Here is our main theorem.

Theorem (Schur Triangularization). For any square matrix A over R or C, there exists
an upper-triangular matrix T and a unitary matrix U−1 = U∗ such that

A = UTU−1

A = UTU∗

(
a1 · · · an

)
=
(

u1 . . . un
)

t11 ∗ · · · ∗

t22
...

. . . ∗
tnn




u∗1

...

u∗n

 .

Even if A is real, the matrices U and T will generally have complex entries. However, if A is
a real matrix with real eigenvalues then we can choose U and T to be real.

31Similarly, a lower-triangular matrix has zeros above the main diagonal.
32This is easy for diagonalizable matrices.

44



Proof. We use induction on the size of A. First we note that the theorem is trivially true for
1× 1 matrices, i.e., for scalars: : (a) = (1)(a)(1). Now let A have shape n×n for some n ≥ 2.
We have seen that every real matrix has a (possibly complex) eigenvalue. Let t11 ∈ C be an
eigenvalue of A and let u1 be a corresponding eigenvector of length 1.33 Now let U1 be any
unitary matrix with first column u1:

U1 =
(

u1 · · · un
)
.

To find such a matrix, we first complete u1 to a basis, u1,x2, . . . ,xn, then apply Gram-Schmidt
to convert this into an orthonormal basis u1,u2, . . . ,un.34 Since these vectors satisfy u∗1u1 = 1
and u∗iu1 = 0 for i ≥ 2, we observe that

U∗1AU1 =


u∗1

...

u∗n

( Au1 Au2 · · · Aun
)

=


u∗1

...

u∗n

( t11u1 Au2 · · · Aun
)

=


t11u

∗
1u1

t11u
∗
2u1

...
t11u

∗
nu1

∗ · · · ∗



=


t11 ∗ · · · ∗

0
...
0

A2

 ,

for some matrix A2 of shape (n− 1)× (n− 1). By induction there exists an (n− 1)× (n− 1)
unitary matrix U2 such that T2 := U∗2A2U2 is upper-triangular. Now define the matrix

U := U1


1 0 · · · 0

0
...
0

U2

 .

33Just take any eigenvector and scale it. If t11 is real and if A has real entries then we can choose u1 to have
real entries, in which case we can choose U1 to have real entries.

34Any set of independent vectors can be completed to a basis using Steinitz exchange.
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We observe that this matrix is unitary:

U∗U =


1 0 · · · 0

0
...
0

U∗2

U∗1U1


1 0 · · · 0

0
...
0

U2



=


1 0 · · · 0

0
...
0

U∗2




1 0 · · · 0

0
...
0

U2



=


1 0 · · · 0

0
...
0

U∗2U2



=


1 0 · · · 0

0
...
0

In−1


= In.

And we observe that the matrix T := U∗AU is upper triangular, as desired:

T = U∗AU

=


1 0 · · · 0

0
...
0

U∗2

U∗1AU1


1 0 · · · 0

0
...
0

U2



=


1 0 · · · 0

0
...
0

U∗2




t11 ∗ · · · ∗

0
...
0

A2




1 0 · · · 0

0
...
0

U2



=


t11 ∗ · · · ∗

0
...
0

U∗2A2U2


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=


t11 ∗ · · · ∗

0
...
0

T2

 .

�

Before moving on, I will mention one application. If A = XTX−1 for some (upper or lower)
triangular matrix T , then the eigenvalues of A are the diagonal entries of T . One could
imagine using this to compute the eigenvalues of A. Unfortunately, the proof of Schur
triangularization assumes that we already know the eigenvalues of A.

Nevertheless, this is still the good idea, and it is behind the most powerful algorithm for
computing eigenvalues. This algorithm uses the QR factorization (which does not assume
knowledge of the eigenvalues) in a surprising way to recursively approximate the Schur de-
composition, and hence the eigenvalues. It was discovered in the late 1950s by Francis and
Kublanovskaya. I will present only the most basic version. The real world version uses extra
tricks and optimizations.

The QR Algorithm for Computing Eigenvalues. Given a square matrix A, we recur-
sively define unitary matrices Q1, Q2, . . . and upper-triangular matrices R1, R2, . . . as follows:

• Compute a QR factorization: A = Q1R1.

• Next, compute a QR factorization of the matrix R1Q1:
35

R1Q1 = Q2R2.

• Continue to compute Qk+1 and Rk+1 from the matrix RkQk:

RkQk = Qk+1Rk+1.

Let’s write A1 := A = Q1R1 and Ak := QkRk. Since the Q in the QR factorization is unitary,
we have Rk = Q∗kAk and hence

Ak+1 = RkQk = Q∗kAkQk.

This implies that the sequence of matrices A = A1, A2, . . . all have the same eigenvalues. The
theorem says the following.

Theorem. Suppose that A has eigenvalues with distinct absolute values:36

|λ1| > |λ2| > · · · > |λn|.
35This is a strange idea, but it leads to great results.
36There are modified versions of the algorithm that work for all square matrices.
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Then the matrix Ak = RkQk in the QR algorithm converges to an upper triangular matrix,
whose diagonal entries are the eigenvalues of A.

It is difficult to find a proof of this written down.37 The only full proof I can find is in
Wilkinson, The Algebraic Eigenvalue Problem (1965), page 516. Here is a sketch.

Sketch of a Proof. Define Q̃k := Q1Q2 · · ·Qk and R̃k = R1R2 · · ·Rk. Since the sets of
unitary matrices and upper triangular matrices are closed under multiplication,38 we see that
Q̃k is unitary and R̃k is upper triangular. I claim that Ak+1 = Q̃∗kAQ̃k and Ak = Q̃kR̃k.
Indeed, we have

Ak+1 = Q∗kAkQk

= Q∗kQ
∗
k−1Ak−1Qk−1Qk

...

= Q∗k · · ·Q∗2Q∗1AQ1Q2 · · ·Qk
= (Q1 · · ·Qk)∗A(Q1 · · ·Qk)
= Q̃∗kAQ̃k

and

Ak = (Q1R1) · · · (Q1R1)

= Q1(R1Q1) · · · (R1Q1)R1

= Q1(Q2R2) · · · (Q2R2)R1

= Q1Q2(R2Q2) · · · (R2Q2)R2R1

= Q1Q2(Q3R3) · · · (Q3R3)R2R1

...

= (Q1Q2 · · ·Qk)(Rk · · ·R2R1)

= Q̃kR̃k.

From our assumption that A has distinct eigenvalues, we can diagonalize A as

A = XΛX−1 = X

λ1 . . .

λn

X−1.

By multiplying X−1 on the left by elementary matrices we can write X−1 = LΓ where Γ is
upper triangular and L is lower triangular with 1s on the diagonal. The key to the whole
proof is to observe that ΛkLΛ−k is lower triangular and converges to the identity matrix as

37Pure math books tend not to discuss it and applied math books tend not to prove it.
38Jargon: These sets are groups.
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k →∞. Indeed, if `ij is the ij entry of L (so that `ii = 1 and `ij = 0 when i < j) then the ij
entry of ΛkLΛ−k is

(ΛkLΛ−k)ij =


0 i < j,

1 i = j,

`ij(λi/λj)
k i > j.

Since we have assumed that |λ1| > · · · > |λn|, it follows that the entries below the diagonal
go to zero as k →∞.

By combining these ingredients, Wilkinson shows that the sequences Q̃k and R̃k converge, and
that the the sequence Qk converges to a diagonal matrix, hence Ak = QkRk converges to an
upper triangular matrix. Let’s say Q̃k → U and Ak → T , for unitary U and upper triangular
T . Then in the limit we obtain the Schur triangularization:

A = Q̃kAk+1Q̃
∗
k → UTU∗.

�

Remark: The proof uses the fact QR factorization is unique up to multiplication with a
unitary diagonal matrix D: QR = (QD)(D−1R). This follows from the the fact that any
unitary upper triangular matrix must be diagonal.

2.3 The Spectral Theorem

Write a section on normal matrices in the previous chapter
The spectral theorem deals with the best kinds of matrices.
We’ve looked at polynomials and power series. What about transpose and conjugate

transpose?
Normal matrices. (Maybe do this in a separate section?)

2.4 The Singular Value Decomposition

A form of “generalized diagonalization” that applies to rectangular matrices and non-diagonalizable
square matrices.

For any m× n matrix A and n×m matrix B, the square matrices AB (m×m) and BA
(n × n) have the same nonzero eigenvalues. If m < n then the matrix BA has n −m extra
zero eigenvalues compared to AB.

For any m × n matrix A, the eigenvalues of ATA are real and non-negative: λ1 ≥ · · · ≥
λn ≥ 0. The singular values of A are the non-negative real square roots of the eigenvalues:
σi =

√
λi. Equivalently, σ21, . . . , σ

2
n are the eigenvalues of ATA.

Properties: The largest singular value σ1 is the operator norm ‖A‖. The product of the
singular values is

√
det(ATA).

Let Σ be the n × n diagonal matrix of singular values, so Λ = Σ2 = ΣTΣ = ΣΣT is the
diagonal matrix of eigenvalues. From the spectral theorem there exists a unitary (orthogonal)
matrix V such that ATA = V ΛV T = V ΣΣTV T = (V Σ)(V Σ)T . The columns vi of V are the
eigenvectors of ATA.

49



Suppose that ATA has rank r, which is also the rank of A and AAT , so that there are r
nonzero singular values σ1 ≥ · · · ≥ σr. From our first remark, ATA and AAT have the same
non-zero eigenvalues. Define ui = (Avi)/σi for 1 ≤ i ≤ r. Then ui are the eigenvectors of AAT

corresponding to the eigenvalues σ21 ≥ · · · ≥ σ2r . Complete the ui to a basis of Rm arbitrarily
and let U the m×m unitary (orthogonal) matrix with columns ui. Then we have A = UΣV ∗.
(I guess we have to pad Σ with some zeros.) This is the singular value decomposition (SVD).

Geometry: A sends the unit ball in Rn to an ellipsoid in Rm. The singular values of A are
the radii of the ellipsoid.

Eckart-Young Theorem. Write A =
∑r

i=1 σiuiv
T
i . Then Ak =

∑k
i=1 σiuiv

T
i is the best

rank k approximation to A. That is, for any rank k matrix B we have ‖A−Ak‖ ≤ ‖A−B‖.
Application: Principal Component Analysis. (Total Least Squares.)

Maybe put all of this in a separate chapter.

2.5 Jordan Canonical Form

The companion matrix.

3 Applications of Spectral Theory

3.1 The Principal Axes Theorem

The earliest example of the Spectral Theorem goes all the way back to the birth of analytic
geometry. It was known to Descartes and Fermat in the early 1600s and was applied by Euler
in the 1700s to the mechanics of rotating bodies.39

You may have seen this theorem in school: Any polynomial equation of the form

f(x, y) = a+ bx+ cy + dx2 + exy + fy2 = 0

can be brought into standard form by a translation and a rotation. The standard forms are

parabola : y = ax2 or x = ay2,

ellipse : x2/a2 + y2/b2 = 1,

hyperbola : ±(x2/a2 − y2/b2) = 1.

The Principal Axes Theorem generalizes this to higher dimensions.

Theorem (Principal Axes Theorem). Consider a general polynomial f(x1, . . . , xn) of
degree 2 in n variables. This can be expressed as

f(x) = b+ bTx + xTBx,

39Highlights in the History of Spectral Theory, Steen.
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for some scalar b, vector b and symmetric matrix B. If B−1 exists, then we can find a change
of variables u = Qx + t, where QTQ = I is an orthogonal matrix40 and t is a (translation)
vector, such that

f(u1, . . . , un) = a+ λ1u
2
1 + λ2u

2 + · · ·+ λnu
2
n.

What if B−1 doesn’t exist?

Proof. Let u = Qx + t for some invertible matrix Q and vector t. Then we have

f(u) = f(Qx + t)

= b+ bT (Qx + t) + (Qx + t)TB(Qx + t)

= b+ bTQx + bT t + (xTQT + tT )B(Qx + t)

= b+ bTQx + bT t + xTQTBQx + xTQTBt + tTBQx + tTBt

= b+ bTQx + bT t + xTQTBQx + 2tTBQx + tTBt (∗)
= (b+ bT t + tTBt) + (bTQ+ 2tBQ)x + xTQTBQx.

Step (∗) uses the facts that BT = B and that tTBQx is a scalar, hence

tTBQx = (tTBQx)T = xTQTBT t = xTQTBx.

If B−1 exists, then we can eliminate the linear terms by taking

bTQ+ 2tBQ = 0T

2tBQ = −bTQ

tBQ = −1

2
bTQ

t = −1

2
bTQQ−1B−1

t = −1

2
bTB−1.

Finally, since B is symmetric, the Spectral Theorem says that we can choose orthogonal
QTQ = I so that QTBQ is diagonal:

Choose t so that bT + 2tTB = 0T . Assume B invertible.

3.2 Positive Definite Matrices

If 〈x, Bx〉 ≥ 0 (enough to assume ∈ R) for all x ∈ Cn then B∗ = B.
Proof: We need to show that 〈Bx,y〉 = 〈x, By〉 for all x,y. First note that 〈Bx,x〉 =

〈x, Bx〉∗ = 〈x, Bx〉, so 〈x, (B − B∗)x〉 for all x. We need to show that 〈x, Tx〉 = 0 for all x
implies T = O. Indeed, we have

0 = 〈x + y, T (x + y)〉 = 〈x, Ty〉+ 〈y, Tx〉+ 0 + 0

40If the coefficients of f are complex then Q∗Q = I is unitary, but we are usually interested in the real case.
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and
0 = 〈x + iy, T (x + iy)〉 = i〈x, Ty〉 − i〈y, Tx〉+ 0 + 0.

Divide the second equation by i and add them to obtain 2〈x, Ty〉 = 0 and hence 〈x, Ty〉 = 0
for all x,y.

In principle, our proof of the Spectral Theorem gives an algorithm to factor a semi-definite
matrix B = ATA, but is probably not the most efficient method since it assumes that we
already know the eigenvalues. The Cholesky factorization is a method to factor B = ATA
that avoids having to compute eigenvalues.

3.3 Differential Equations

The matrix exponential encodes the solution to linear systems of differential equations. To
begin, recall the power series definition of the exponential function:

exp(x) := 1 + x+
1

2
x2 + · · ·+ 1

k!
xk + · · · .

It is a basic theorem of analysis that this series converges uniformly for any complex number
x ∈ C. It was invented by Euler because of the following special properties. For any complex
numbers x, y ∈ C we have

exp(x) exp(y) =

∑
i≥0

1

i!
· xi
∑

j≥0

1

j!
· xj


=
∑
k≥0

 ∑
i+j=k

1

i!
· xi · 1

j!
· xj


=
∑
k≥0

1

k!
·

 ∑
i+j=k

k!

i!j!
xixj


=
∑
k≥0

1

k!
· (x+ y)k

= exp(x+ y).

This property suggests that exp(x) = ex for some number e, which Euler calculated to be
≈ 2.71828. Furthermore, the power series exp(x) is equal to its own derivative:

d

dx
exp(x) =

d

dx

(
1 + x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4 + · · ·

)
= 0 + 1 +

1

2!
· 2x+

1

3!
· 3x2 +

1

4!
· 4x3 + · · ·

= 0 + 1 + x+
1

2!
x2 +

1

3!
x3 + · · ·

= exp(x).
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Conversely, let f : C→ C be any function satisfying d
dxf(x) = f(x). Suppose that f(x) has a

convergent power series expansion near x = 0:

f(x) = a0 + a1x+ a2x
2 + · · · .

The equation d
dxf(x) = f(x) tells us that

a0 + a1x+ a2x
2 + · · · = a1 + 2a1x+ 3a2x

2 + · · · .

Then comparing coefficients tells us that ak = (k+ 1)ak−1 for all k ≥ 0, which has the unique
solution ak = a0/k!. Hence we must have f(x) = a0 exp(x).

Now consider a vector of functions x(t) = (x1(t), x2(t), . . . , xn(t)). We can think of this as
a parametrized path in n-dimensional space: x : R → Rn.41 A linear system of ordinary
differential equations has the form

x′1(t) = a11x1(t) + · · · + a1nxn(t)
...

x′n(t) = an1x1(t) + · · · + annxn(t)

  x′(t) = Ax(t),

for some n×n matrix A of constants. We can think of x′(t) as the velocity vector of the path
x(t), and we can think of A as specifying a vector field on Rn, with value Ax at the point x.
A solution to the equation x′(t) = Ax(t) is any path x(t) in Rn that flows along the vector
field defined by A. For any initial point x(0) ∈ Rn

The companion matrix:
https://math.stackexchange.com/questions/348498/jordan-basis-of-a-when-a-is-the-companion-matrix

3.4 Markov Chains

Perron-Frobenius, Page Rank

3.5 Singular Value Decomposition

3.6 Total Least Squares

Given a matrix of n data points in any dimensional space:

X =
(

x1 · · · xn
)

For any vector a let Pa = aaT /‖a‖2 be projection onto the line a and Qa = I − Pa be
projection onto the hyperplane a⊥. For any i we have

xi = Paxi +Qaxi

‖xi‖2 = ‖Paxi‖2 + ‖Qaxi‖2

41I guess we’ll work with real numbers to make visualization easier.
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∑
i

‖xi‖2 =
∑
‖Paxi‖2 +

∑
‖Qaxi‖2.

Goal: Choose a to minimize
∑
‖Qaxi‖2. Since

∑
i ‖xi‖2 is fixed by the data, this is the same

as maximizing
∑
‖Paxi‖2. But

‖Paxi‖2 =
1

‖a‖2
|aTxi|2 =

1

‖a‖2
aTxiaTxi =

1

‖a‖2
aTxix

T
i a,

hence ∑
‖Paxi‖2 =

1

‖a‖2
aTXXTa =

1

‖a‖2
(XTa)T (XTa) =

‖XTa‖2

‖a‖2
.

This is maximized by letting a be an eigenvector for the largest (real) eigenvalue of XXT .

Proof. By S.T., XXT can be unitarily diagonalized: XXTui = σ2i ui. Let

a = c1u1 + · · ·+ cnun,

so that
1

‖a‖2
aTXXTa =

σ21c
2
1 + · · ·+ σ2nc

2
n

c21 + · · ·+ c2n
.

Maximum when c1 = 1 and c2 = · · · = cn = 0. Maximum under constraint c1 = 0 gives c2 = 1
and c3 = · · · = cn = 0, etc.
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