1. Trace and Determinant. The characteristic polynomial of a square matrix satisfies

$$
\chi_{A}(x)=\operatorname{det}(x I-A)=x^{n}-\operatorname{tr}(A) x^{n-1}+\cdots+(-1)^{n} \operatorname{det}(A),
$$

where $\operatorname{det}(A)$ is the determinant and $\operatorname{tr}(A)$ is the trace, i.e., the sum of the diagonal entries.
(a) If $A=X B X^{-1}$ for some matrices B and X, prove that $\chi_{A}(x)=\chi_{B}(x)$. Use this to show that $\operatorname{det}(A)=\operatorname{det}(B)$ and $\operatorname{tr}(A)=\operatorname{tr}(B)$.
(b) From the Fundamental Theorem of Algebra we know that $\chi_{A}(x)$ factors as

$$
\chi_{A}(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{n}\right)
$$

for some complex numbers $\lambda_{1}, \ldots, \lambda_{n}$, not necessarily distinct. In this case, show that

$$
\operatorname{tr}(A)=\lambda_{1}+\cdots+\lambda_{n} \quad \text { and } \quad \operatorname{det}(A)=\lambda_{1} \cdots \lambda_{n} .
$$

2. Non-Real Eigenvalues of a Real Matrix. Let A be a real $n \times n$ matrix with real entries and consider the characteristic polynomial

$$
f(x)=\operatorname{det}\left(x I_{n}-A\right) .
$$

(a) For any complex number $\alpha \in \mathbb{C}$ show that $f(\alpha)^{*}=f\left(\alpha^{*}\right)$. [Hint: Actually, this holds for any polynomial $f(x)$ with real coefficients. Use properties of conjugation.]
(b) Use (a) to show that $f(\alpha)=0$ if and only if $f\left(\alpha^{*}\right)=0$.
(c) Use (b) to show that the non-real eigenvalues of A come in pairs.
(d) If n is odd, use (c) to show that A must have a real eigenvalue.
3. Idempotent Matrices. Let P be an $n \times n$ matrix satisfying $P^{2}=P$.
(a) Show that the eigenvalues of P are in the set $\{0,1\}$.
(b) You may assume without proof that P is diagonalizable, ${ }^{1}$ with eigenbasis $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$. Without loss of generality we can order the eigenvectors so that $P \mathbf{x}_{i}=1 \mathbf{x}_{i}$ for $1 \leq i \leq r$ and $P \mathbf{x}_{i}=0 \mathbf{x}_{i}$ for $r<i \leq n$. If $X=\left(\mathbf{x}_{1}|\cdots| \mathbf{x}_{n}\right)$ then we have

$$
A=X\left(\begin{array}{c|c}
I_{r} & O_{r, n-r} \\
\hline O_{n-r, r} & O_{n-r, n-r}
\end{array}\right) X^{-1} .
$$

Use this to prove that $P=A B^{T}$ for some $n \times r$ matrices A, B satisfying $B^{T} A=I_{r}$. [Hint: Let A be the first r columns of X and let B^{T} be the first r rows of X^{-1}.]
4. Normal Operators. Let V be a Hilbert space and let $A: V \rightarrow V$ be a continuous operator satisfying $A^{*} A=A A^{*}$. (If V is finite dimensional then we can view A^{*} as the conjugate transpose matrix.)
(a) Prove that $\langle A \mathbf{x}, A \mathbf{y}\rangle=\left\langle A^{*} \mathbf{x}, A^{*} \mathbf{y}\right\rangle$ for all $\mathbf{x}, \mathbf{y} \in V$.
(b) For all $\mathbf{x} \in V$ show that $A \mathbf{x}=\mathbf{0}$ if and only if $A^{*} \mathbf{x}=\mathbf{0}$. [Hint: Apply (a) with $\mathbf{x}=\mathbf{y}$.]
(c) Use (b) to show that $A \mathbf{x}=\lambda \mathbf{x}$ implies $A^{*} \mathbf{x}=\lambda^{*} \mathbf{x}$. [Hint: Consider the matrix $B=A-\lambda I$. Show that $B^{*} B=B B^{*}$ and then use part (b).]
(d) Suppose we have $A \mathbf{x}=\lambda \mathbf{x}$ and $A \mathbf{y}=\mu \mathbf{y}$ with $\lambda \neq \mu$. In this case, use part (c) to prove that $\langle\mathbf{x}, \mathbf{y}\rangle=0$. [Hint: Show that $\lambda\langle\mathbf{x}, \mathbf{y}\rangle=\mu\langle\mathbf{x}, \mathbf{y}\rangle$.]

[^0]5. Euler's Rotation Theorem. To be announced.
6. Gram-Schmidt Orthogonalization (Optional). Let V be an inner product space, possibly infinite dimensional. Given a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \in V$, we can create an orthonormal basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots \in V$ by the following recursive procedure:

- Let $\mathbf{u}_{1}:=\mathbf{v}_{1}$.
- For all $k \geq 1$, let $\mathbf{u}_{k+1}:=\mathbf{v}_{k+1}-P_{k}\left(\mathbf{v}_{k+1}\right)$, where $P_{k}: V \rightarrow V$ is the projection onto the subspace $U_{k} \subseteq V$ spanned by $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$.
(a) The projection map $P_{k}: V \rightarrow V$ is defined by

$$
P_{k}(\mathbf{v})=\sum_{i=1}^{k} \frac{\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle} \mathbf{u}_{i} .
$$

Use this to show that \mathbf{u}_{k+1} is orthogonal to each of the vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$.
(b) Prove by induction that $\operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ for all $k \geq 1$.
(c) Legendre Polynomials. Consider the Hilbert space $L^{2}[-1,1]$ with inner product

$$
\langle f(x), g(x)\rangle=\int_{-1}^{1} f(x) g(x) d x .
$$

Let $f_{0}(x), f_{1}(x), f_{2}(x), \ldots$ be the orthogonal basis obtained via the Gram-Schmidt process from the non-orthogonal basis $1, x, x^{2}, \ldots{ }^{2}$ Compute the first four polynomials:

$$
f_{0}(x), f_{1}(x), f_{2}(x), f_{3}(x) .
$$

These polynomials arise in the study of the hydrogen atom.

[^1]
[^0]: ${ }^{1}$ This follows from the fact that P satisfies the polynomial $f(x)=x(x-1)$, which has distinct roots.

[^1]: ${ }^{2}$ I started with index 0 instead of 1 so the polynomial $f_{k}(x)$ has degree k.

