1. Trace and Determinant. The characteristic polynomial of a square matrix satisfies

 $\chi_A(x) = \det(xI - A) = x^n - \operatorname{tr}(A)x^{n-1} + \dots + (-1)^n \det(A),$

where det(A) is the determinant and tr(A) is the trace, i.e., the sum of the diagonal entries.

- (a) If $A = XBX^{-1}$ for some matrices B and X, prove that $\chi_A(x) = \chi_B(x)$. Use this to show that $\det(A) = \det(B)$ and $\operatorname{tr}(A) = \operatorname{tr}(B)$.
- (b) From the Fundamental Theorem of Algebra we know that $\chi_A(x)$ factors as

$$\chi_A(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n)$$

for some complex numbers $\lambda_1, \ldots, \lambda_n$, not necessarily distinct. In this case, show that

$$\operatorname{tr}(A) = \lambda_1 + \dots + \lambda_n$$
 and $\operatorname{det}(A) = \lambda_1 \cdots \lambda_n$.

2. Non-Real Eigenvalues of a Real Matrix. Let A be a real $n \times n$ matrix with real entries and consider the characteristic polynomial

$$f(x) = \det(xI_n - A).$$

- (a) For any complex number $\alpha \in \mathbb{C}$ show that $f(\alpha)^* = f(\alpha^*)$. [Hint: Actually, this holds for any polynomial f(x) with real coefficients. Use properties of conjugation.]
- (b) Use (a) to show that $f(\alpha) = 0$ if and only if $f(\alpha^*) = 0$.
- (c) Use (b) to show that the non-real eigenvalues of A come in pairs.
- (d) If n is odd, use (c) to show that A must have a real eigenvalue.

3. Idempotent Matrices. Let P be an $n \times n$ matrix satisfying $P^2 = P$.

- (a) Show that the eigenvalues of P are in the set $\{0, 1\}$.
- (b) You may assume without proof that P is diagonalizable,.¹ with eigenbasis $\mathbf{x}_1, \ldots, \mathbf{x}_n$. Without loss of generality we can order the eigenvectors so that $P\mathbf{x}_i = 1\mathbf{x}_i$ for $1 \le i \le r$ and $P\mathbf{x}_i = 0\mathbf{x}_i$ for $r < i \le n$. If $X = (\mathbf{x}_1 | \cdots | \mathbf{x}_n)$ then we have

$$A = X \left(\frac{I_r \mid O_{r,n-r}}{O_{n-r,r} \mid O_{n-r,n-r}} \right) X^{-1}.$$

Use this to prove that $P = AB^T$ for some $n \times r$ matrices A, B satisfying $B^T A = I_r$. [Hint: Let A be the first r columns of X and let B^T be the first r rows of X^{-1} .]

4. Normal Operators. Let V be a Hilbert space and let $A : V \to V$ be a continuous operator satisfying $A^*A = AA^*$. (If V is finite dimensional then we can view A^* as the conjugate transpose matrix.)

- (a) Prove that $\langle A\mathbf{x}, A\mathbf{y} \rangle = \langle A^*\mathbf{x}, A^*\mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in V$.
- (b) For all $\mathbf{x} \in V$ show that $A\mathbf{x} = \mathbf{0}$ if and only if $A^*\mathbf{x} = \mathbf{0}$. [Hint: Apply (a) with $\mathbf{x} = \mathbf{y}$.]
- (c) Use (b) to show that $A\mathbf{x} = \lambda \mathbf{x}$ implies $A^*\mathbf{x} = \lambda^*\mathbf{x}$. [Hint: Consider the matrix $B = A \lambda I$. Show that $B^*B = BB^*$ and then use part (b).]
- (d) Suppose we have $A\mathbf{x} = \lambda \mathbf{x}$ and $A\mathbf{y} = \mu \mathbf{y}$ with $\lambda \neq \mu$. In this case, use part (c) to prove that $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. [Hint: Show that $\lambda \langle \mathbf{x}, \mathbf{y} \rangle = \mu \langle \mathbf{x}, \mathbf{y} \rangle$.]

¹This follows from the fact that P satisfies the polynomial f(x) = x(x-1), which has distinct roots.

5. Euler's Rotation Theorem. To be announced.

6. Gram-Schmidt Orthogonalization (Optional). Let V be an inner product space, possibly infinite dimensional. Given a basis $\mathbf{v}_1, \mathbf{v}_2, \ldots \in V$, we can create an orthonormal basis $\mathbf{u}_1, \mathbf{u}_2, \ldots \in V$ by the following recursive procedure:

- Let $\mathbf{u}_1 := \mathbf{v}_1$.
- For all $k \ge 1$, let $\mathbf{u}_{k+1} := \mathbf{v}_{k+1} P_k(\mathbf{v}_{k+1})$, where $P_k : V \to V$ is the projection onto the subspace $U_k \subseteq V$ spanned by $\mathbf{u}_1, \ldots, \mathbf{u}_k$.
- (a) The projection map $P_k: V \to V$ is defined by

$$P_k(\mathbf{v}) = \sum_{i=1}^k \frac{\langle \mathbf{u}_i, \mathbf{v} \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i.$$

Use this to show that \mathbf{u}_{k+1} is orthogonal to each of the vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$.

- (b) Prove by induction that $\operatorname{span}\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}=\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ for all $k \ge 1$.
- (c) Legendre Polynomials. Consider the Hilbert space $L^2[-1,1]$ with inner product

$$\langle f(x), g(x) \rangle = \int_{-1}^{1} f(x)g(x) \, dx.$$

Let $f_0(x), f_1(x), f_2(x), \ldots$ be the orthogonal basis obtained via the Gram-Schmidt process from the non-orthogonal basis $1, x, x^2, \ldots^2$ Compute the first four polynomials:

$$f_0(x), f_1(x), f_2(x), f_3(x).$$

These polynomials arise in the study of the hydrogen atom.

²I started with index 0 instead of 1 so the polynomial $f_k(x)$ has degree k.