
Math 510 Fall 2022
Homework 5 Drew Armstrong

1. Trace and Determinant. The characteristic polynomial of a square matrix satisfies

χA(x) = det(xI −A) = xn − tr(A)xn−1 + · · ·+ (−1)ndet(A),

where det(A) is the determinant and tr(A) is the trace, i.e., the sum of the diagonal entries.

(a) If A = XBX−1 for some matrices B and X, prove that χA(x) = χB(x). Use this to
show that det(A) = det(B) and tr(A) = tr(B).

(b) From the Fundamental Theorem of Algebra we know that χA(x) factors as

χA(x) = (x− λ1)(x− λ2) · · · (x− λn)

for some complex numbers λ1, . . . , λn, not necessarily distinct. In this case, show that

tr(A) = λ1 + · · ·+ λn and det(A) = λ1 · · ·λn.

2. Non-Real Eigenvalues of a Real Matrix. Let A be a real n × n matrix with real
entries and consider the characteristic polynomial

f(x) = det(xIn −A).

(a) For any complex number α ∈ C show that f(α)∗ = f(α∗). [Hint: Actually, this holds
for any polynomial f(x) with real coefficients. Use properties of conjugation.]

(b) Use (a) to show that f(α) = 0 if and only if f(α∗) = 0.
(c) Use (b) to show that the non-real eigenvalues of A come in pairs.
(d) If n is odd, use (c) to show that A must have a real eigenvalue.

3. Idempotent Matrices. Let P be an n× n matrix satisfying P 2 = P .

(a) Show that the eigenvalues of P are in the set {0, 1}.
(b) You may assume without proof that P is diagonalizable,.1 with eigenbasis x1, . . . ,xn.

Without loss of generality we can order the eigenvectors so that Pxi = 1xi for 1 ≤ i ≤ r
and Pxi = 0xi for r < i ≤ n. If X =

(
x1 · · · xn

)
then we have

A = X

(
Ir Or,n−r

On−r,r On−r,n−r

)
X−1.

Use this to prove that P = ABT for some n × r matrices A,B satisfying BTA = Ir.
[Hint: Let A be the first r columns of X and let BT be the first r rows of X−1.]

4. Normal Operators. Let V be a Hilbert space and let A : V → V be a continuous
operator satisfying A∗A = AA∗. (If V is finite dimensional then we can view A∗ as the
conjugate transpose matrix.)

(a) Prove that 〈Ax, Ay〉 = 〈A∗x, A∗y〉 for all x,y ∈ V .
(b) For all x ∈ V show that Ax = 0 if and only if A∗x = 0. [Hint: Apply (a) with x = y.]
(c) Use (b) to show that Ax = λx implies A∗x = λ∗x. [Hint: Consider the matrix

B = A− λI. Show that B∗B = BB∗ and then use part (b).]
(d) Suppose we have Ax = λx and Ay = µy with λ 6= µ. In this case, use part (c) to

prove that 〈x,y〉 = 0. [Hint: Show that λ〈x,y〉 = µ〈x,y〉.]

1This follows from the fact that P satisfies the polynomial f(x) = x(x− 1), which has distinct roots.



5. Euler’s Rotation Theorem. To be announced.

6. Gram-Schmidt Orthogonalization (Optional). Let V be an inner product space,
possibly infinite dimensional. Given a basis v1,v2, . . . ∈ V , we can create an orthonormal
basis u1,u2, . . . ∈ V by the following recursive procedure:

• Let u1 := v1.
• For all k ≥ 1, let uk+1 := vk+1 − Pk(vk+1), where Pk : V → V is the projection onto

the subspace Uk ⊆ V spanned by u1, . . . ,uk.

(a) The projection map Pk : V → V is defined by

Pk(v) =

k∑
i=1

〈ui,v〉
〈ui,ui〉

ui.

Use this to show that uk+1 is orthogonal to each of the vectors u1, . . . ,uk.
(b) Prove by induction that span{u1, . . . ,uk} = span{v1, . . . ,vk} for all k ≥ 1.
(c) Legendre Polynomials. Consider the Hilbert space L2[−1, 1] with inner product

〈f(x), g(x)〉 =

∫ 1

−1
f(x)g(x) dx.

Let f0(x), f1(x), f2(x), . . . be the orthogonal basis obtained via the Gram-Schmidt pro-
cess from the non-orthogonal basis 1, x, x2, . . ..2 Compute the first four polynomials:

f0(x), f1(x), f2(x), f3(x).

These polynomials arise in the study of the hydrogen atom.

2I started with index 0 instead of 1 so the polynomial fk(x) has degree k.


