1. Alternating k-Forms. Let $\varphi:\left(\mathbb{R}^{n}\right)^{k} \rightarrow \mathbb{R}$ be any alternating k-form. We will write

$$
\varphi\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}\right)=\varphi(A)
$$

where A is the $n \times k$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in \mathbb{R}^{n}$.
(a) If A has a repeated column, prove that $\varphi(A)=0$. [Hint: Without loss of generality, you can assume that $\mathbf{a}_{1}=\mathbf{a}_{2}$. By assumption we have $\varphi\left(A^{\prime}\right)=-\varphi(A)$ where A^{\prime} is obtained from A by swapping the first two columns.]
(b) If the columns of A are not independent, show that $\varphi(A)=0$. [Hint: Without loss of generality, suppose that $\mathbf{a}_{1}=b_{2} \mathbf{a}_{2}+\cdots+b_{n} \mathbf{a}_{n}$ for some scalars $b_{2}, \ldots, b_{n} \in \mathbb{R}$. Now use part (a) and the fact that φ is linear in the first position.]
(c) If $k>n$, use part (b) to show that any alternating k-form on \mathbb{R}^{n} must be the zero form, i.e., the form that sends every $n \times k$ matrix to zero.

Remark: It follows that $\operatorname{dim} \Lambda^{k}\left(\mathbb{R}^{n}\right)=0$ for all $k>n$.
2. Volume of a k-Parallelogram in \mathbb{R}^{n}. For any k vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in \mathbb{R}^{n}$ we define
$\operatorname{Vol}_{k}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right)=k$-volume of the k-parallelogram spanned by $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ in \mathbb{R}^{n}.
If A is the $n \times k$ matrix with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k} \in \mathbb{R}^{n}$ we will also write

$$
\operatorname{Vol}_{k}(A)=\operatorname{Vol}_{k}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right) .
$$

When $k=n$, i.e., when A is square $n \times n$, we know from class that

$$
\operatorname{Vol}_{n}(A)=|\operatorname{det}(A)| .
$$

(a) If A is $n \times n$, use properties of determinants to show that $\operatorname{Vol}_{n}(A)=\sqrt{\operatorname{det}\left(A^{T} A\right)}$.
(b) Let A be 2×2 with columns $\mathbf{a}_{1}, \mathbf{a}_{2} \in \mathbb{R}^{2}$ and let θ_{12} be the angle between \mathbf{a}_{1} and \mathbf{a}_{2}. Use part (a) to show that

$$
\operatorname{Vol}_{2}(A)=\left\|\mathbf{a}_{1}\right\|\left\|\mathbf{a}_{2}\right\|\left|\sin \theta_{12}\right| .
$$

(c) Now let A be $n \times 2$ with columns $\mathbf{a}_{1}, \mathbf{a}_{2} \in \mathbb{R}^{n}$. For geometric reasons, we know that area of the 2-parallelogram spanned by \mathbf{a}_{1} and \mathbf{a}_{2} has the same formula as in part (b):

$$
\operatorname{Vol}_{2}(A)=\left\|\mathbf{a}_{1}\right\|\left\|\mathbf{a}_{2}\right\|\left|\sin \theta_{12}\right| .
$$

Use this to prove that

$$
\operatorname{Vol}_{2}(A)=\sqrt{\operatorname{det}\left(A^{T} A\right)},
$$

even though the matrix A is not square, hence $\operatorname{det}(A)$ does not exist.
(d) Now let A be 3×3 with columns $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3} \in \mathbb{R}^{3}$ and for all i, j let $\theta_{i j}$ be the angle between vectors \mathbf{a}_{i} and \mathbf{a}_{i}. Use part (a) to show that $\operatorname{Vol}_{3}(A)$ equals

$$
\left\|\mathbf{a}_{1}\right\|\left\|\mathbf{a}_{2}\right\|\left\|\mathbf{a}_{3}\right\| \sqrt{\left(1+2 \cos \theta_{12} \cos \theta_{13} \cos \theta_{23}-\left(\cos ^{2} \theta_{12}+\cos ^{2} \theta_{13}+\cos ^{2} \theta_{23}\right)\right)} .
$$

Since this formula can be expressed purely in terms of lengths and angles, it follows that $\operatorname{Vol}_{3}(A)=\sqrt{\operatorname{det}\left(A^{T} A\right)}$ for any $n \times 3$ matrix A, even though the determinant $\operatorname{det}(A)$ does not exist.

Remark: The same ideas show that $\operatorname{Vol}_{k}(A)=\sqrt{\operatorname{det}\left(A^{T} A\right)}$ for any $n \times k$ matrix A.

