1. Alternating k-Forms. Let $\varphi : (\mathbb{R}^n)^k \to \mathbb{R}$ be any alternating k-form. We will write

 $\varphi(\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k)=\varphi(A),$

where A is the $n \times k$ matrix with columns $\mathbf{a}_1, \ldots, \mathbf{a}_k \in \mathbb{R}^n$.

- (a) If A has a repeated column, prove that $\varphi(A) = 0$. [Hint: Without loss of generality, you can assume that $\mathbf{a}_1 = \mathbf{a}_2$. By assumption we have $\varphi(A') = -\varphi(A)$ where A' is obtained from A by swapping the first two columns.]
- (b) If the columns of A are not independent, show that $\varphi(A) = 0$. [Hint: Without loss of generality, suppose that $\mathbf{a}_1 = b_2 \mathbf{a}_2 + \cdots + b_n \mathbf{a}_n$ for some scalars $b_2, \ldots, b_n \in \mathbb{R}$. Now use part (a) and the fact that φ is linear in the first position.]
- (c) If k > n, use part (b) to show that any alternating k-form on \mathbb{R}^n must be the zero form, i.e., the form that sends every $n \times k$ matrix to zero.

Remark: It follows that $\dim \Lambda^k(\mathbb{R}^n) = 0$ for all k > n.

2. Volume of a k-Parallelogram in \mathbb{R}^n . For any k vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k \in \mathbb{R}^n$ we define

 $\operatorname{Vol}_k(\mathbf{a}_1,\ldots,\mathbf{a}_k) = k$ -volume of the k-parallelogram spanned by $\mathbf{a}_1,\ldots,\mathbf{a}_k$ in \mathbb{R}^n .

If A is the $n \times k$ matrix with columns $\mathbf{a}_1, \ldots, \mathbf{a}_k \in \mathbb{R}^n$ we will also write

$$\operatorname{Vol}_k(A) = \operatorname{Vol}_k(\mathbf{a}_1, \dots, \mathbf{a}_k).$$

When k = n, i.e., when A is square $n \times n$, we know from class that

$$\operatorname{Vol}_n(A) = |\det(A)|.$$

- (a) If A is $n \times n$, use properties of determinants to show that $\operatorname{Vol}_n(A) = \sqrt{\det(A^T A)}$.
- (b) Let A be 2×2 with columns $\mathbf{a}_1, \mathbf{a}_2 \in \mathbb{R}^2$ and let θ_{12} be the angle between \mathbf{a}_1 and \mathbf{a}_2 . Use part (a) to show that

$$\operatorname{Vol}_2(A) = \|\mathbf{a}_1\| \|\mathbf{a}_2\| |\sin \theta_{12}|.$$

(c) Now let A be $n \times 2$ with columns $\mathbf{a}_1, \mathbf{a}_2 \in \mathbb{R}^n$. For geometric reasons, we know that area of the 2-parallelogram spanned by \mathbf{a}_1 and \mathbf{a}_2 has the same formula as in part (b):

$$\operatorname{Vol}_{2}(A) = \|\mathbf{a}_{1}\| \|\mathbf{a}_{2}\| |\sin \theta_{12}|.$$

Use this to prove that

$$\operatorname{Vol}_2(A) = \sqrt{\det(A^T A)},$$

even though the matrix A is not square, hence det(A) does not exist.

(d) Now let A be 3×3 with columns $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \in \mathbb{R}^3$ and for all i, j let θ_{ij} be the angle between vectors \mathbf{a}_i and \mathbf{a}_i . Use part (a) to show that $\operatorname{Vol}_3(A)$ equals

 $\|\mathbf{a}_1\|\|\mathbf{a}_2\|\|\mathbf{a}_3\|\sqrt{(1+2\cos\theta_{12}\cos\theta_{13}\cos\theta_{23}-(\cos^2\theta_{12}+\cos^2\theta_{13}+\cos^2\theta_{23}))}.$

Since this formula can be expressed purely in terms of lengths and angles, it follows that $\operatorname{Vol}_3(A) = \sqrt{\det(A^T A)}$ for any $n \times 3$ matrix A, even though the determinant $\det(A)$ does not exist.

Remark: The same ideas show that $\operatorname{Vol}_k(A) = \sqrt{\det(A^T A)}$ for any $n \times k$ matrix A.