
Math 510 Fall 2022
Homework 3 Drew Armstrong

1. The Important Matrices ATA and AAT . Let A be any m × n matrix. Consider the
n× n (symmetric) matrix ATA and the m×m (symmetric) matrix AAT .

(a) Show that N(ATA) = N(A). [Hint: Use the trick formula xTATAx = ‖Ax‖2.]
(b) Use part (a) to show that

rank(ATA) = rank(A) = rank(AAT ).

[Hint: The Fundamental Theorem says that rank(A) = rank(AT ).]
(c) If A has independent columns, prove that (ATA)−1 exists. If A has independent rows,

prove that (AAT )−1 exists. [Hint: Use part (b).]

(a): Suppose that x ∈ N (A), so that Ax = 0. Then we also have

(ATA)x = AT (Ax) = ATx = 0,

so that x ∈ N (ATA). Conversely, suppose that x ∈ N (ATA), so that (ATA)x. Then we also
have

‖Ax‖2 = (Ax)T (Ax) = xTATAx = xT0 = 0.

By properties of the norm ‖ − ‖, this implies that Ax = 0 and hence x ∈ N (A).

(b): By the Rank-Nullity Theorem applied to ATA and A we have

rank(ATA) = (# columns of ATA)− dimN (ATA) Rank-Nullity

= n− dimN (ATA)

= n− dimN (A) part (a)

= (# columns of A) + dimN (A)

= rank(A). Rank-Nullity

The other equality follows by taking B = AT and applying the Fundamental Theorem:

rank(AAT ) = rank(BTB)

= rank(B) previous result

= rank(AT )

= rank(A). Fundamental Theorem

(c): Suppose that the columns of A are independent, so that rank(A) equals the number of
columns of A.1 Recall that a square matrix is invertible if and only if its rank equals the
number of columns. From part (b) we have

rank(ATA) = rank(A)

= (# columns of A),

= (# columns of ATA).

Since ATA is square this implies that (ATA)−1 exists.

1By definition, the rank is the dimension of the column space.
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2. Projection Matrices. A square matrix P is called a projection matrix when

P 2 = P and P T = P.

(a) If P is a projection matrix, show that P + (I − P ) = I and P (I − P ) = O.
(b) If P is a projection matrix, show that I − P is also a projection matrix.
(c) Let P be a projection matrix. For any vector x we define x1 = Px and x2 = (I −P )x.

Show that x = x1 + x2 and xT
1 x2 = 0. This is the geometric meaning of projection.

(d) Let A be any matrix with independent columns, so that (ATA)−1 exists. Check that
the following matrix is a projection matrix:

P = A(ATA)−1AT .

[Remark: This matrix projects onto the column space of A.]
(e) Use part (d) to find the 3 × 3 matrix that projects onto the plane x − 2y + 1z = 0.

[Hint: It is easier to find the matrix P that projects onto the orthogonal complement,
which is the line spanned by (1,−2, 1). Then the projection onto the plane is I − P .]

(a): For any square2 matrix P we have P + (I − P ) = I. If P 2 = P then we also have
P (I − P ) = P − P 2 = P − P = O.

(b): Suppose that P 2 = P and P T = P . Then we have

(I − P )2 = I2 − 2P + P 2 = I − 2P + P = I − P and (I − P )T = IT − P T = I − P.

(c): Suppose that P 2 = P and P T = P . For any x, let x1 = Px and x2 = (I −P )x. Then we
have

x1 + x2 = Px + (I − P )x = Px + x− Px = x

and
xT
1 x2 = (Px)T (I − P )x = xTP T (I − P )x = xTP (I − P )x = xTOx = 0.

(d): Let A be any matrix with independent columns, so that (ATA)−1 exists, and define

P = A(ATA)−1AT .

Then we have

P 2 = [A(ATA)−1AT ][A(ATA)−1AT ]

= A((((((((
(ATA)−1(ATA)(ATA)−1AT

= AI(ATA)−1AT

= P

and

P T = [A(ATA)−1AT ]T

= (AT )T [(ATA)−1]T (A)T

= A[(ATA)T ]−1AT

= A[AT (AT )T ]−1AT

= A(ATA)−1AT

= P.

2If P is not square then I − P makes no sense.
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(e): Let P be the 3 × 3 matrix that projects onto the plane x − 2y + 1z = 0 in R3. Then
Q = I − P is the matrix that projects onto the line spanned by (1,−2, 1). The matrix Q is
easier to compute:

Q =

 1
−2
1

 1
−2
1

(1 −2 1
)−1 (1 −2 1

)

=

 1
−2
1

 (6)−1
(
1 −2 1

)

=
1

6

 1
−2
1

(1 −2 1
)

=
1

6

 1 −2 1
−2 4 −2
1 −2 1

 .

It follows that

P = I −Q

=
1

6

6 0 0
0 6 0
0 0 6

− 1

6

 1 −2 1
−2 4 −2
1 −2 1


=

1

6

 5 2 −1
2 2 2
−1 2 5

 .

That was the quick method. On the other hand, we can choose any basis for the plane
x− 2y + 1z = 0, such as (1, 0,−1) and (0, 1, 2), and form the matrix

A =

 1 0
0 1
−1 2

 .

Then the projection onto the plane is

P = A(ATA)−1AT

=

 1 0
0 1
−1 2

(1 0 −1
0 1 2

) 1 0
0 1
−1 2

−1(1 0 −1
0 1 2

)

=

 1 0
0 1
−1 2

( 2 −2
−2 5

)−1(
1 0 −1
0 1 2

)

=

 1 0
0 1
−1 2

 1

6

(
5 2
2 2

)(
1 0 −1
0 1 2

)

=
1

6

 1 0
0 1
−1 2

(5 2 −1
2 2 2

)
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=
1

6

 5 2 −1
2 2 2
−1 2 5

 .

3. CMR Factorization. Let A be any m × n matrix of rank r. Pick any r columns of A
that form a basis for the column space and call them c1, . . . , cr ∈ Rm. Pick any r rows of A
that form a basis for the row space and call them r1, . . . , rr ∈ Rn. Define the matrices

C =

 | |
c1 · · · cr
| |

 and R =

− rT1 −
...

− rTr −

 .

(a) Prove that there exists an invertible r × r matrix M such that A = CMR. [Hint:
We know from Problem 1 that (CTC)−1 and (RRT )−1 exist. Check that M =
(CCT )−1(CTART )(RRT )−1 works.]

(b) Compute a CMR factorization for the rank 1 matrix

A =

(
2 4
3 6

)
.

(c) Compute a CMR factorization for the rank 2 matrix

A =

1 3 8
1 2 6
0 1 2

 .

[Hint: Use the first two columns and the first two rows.]

(a): Assuming that that there exists a matrix M satisfying A = CMR, it is easy to find a
formula for M . Since C has independent columns and R has independent rows by definition,
the matrices (CTC)−1 and (RRT )−1 exist, and hence

CMR = A

CT (CMR)RT = CTART

(CTC)M(RRT ) = CTART

M = (CTC)−1CTART (RRT )−1.

However, it is harder than I realized to prove that this formula for M actually satisfies A =
CMR. Let M be defined by the previous formula and consider the matrix

A′ = CMR = C(CTC)−1CTART (RRT )−1R.

Our goal is to prove that A′ = A. Notice that

A′ = PAQ,

where P = C(CTC)−1CT is the projection onto the column space C(A) andQ = RT (RRT )−1RT

is the projection onto the row space R(A). Any x ∈ Rn can be expressed as x = x1 + x2 with
x1 ∈ R(A) and x2 ∈ R(A)⊥ = N (A), in which case we haveAx = Ax1+Ax2 = Ax1+0 = Ax1.
On the other hand, since Q is the projection onto R(A) we have Qx = x1. Then since
AQx1 = Ax1 is in the column space C(A), the projection P onto the column space does
nothing:

A′x = PAQx = PAx1 = Ax1 = Ax.

Since A′x = Ax for all x ∈ Rn, we conclude that A′ = A as desired.
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It is also true that the (unique) matrix M is invertible, but at the moment I don’t see a slick
proof of this. See the course notes for an ugly proof. It is even true that M−1 consists of the
r × r submatrix of A that is the intersection of the columns of C with the rows of R.

(b): Here we can choose the first column and the first row, so that

A =

(
2 4
3 6

)
, C =

(
2
3

)
, R =

(
2 4

)
.

Then we must have

M = (CTC)−1CTART (RRT )−1

= (13)−1
(
2 3

)(2 4
3 6

)(
3
6

)
(20)−1

=
1

260

(
2 3

)(20
30

)
=

1

260
· 130

=
1

2
.

Indeed, we observe that

CMR =

(
2
3

)
1

2

(
2 4

)
=

1

2

(
4 8
6 12

)
=

(
2 4
3 6

)
= A.

(b): Here we can choose the first two columns and the first two rows, so that

A =

1 3 8
1 2 6
0 1 2

 , C =

1 3
1 2
0 1

 , R =

(
1 3 8
1 2 6

)
.

Then we must have

M = (CTC)−1CTART (RRT )−1

=

(
2 5
5 14

)−1(
1 1 0
3 2 1

)1 3 8
1 2 6
0 1 2

1 1
3 2
8 6

(74 55
55 41

)−1

=
1

3

(
14 −5
−5 2

)(
1 1 0
3 2 1

)1 3 8
1 2 6
0 1 2

1 1
3 2
8 6

 1

9

(
41 −55
−55 74

)

=
1

27

(
14 −5
−5 2

)(
1 1 0
3 2 1

)74 55
55 41
19 14

( 41 −55
−55 74

)

=
1

27

(
14 −5
−5 2

)(
129 96
351 261

)(
41 −55
−55 74

)
=

1

27

(
14 −5
−5 2

)(
9 9
36 9

)
=

1

27

(
−54 81
27 −27

)
=

(
−2 3
1 −1

)
.
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Indeed, we observe that

CMR =

1 3
1 2
0 1

(−2 3
1 −1

)(
1 3 8
1 2 6

)

=

1 3
1 2
0 1

(1 0 2
0 1 2

)

=

1 3 8
1 2 6
0 1 2


= A.

4. Distance Between Skew Lines. Consider two lines (1, 0, 0) + s(1, 2, 1) and (1, 1, 1) +
t(1, 1, 1) living in R3.

(a) Suppose that the lines intersect, so that (1, 0, 0) + s(1, 2, 1) = (1, 1, 1) + t(1, 1, 1) for
some values of s and t. Express this as a single matrix equation:

A

(
s
t

)
= b,

(b) If the lines don’t intersect then the matrix equation in part (a) has no solution. In
this case, find the least squares solution for (s, t).

(a): Let x1 = (1, 0, 0) + s(1, 2, 1) and x2 = (1, 1, 1) + t(1, 1, 1) be general points on the two
lines. Assuming that the lines intersect, we have

x1 = x21
0
0

+ s

1
2
1

 =

1
1
1

+ t

1
1
1


s

1
2
1

− t
1

1
1

 =

1
1
1

−
1

0
0


1 −1

2 −1
1 −1

(s
t

)
=

0
1
1

 .

(b): Since the lines don’t intersect, the equation in part (a) has no solution. In this case we
multiply both sides on the left by AT to get1 −1

2 −1
1 −1

(s
t

)
=

0
1
1


(

1 2 1
−1 −1 −1

)1 −1
2 −1
1 −1

(s
t

)
=

(
1 2 1
−1 −1 −1

)0
1
1


(

6 −4
−4 3

)(
s
t

)
=

(
3
−2

)
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s
t

)
=

(
6 −4
−4 3

)−1(
3
−2

)
(
s
t

)
=

1

2

(
3 4
4 6

)(
3
−2

)
=

1

2

(
1
0

)
=

(
1/2
0

)
.

The least squares solution (s, t) = (1/2, 0) corresponds to the points

x1 = (1, 0, 0) +
1

2
(1, 2, 1) = (3/2, 1, 1/2) and x2 = (1, 1, 1) + 0(1, 1, 1) = (1, 1, 1).

5. Bilinear Forms. Given a matrix B ∈ Rn we define a function 〈−,−〉B : Rn×Rn → R by

〈x,y〉B := xTBy.

Remark: If I is the identity matrix then 〈x,y〉I is just the dot product on Rn.

(a) Show that this function is bilinear.
(b) Let e1, . . . , en ∈ Rn be the standard basis. In this case show that

〈ei, ej〉B = (ij entry of B).

(c) For any two n× n matrices B and C, show that

B = C ⇐⇒ 〈x,y〉B = 〈x,y〉C for all x,y ∈ Rn.

[Hint: One direction uses part (b).]
(d) Symmetric. Show that B = BT if and only if 〈x,y〉B = 〈y,x〉B for all x,y ∈ Rn.
(e) Semi-Definite. If B = ATA for some rectangular A ∈ Rm×n, show that

〈x,x〉B ≥ 0 for all x ∈ Rn.

(f) Definite. If B = ATA for some A with independent columns, show that

〈x,x〉B = 0 ⇐⇒ x = 0.

[Hint for parts (e) and (f): Use the trick formula 〈x,x〉B = ‖Ax‖2.]

(a): For all linear combinations
∑
aixi we have〈∑

aixi,y
〉
B

=
(∑

aixi

)T
By =

(∑
aix

T
i

)
By =

∑
aix

T
i By =

∑
ai〈xi,y〉B.

And for all linear combinations
∑
biyi we have〈

x,
∑

aibi

〉
B

= xTB
(∑

aiyi

)
=
∑

aix
TByi =

∑
ai〈x,yi〉B.

(b): For any basis vectors ei, ej ∈ Rn we have

〈ei, ej〉B = eTi Bej

=
(
0 · · · 1 · · · 0

)b11 · · · b1n
...

...
bn1 · · · bnn




0
...
1
...
0


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=
(
0 · · · 0 1 0 · · · 0

)b1j...
bnj


= bij .

(c): If B = C then we have 〈x,y〉B = xTCy = xTBy = 〈x,y〉C for all x,y〉C . Conversely,
suppose that 〈x,y〉B = 〈x,y〉C for all x,y ∈ Rn. In particular, we can take x = ei and y = ej .
Then part (b) gives

bij = 〈ei, ej〉B = 〈ei, ej〉C = cij ,

so that B = C.

(d): First suppose that BT = B. Then for all x,y ∈ Rn we have

〈x,y〉B = xTBy = xTBTy = (Bx)Ty = yT (Bx) = yTBx = 〈y,x〉B.
Conversely, suppose that 〈x,y〉B = 〈y,x〉B for all x,y ∈ Rn. In particular, we may choose
x = ei and y = ej . Then part (b) gives

bij = 〈ei, ej〉B = 〈ej , ei〉B = bji,

so that BT = B.

(e): If B = ATA then for all x ∈ Rn we have

〈x,x〉B = xTBx = xTATAx = (Ax)T (Ax) = ‖Ax‖2 ≥ 0.

(f): We have 〈0,0〉B = 0TB0 = 0 for any matrix B. Now suppose that B = ATA where A
has independent columns. From part (e) we have 〈x,x〉B = ‖Ax‖2. If 〈x,x〉B = 0 then this
implies that ‖Ax‖ = 0 and hence Ax = 0. If A has independent columns, then Ax = 0 implies
x = 0 because N (A) = {0}. Alternatively, we can use the fact that (ATA)−1 exists to get

Ax = 0

ATAx = AT0

x = (ATA)−1AT0

x = 0.

6. Orthogonal Subspaces (Optional). Let V be a Hermitian inner product space. For
any subspace U ⊆ V we define its orthogonal complement:

U⊥ := {v ∈ V : 〈u,v〉 = 0 for all u ∈ U}.
(a) Prove that U⊥ is also a subspace of V .
(b) Prove that U ∩ U⊥ = {0}.
(c) If U is finite dimensional with basis {u1, . . . ,um}, show that

v ∈ U⊥ ⇐⇒ 〈ui,v〉 = 0 for all i.

(d) If U is finite dimensional, prove that U +U⊥ = V , which means that any vector v ∈ V
can be expressed as v = v1+v2 for some v1 ∈ U and v2 ∈ U⊥. [Hint: Let {u1, . . . ,um}
be an orthonormal basis for U and define the projection function π : V → V by

π(v) =
m∑
i=1

〈ui,v〉ui.
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For any v ∈ V , use part (c) to show that v − π(v) ∈ U⊥.]
(e) Combine (b) and (d) to prove that U ⊕ U⊥ = V , which means that any vector v ∈ V

can be expressed as v = v1 + v2 for some unique v1 ∈ U and v2 ∈ U⊥.
(f) If V is finite dimensional, prove that dimU+dimU⊥ = dimV . [Hint: Let {u1, . . . ,um}

be an orthonormal basis for U and let w1, . . . ,wn be an orthonormal basis for U⊥. Use
part (e) to prove that {u1, . . . ,um,w1, . . . ,wn} is a basis for V .]

(a): For any vi ∈ U⊥ and for any u ∈ U we have 〈u,vi〉 = 0. Then for any scalars ai we have
〈u,
∑
aivi〉 =

∑
ai〈u,vi〉 =

∑
ai · 0 = 0, and hence

∑
aivi ∈ U⊥.

(b): Suppose that u ∈ U and u ∈ U⊥. By definition, this means that 〈u,u〉 = 0. Since 〈−,−〉
is an innder product, this implies that u = 0.

(c): Suppose that U is finite dimensional with basis u1, . . . ,um ∈ U . If v ∈ U⊥ then for all i
we have 〈ui,v〉 = 0 because ui ∈ U . Conversely, suppose that 〈ui,v〉 = 0 for all i. In this case
we will show that 〈u,v〉 = 0 for all u ∈ U , and hence v ∈ U⊥. Indeed, any element u ∈ U
can be expressed as u =

∑
aiui, which implies that

〈u,v〉 =
〈∑

aiui,v
〉

=
∑

ai〈ui,v〉 =
∑

ai0 = 0.

(d): Let U be finite dimensional with orthonormal basis u1, . . . ,um ∈ U .3 Our goal is to prove
that every v ∈ V can be expressed as v = v1 + v2 with v1 ∈ U and v2 ∈ U⊥. To do this, we
first consider the projection function π : V → V defined by4

π(v) =
∑
〈ui,v〉ui.

Note that π(v) is a linear combination of the basis vectors ui ∈ U , and hence π(v) ∈ U .
Furthermore, for any v ∈ V and for any basis element uj ∈ U we have

〈uj ,v − π(v)〉 = 〈uj ,v〉 − 〈uj , π(v)〉

= 〈uj ,v〉 −

〈
uj ,
∑
i

〈ui,v〉ui

〉
= 〈uj ,v〉 −

∑
i

〈ui,v〉〈uj ,ui〉

= 〈uj ,v〉 −
∑
i

〈ui,v〉δij

= 〈uj ,v〉 − 〈uj ,v〉
= 0.

It follows from part (c) that v − π(v) ∈ U⊥ for all v. Hence for all v ∈ V we can write
v = v1 + v2 with v1 := π(v) ∈ U and v2 := v − π(v) ∈ U⊥.

(e): Consider any v ∈ V . From part (d) we can write v = v1 + v2 for some v1 ∈ U and
v2 ∈ U⊥. Suppose we also have v = w1 + w2 with w1 ∈ U and w2 ∈ U⊥, so that

v1 + v2 = w1 + w2

v1 −w1 = w2 − v2.

3Any basis can be turned into an orthonormal basis via the Gram-Schmidt process.
4One can show that π is a linear function with image U and kernel U⊥, but we don’t need these facts.
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Since subspaces are closed under subtraction, we have v1−w1 ∈ U and w2−v2 ∈ U⊥. Hence
the vector v1 −w1 = w2 − v2 is in U ∩ U⊥. But from part (b) we know that U ∩ U⊥ = {0},
so we must have v1 −w1 = 0 and w2 − v2 = 0, i.e., v1 = w1 and v2 = w2.

(f): Suppose that V is finite dimensional, so that U and U⊥ are finite dimensional. Let
u1, . . . ,um be a basis for U and let w1, . . . ,wn be a basis for U⊥, so that dimU = m and
dimU⊥ = n. In this case I claim that u1, . . . ,um,w1, . . . ,wn is a basis for V , so that

dimV = m+ n = dimU + dimU⊥.

Spanning. Consider any v ∈ V . From part (d) we can write v = v1 + v2 with v1 ∈ U and
v2 ∈ U⊥. But then we can write v1 =

∑
aiui and v2 =

∑
bjwj , and hence

v =
∑

aiui +
∑

bjwj ,

for some scalars a1, . . . , am and b1, . . . , bn.

Independence. Suppose that
∑
aiui+

∑
bjwj = 0 for some scalars a1, . . . , am and b1, . . . , bn.

Here we have written 0 = u + w with u =
∑
aiui ∈ U and w =

∑
bjwj ∈ U⊥. On the other

hand, we can write 0 = 0 + 0 with 0 ∈ U and 0 ∈ U⊥. Hence from part (e)5 we must have
u = 0 and w = 0, i.e., we must have

∑
aiui = 0 and

∑
bjwj = 0. Then the independence of

the ui gives ai = 0 for all i and the independence of the wj gives bj = 0 for all j.

5Alternatively, we just prove part (e) from scratch in this case. If u + w = 0 then u = −w. Since u ∈ U
and w ∈ U⊥ this implies that u and w are in U ∩ U⊥, hence u = w = 0.


