1. The Important Matrices $A^{T} A$ and $A A^{T}$. Let A be any $m \times n$ matrix. Consider the $n \times n$ (symmetric) matrix $A^{T} A$ and the $m \times m$ (symmetric) matrix $A A^{T}$.
(a) Show that $N\left(A^{T} A\right)=N(A)$. [Hint: Use the trick formula $\mathbf{x}^{T} A^{T} A \mathbf{x}=\|A \mathbf{x}\|^{2}$.]
(b) Use part (a) to show that

$$
\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)=\operatorname{rank}\left(A A^{T}\right) .
$$

[Hint: The Fundamental Theorem says that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.]
(c) If A has independent columns, prove that $\left(A^{T} A\right)^{-1}$ exists. If A has independent rows, prove that $\left(A A^{T}\right)^{-1}$ exists. [Hint: Use part (b).]
(a): Suppose that $\mathbf{x} \in \mathcal{N}(A)$, so that $A \mathbf{x}=\mathbf{0}$. Then we also have

$$
\left(A^{T} A\right) \mathbf{x}=A^{T}(A \mathbf{x})=A^{T} \mathbf{x}=\mathbf{0}
$$

so that $\mathbf{x} \in \mathcal{N}\left(A^{T} A\right)$. Conversely, suppose that $\mathbf{x} \in \mathcal{N}\left(A^{T} A\right)$, so that $\left(A^{T} A\right) \mathbf{x}$. Then we also have

$$
\|A \mathbf{x}\|^{2}=(A \mathbf{x})^{T}(A \mathbf{x})=\mathbf{x}^{T} A^{T} A \mathbf{x}=\mathbf{x}^{T} \mathbf{0}=\mathbf{0} .
$$

By properties of the norm $\|-\|$, this implies that $A \mathbf{x}=\mathbf{0}$ and hence $\mathbf{x} \in \mathcal{N}(A)$.
(b): By the Rank-Nullity Theorem applied to $A^{T} A$ and A we have

$$
\begin{aligned}
\operatorname{rank}\left(A^{T} A\right) & =\left(\# \operatorname{columns} \text { of } A^{T} A\right)-\operatorname{dim} \mathcal{N}\left(A^{T} A\right) & & \text { Rank-Nullity } \\
& =n-\operatorname{dim} \mathcal{N}\left(A^{T} A\right) & & \text { part (a) } \\
& =n-\operatorname{dim} \mathcal{N}(A) & & \\
& =(\# \operatorname{columns} \text { of } A)+\operatorname{dim} \mathcal{N}(A) & & \text { Rank-Nullity }
\end{aligned}
$$

The other equality follows by taking $B=A^{T}$ and applying the Fundamental Theorem:

$$
\begin{array}{rlr}
\operatorname{rank}\left(A A^{T}\right) & =\operatorname{rank}\left(B^{T} B\right) & \\
& =\operatorname{rank}(B) & \\
& =\operatorname{rank}\left(A^{T}\right) & \\
& =\operatorname{rank}(A) . & \text { Fundamental Theorem }
\end{array}
$$

(c): Suppose that the columns of A are independent, so that $\operatorname{rank}(A)$ equals the number of columns of A Recall that a square matrix is invertible if and only if its rank equals the number of columns. From part (b) we have

$$
\begin{aligned}
\operatorname{rank}\left(A^{T} A\right) & =\operatorname{rank}(A) \\
& =(\# \text { columns of } A), \\
& =\left(\# \text { columns of } A^{T} A\right)
\end{aligned}
$$

Since $A^{T} A$ is square this implies that $\left(A^{T} A\right)^{-1}$ exists.

[^0]2. Projection Matrices. A square matrix P is called a projection matrix when
$$
P^{2}=P \quad \text { and } \quad P^{T}=P .
$$
(a) If P is a projection matrix, show that $P+(I-P)=I$ and $P(I-P)=O$.
(b) If P is a projection matrix, show that $I-P$ is also a projection matrix.
(c) Let P be a projection matrix. For any vector \mathbf{x} we define $\mathbf{x}_{1}=P \mathbf{x}$ and $\mathbf{x}_{2}=(I-P) \mathbf{x}$. Show that $\mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2}$ and $\mathbf{x}_{1}^{T} \mathbf{x}_{2}=0$. This is the geometric meaning of projection.
(d) Let A be any matrix with independent columns, so that $\left(A^{T} A\right)^{-1}$ exists. Check that the following matrix is a projection matrix:
$$
P=A\left(A^{T} A\right)^{-1} A^{T} .
$$
[Remark: This matrix projects onto the column space of A.]
(e) Use part (d) to find the 3×3 matrix that projects onto the plane $x-2 y+1 z=0$. [Hint: It is easier to find the matrix P that projects onto the orthogonal complement, which is the line spanned by $(1,-2,1)$. Then the projection onto the plane is $I-P$.]
(a): For any squar ${ }^{2}$ matrix P we have $P+(I-P)=I$. If $P^{2}=P$ then we also have $P(I-P)=P-P^{2}=P-P=O$.
(b): Suppose that $P^{2}=P$ and $P^{T}=P$. Then we have
$$
(I-P)^{2}=I^{2}-2 P+P^{2}=I-2 P+P=I-P \quad \text { and } \quad(I-P)^{T}=I^{T}-P^{T}=I-P .
$$
(c): Suppose that $P^{2}=P$ and $P^{T}=P$. For any \mathbf{x}, let $\mathbf{x}_{1}=P \mathbf{x}$ and $\mathbf{x}_{2}=(I-P) \mathbf{x}$. Then we have
$$
\mathbf{x}_{1}+\mathbf{x}_{2}=P \mathbf{x}+(I-P) \mathbf{x}=P \mathbf{x}+\mathbf{x}-P \mathbf{x}=\mathbf{x}
$$
and
$$
\mathbf{x}_{1}^{T} \mathbf{x}_{2}=(P \mathbf{x})^{T}(I-P) \mathbf{x}=\mathbf{x}^{T} P^{T}(I-P) \mathbf{x}=\mathbf{x}^{T} P(I-P) \mathbf{x}=\mathbf{x}^{T} O \mathbf{x}=0 .
$$
(d): Let A be any matrix with independent columns, so that $\left(A^{T} A\right)^{-1}$ exists, and define
$$
P=A\left(A^{T} A\right)^{-1} A^{T} .
$$

Then we have

$$
\begin{aligned}
P^{2} & =\left[A\left(A^{T} A\right)^{-1} A^{T}\right]\left[A\left(A^{T} A\right)^{-1} A^{T}\right] \\
& =A\left(A^{T} A\right)^{-1}\left(A^{T} A\right)\left(A^{T} A\right)^{-1} A^{T} \\
& =A I\left(A^{T} A\right)^{-1} A^{T} \\
& =P
\end{aligned}
$$

and

$$
\begin{aligned}
P^{T} & =\left[A\left(A^{T} A\right)^{-1} A^{T}\right]^{T} \\
& =\left(A^{T}\right)^{T}\left[\left(A^{T} A\right)^{-1}\right]^{T}(A)^{T} \\
& =A\left[\left(A^{T} A\right)^{T}\right]^{-1} A^{T} \\
& =A\left[A^{T}\left(A^{T}\right)^{T}\right]^{-1} A^{T} \\
& =A\left(A^{T} A\right)^{-1} A^{T} \\
& =P .
\end{aligned}
$$

[^1](e): Let P be the 3×3 matrix that projects onto the plane $x-2 y+1 z=0$ in \mathbb{R}^{3}. Then $Q=I-P$ is the matrix that projects onto the line spanned by $(1,-2,1)$. The matrix Q is easier to compute:
\[

$$
\begin{aligned}
Q & =\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)\left(\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)\left(\begin{array}{lll}
1 & -2 & 1
\end{array}\right)\right)^{-1}\left(\begin{array}{lll}
1 & -2 & 1
\end{array}\right) \\
& =\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)(6)^{-1}\left(\begin{array}{lll}
1 & -2 & 1
\end{array}\right) \\
& =\frac{1}{6}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)\left(\begin{array}{lll}
1 & -2 & 1
\end{array}\right) \\
& =\frac{1}{6}\left(\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{array}\right)
\end{aligned}
$$
\]

It follows that

$$
\begin{aligned}
P & =I-Q \\
& =\frac{1}{6}\left(\begin{array}{lll}
6 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right)-\frac{1}{6}\left(\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{array}\right) \\
& =\frac{1}{6}\left(\begin{array}{ccc}
5 & 2 & -1 \\
2 & 2 & 2 \\
-1 & 2 & 5
\end{array}\right) .
\end{aligned}
$$

That was the quick method. On the other hand, we can choose any basis for the plane $x-2 y+1 z=0$, such as $(1,0,-1)$ and $(0,1,2)$, and form the matrix

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 2
\end{array}\right)
$$

Then the projection onto the plane is

$$
\begin{aligned}
P & =A\left(A^{T} A\right)^{-1} A^{T} \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 2
\end{array}\right)\left[\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 2
\end{array}\right)\right]^{-1}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right)^{-1}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 2
\end{array}\right) \frac{1}{6}\left(\begin{array}{cc}
5 & 2 \\
2 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right) \\
& =\frac{1}{6}\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ccc}
5 & 2 & -1 \\
2 & 2 & 2
\end{array}\right)
\end{aligned}
$$

$$
=\frac{1}{6}\left(\begin{array}{ccc}
5 & 2 & -1 \\
2 & 2 & 2 \\
-1 & 2 & 5
\end{array}\right) .
$$

3. CMR Factorization. Let A be any $m \times n$ matrix of rank r. Pick any r columns of A that form a basis for the column space and call them $\mathbf{c}_{1}, \ldots, \mathbf{c}_{r} \in \mathbb{R}^{m}$. Pick any r rows of A that form a basis for the row space and call them $\mathbf{r}_{1}, \ldots, \mathbf{r}_{r} \in \mathbb{R}^{n}$. Define the matrices

$$
C=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{c}_{1} & \cdots & \mathbf{c}_{r} \\
\mid & & \mid
\end{array}\right) \quad \text { and } \quad R=\left(\begin{array}{ccc}
- & \mathbf{r}_{1}^{T} & - \\
& \vdots & \\
- & \mathbf{r}_{r}^{T} & -
\end{array}\right)
$$

(a) Prove that there exists an invertible $r \times r$ matrix M such that $A=C M R$. [Hint: We know from Problem 1 that $\left(C^{T} C\right)^{-1}$ and $\left(R R^{T}\right)^{-1}$ exist. Check that $M=$ $\left(C C^{T}\right)^{-1}\left(C^{T} A R^{T}\right)\left(R R^{T}\right)^{-1}$ works.]
(b) Compute a $C M R$ factorization for the rank 1 matrix

$$
A=\left(\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right)
$$

(c) Compute a $C M R$ factorization for the rank 2 matrix

$$
A=\left(\begin{array}{lll}
1 & 3 & 8 \\
1 & 2 & 6 \\
0 & 1 & 2
\end{array}\right)
$$

[Hint: Use the first two columns and the first two rows.]
(a): Assuming that that there exists a matrix M satisfying $A=C M R$, it is easy to find a formula for M. Since C has independent columns and R has independent rows by definition, the matrices $\left(C^{T} C\right)^{-1}$ and $\left(R R^{T}\right)^{-1}$ exist, and hence

$$
\begin{aligned}
C M R & =A \\
C^{T}(C M R) R^{T} & =C^{T} A R^{T} \\
\left(C^{T} C\right) M\left(R R^{T}\right) & =C^{T} A R^{T} \\
M & =\left(C^{T} C\right)^{-1} C^{T} A R^{T}\left(R R^{T}\right)^{-1} .
\end{aligned}
$$

However, it is harder than I realized to prove that this formula for M actually satisfies $A=$ $C M R$. Let M be defined by the previous formula and consider the matrix

$$
A^{\prime}=C M R=C\left(C^{T} C\right)^{-1} C^{T} A R^{T}\left(R R^{T}\right)^{-1} R .
$$

Our goal is to prove that $A^{\prime}=A$. Notice that

$$
A^{\prime}=P A Q,
$$

where $P=C\left(C^{T} C\right)^{-1} C^{T}$ is the projection onto the column space $\mathcal{C}(A)$ and $Q=R^{T}\left(R R^{T}\right)^{-1} R^{T}$ is the projection onto the row space $\mathcal{R}(A)$. Any $\mathbf{x} \in \mathbb{R}^{n}$ can be expressed as $\mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2}$ with $\mathbf{x}_{1} \in \mathcal{R}(A)$ and $\mathbf{x}_{2} \in \mathcal{R}(A)^{\perp}=\mathcal{N}(A)$, in which case we have $A \mathbf{x}=A \mathbf{x}_{1}+A \mathbf{x}_{2}=A \mathbf{x}_{1}+\mathbf{0}=A \mathbf{x}_{1}$. On the other hand, since Q is the projection onto $\mathcal{R}(A)$ we have $Q \mathbf{x}=\mathbf{x}_{1}$. Then since $A Q \mathbf{x}_{1}=A \mathbf{x}_{1}$ is in the column space $\mathcal{C}(A)$, the projection P onto the column space does nothing:

$$
A^{\prime} \mathbf{x}=P A Q \mathbf{x}=P A \mathbf{x}_{1}=A \mathbf{x}_{1}=A \mathbf{x}
$$

Since $A^{\prime} \mathbf{x}=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$, we conclude that $A^{\prime}=A$ as desired.

It is also true that the (unique) matrix M is invertible, but at the moment I don't see a slick proof of this. See the course notes for an ugly proof. It is even true that M^{-1} consists of the $r \times r$ submatrix of A that is the intersection of the columns of C with the rows of R.
(b): Here we can choose the first column and the first row, so that

$$
A=\left(\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right), \quad C=\binom{2}{3}, \quad R=\left(\begin{array}{ll}
2 & 4
\end{array}\right) .
$$

Then we must have

$$
\begin{aligned}
M & =\left(C^{T} C\right)^{-1} C^{T} A R^{T}\left(R R^{T}\right)^{-1} \\
& =(13)^{-1}\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right)\binom{3}{6}(20)^{-1} \\
& =\frac{1}{260}\left(\begin{array}{ll}
2 & 3
\end{array}\right)\binom{20}{30} \\
& =\frac{1}{260} \cdot 130 \\
& =\frac{1}{2} .
\end{aligned}
$$

Indeed, we observe that

$$
C M R=\binom{2}{3} \frac{1}{2}\left(\begin{array}{ll}
2 & 4
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
4 & 8 \\
6 & 12
\end{array}\right)=\left(\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right)=A .
$$

(b): Here we can choose the first two columns and the first two rows, so that

$$
A=\left(\begin{array}{lll}
1 & 3 & 8 \\
1 & 2 & 6 \\
0 & 1 & 2
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 3 \\
1 & 2 \\
0 & 1
\end{array}\right), \quad R=\left(\begin{array}{lll}
1 & 3 & 8 \\
1 & 2 & 6
\end{array}\right) .
$$

Then we must have

$$
\begin{aligned}
M & =\left(C^{T} C\right)^{-1} C^{T} A R^{T}\left(R R^{T}\right)^{-1} \\
& =\left(\begin{array}{cc}
2 & 5 \\
5 & 14
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 8 \\
1 & 2 & 6 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
3 & 2 \\
8 & 6
\end{array}\right)\left(\begin{array}{ll}
74 & 55 \\
55 & 41
\end{array}\right)^{-1} \\
& =\frac{1}{3}\left(\begin{array}{cc}
14 & -5 \\
-5 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 8 \\
1 & 2 & 6 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
3 & 2 \\
8 & 6
\end{array}\right) \frac{1}{9}\left(\begin{array}{cc}
41 & -55 \\
-55 & 74
\end{array}\right) \\
& =\frac{1}{27}\left(\begin{array}{cc}
14 & -5 \\
-5 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{cc}
74 & 55 \\
55 & 41 \\
19 & 14
\end{array}\right)\left(\begin{array}{cc}
41 & -55 \\
-55 & 74
\end{array}\right) \\
& =\frac{1}{27}\left(\begin{array}{cc}
14 & -5 \\
-5 & 2
\end{array}\right)\left(\begin{array}{cc}
129 & 96 \\
351 & 261
\end{array}\right)\left(\begin{array}{cc}
41 & -55 \\
-55 & 74
\end{array}\right) \\
& =\frac{1}{27}\left(\begin{array}{cc}
14 & -5 \\
-5 & 2
\end{array}\right)\left(\begin{array}{cc}
9 & 9 \\
36 & 9
\end{array}\right) \\
& =\frac{1}{27}\left(\begin{array}{cc}
-54 & 81 \\
27 & -27
\end{array}\right) \\
& =\left(\begin{array}{cc}
-2 & 3 \\
1 & -1
\end{array}\right) .
\end{aligned}
$$

Indeed, we observe that

$$
\begin{aligned}
C M R & =\left(\begin{array}{ll}
1 & 3 \\
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-2 & 3 \\
1 & -1
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 8 \\
1 & 2 & 6
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 3 \\
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 3 & 8 \\
1 & 2 & 6 \\
0 & 1 & 2
\end{array}\right) \\
& =A .
\end{aligned}
$$

4. Distance Between Skew Lines. Consider two lines $(1,0,0)+s(1,2,1)$ and $(1,1,1)+$ $t(1,1,1)$ living in \mathbb{R}^{3}.
(a) Suppose that the lines intersect, so that $(1,0,0)+s(1,2,1)=(1,1,1)+t(1,1,1)$ for some values of s and t. Express this as a single matrix equation:

$$
A\binom{s}{t}=\mathbf{b}
$$

(b) If the lines don't intersect then the matrix equation in part (a) has no solution. In this case, find the least squares solution for (s, t).
(a): Let $\mathbf{x}_{1}=(1,0,0)+s(1,2,1)$ and $\mathbf{x}_{2}=(1,1,1)+t(1,1,1)$ be general points on the two lines. Assuming that the lines intersect, we have

$$
\begin{aligned}
\mathbf{x}_{1} & =\mathbf{x}_{2} \\
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) & =\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+t\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
s\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)-t\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) & =\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{ll}
1 & -1 \\
2 & -1 \\
1 & -1
\end{array}\right)\binom{s}{t} & =\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

(b): Since the lines don't intersect, the equation in part (a) has no solution. In this case we multiply both sides on the left by A^{T} to get

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & -1 \\
2 & -1 \\
1 & -1
\end{array}\right)\binom{s}{t} & =\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 2 & 1 \\
-1 & -1 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & -1 \\
2 & -1 \\
1 & -1
\end{array}\right)\binom{s}{t} & =\left(\begin{array}{ccc}
1 & 2 & 1 \\
-1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
\left(\begin{array}{cc}
6 & -4 \\
-4 & 3
\end{array}\right)\binom{s}{t} & =\binom{3}{-2}
\end{aligned}
$$

$$
\begin{aligned}
\binom{s}{t} & =\left(\begin{array}{cc}
6 & -4 \\
-4 & 3
\end{array}\right)^{-1}\binom{3}{-2} \\
\binom{s}{t} & =\frac{1}{2}\left(\begin{array}{ll}
3 & 4 \\
4 & 6
\end{array}\right)\binom{3}{-2} \\
& =\frac{1}{2}\binom{1}{0} \\
& =\binom{1 / 2}{0} .
\end{aligned}
$$

The least squares solution $(s, t)=(1 / 2,0)$ corresponds to the points

$$
\mathbf{x}_{1}=(1,0,0)+\frac{1}{2}(1,2,1)=(3 / 2,1,1 / 2) \quad \text { and } \quad \mathbf{x}_{2}=(1,1,1)+0(1,1,1)=(1,1,1)
$$

5. Bilinear Forms. Given a matrix $B \in \mathbb{R}^{n}$ we define a function $\langle-,-\rangle_{B}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\langle\mathbf{x}, \mathbf{y}\rangle_{B}:=\mathbf{x}^{T} B \mathbf{y} .
$$

Remark: If I is the identity matrix then $\langle\mathbf{x}, \mathbf{y}\rangle_{I}$ is just the dot product on \mathbb{R}^{n}.
(a) Show that this function is bilinear.
(b) Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}$ be the standard basis. In this case show that

$$
\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle_{B}=(i j \text { entry of } B) .
$$

(c) For any two $n \times n$ matrices B and C, show that

$$
B=C \quad \Longleftrightarrow \quad\langle\mathbf{x}, \mathbf{y}\rangle_{B}=\langle\mathbf{x}, \mathbf{y}\rangle_{C} \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

[Hint: One direction uses part (b).]
(d) Symmetric. Show that $B=B^{T}$ if and only if $\langle\mathbf{x}, \mathbf{y}\rangle_{B}=\langle\mathbf{y}, \mathbf{x}\rangle_{B}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
(e) Semi-Definite. If $B=A^{T} A$ for some rectangular $A \in \mathbb{R}^{m \times n}$, show that

$$
\langle\mathbf{x}, \mathbf{x}\rangle_{B} \geq 0 \text { for all } \mathbf{x} \in \mathbb{R}^{n} .
$$

(f) Definite. If $B=A^{T} A$ for some A with independent columns, show that

$$
\langle\mathbf{x}, \mathbf{x}\rangle_{B}=0 \quad \Longleftrightarrow \quad \mathbf{x}=\mathbf{0}
$$

[Hint for parts (e) and (f): Use the trick formula $\langle\mathbf{x}, \mathbf{x}\rangle_{B}=\|A \mathbf{x}\|^{2}$.]
(a): For all linear combinations $\sum a_{i} \mathbf{x}_{i}$ we have

$$
\left\langle\sum a_{i} \mathbf{x}_{i}, \mathbf{y}\right\rangle_{B}=\left(\sum a_{i} \mathbf{x}_{i}\right)^{T} B \mathbf{y}=\left(\sum a_{i} \mathbf{x}_{i}^{T}\right) B \mathbf{y}=\sum a_{i} \mathbf{x}_{i}^{T} B \mathbf{y}=\sum a_{i}\left\langle\mathbf{x}_{i}, \mathbf{y}\right\rangle_{B}
$$

And for all linear combinations $\sum b_{i} \mathbf{y}_{i}$ we have

$$
\left\langle\mathbf{x}, \sum a_{i} \mathbf{b}_{i}\right\rangle_{B}=\mathbf{x}^{T} B\left(\sum a_{i} \mathbf{y}_{i}\right)=\sum a_{i} \mathbf{x}^{T} B \mathbf{y}_{i}=\sum a_{i}\left\langle\mathbf{x}, \mathbf{y}_{i}\right\rangle_{B}
$$

(b): For any basis vectors $\mathbf{e}_{i}, \mathbf{e}_{j} \in \mathbb{R}^{n}$ we have

$$
\begin{aligned}
\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle_{B} & =\mathbf{e}_{i}^{T} B \mathbf{e}_{j} \\
& =\left(\begin{array}{lllll}
0 & \cdots & 1 & \cdots & 0
\end{array}\right)\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
\vdots & & \vdots \\
b_{n 1} & \cdots & b_{n n}
\end{array}\right)\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{lllllll}
0 & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right)\left(\begin{array}{c}
b_{1 j} \\
\vdots \\
b_{n j}
\end{array}\right) \\
& =b_{i j} .
\end{aligned}
$$

(c): If $B=C$ then we have $\langle\mathbf{x}, \mathbf{y}\rangle_{B}=\mathbf{x}^{T} C \mathbf{y}=\mathbf{x}^{T} B \mathbf{y}=\langle\mathbf{x}, \mathbf{y}\rangle_{C}$ for all $\left.\mathbf{x}, \mathbf{y}\right\rangle_{C}$. Conversely, suppose that $\langle\mathbf{x}, \mathbf{y}\rangle_{B}=\langle\mathbf{x}, \mathbf{y}\rangle_{C}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. In particular, we can take $\mathbf{x}=\mathbf{e}_{i}$ and $\mathbf{y}=\mathbf{e}_{j}$. Then part (b) gives

$$
b_{i j}=\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle_{B}=\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle_{C}=c_{i j},
$$

so that $B=C$.
(d): First suppose that $B^{T}=B$. Then for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have

$$
\langle\mathbf{x}, \mathbf{y}\rangle_{B}=\mathbf{x}^{T} B \mathbf{y}=\mathbf{x}^{T} B^{T} \mathbf{y}=(B \mathbf{x})^{T} \mathbf{y}=\mathbf{y}^{T}(B \mathbf{x})=\mathbf{y}^{T} B \mathbf{x}=\langle\mathbf{y}, \mathbf{x}\rangle_{B}
$$

Conversely, suppose that $\langle\mathbf{x}, \mathbf{y}\rangle_{B}=\langle\mathbf{y}, \mathbf{x}\rangle_{B}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. In particular, we may choose $\mathbf{x}=\mathbf{e}_{i}$ and $\mathbf{y}=\mathbf{e}_{j}$. Then part (b) gives

$$
b_{i j}=\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle_{B}=\left\langle\mathbf{e}_{j}, \mathbf{e}_{i}\right\rangle_{B}=b_{j i},
$$

so that $B^{T}=B$.
(e): If $B=A^{T} A$ then for all $\mathbf{x} \in \mathbb{R}^{n}$ we have

$$
\langle\mathbf{x}, \mathbf{x}\rangle_{B}=\mathbf{x}^{T} B \mathbf{x}=\mathbf{x}^{T} A^{T} A \mathbf{x}=(A \mathbf{x})^{T}(A \mathbf{x})=\|A \mathbf{x}\|^{2} \geq 0
$$

(f): We have $\langle\mathbf{0}, \mathbf{0}\rangle_{B}=\mathbf{0}^{T} B \mathbf{0}=0$ for any matrix B. Now suppose that $B=A^{T} A$ where A has independent columns. From part (e) we have $\langle\mathbf{x}, \mathbf{x}\rangle_{B}=\|A \mathbf{x}\|^{2}$. If $\langle\mathbf{x}, \mathbf{x}\rangle_{B}=0$ then this implies that $\|A \mathbf{x}\|=0$ and hence $A \mathbf{x}=\mathbf{0}$. If A has independent columns, then $A \mathbf{x}=\mathbf{0}$ implies $\mathbf{x}=\mathbf{0}$ because $\mathcal{N}(A)=\{\mathbf{0}\}$. Alternatively, we can use the fact that $\left(A^{T} A\right)^{-1}$ exists to get

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{0} \\
A^{T} A \mathbf{x} & =A^{T} \mathbf{0} \\
\mathbf{x} & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{0} \\
\mathbf{x} & =\mathbf{0} .
\end{aligned}
$$

6. Orthogonal Subspaces (Optional). Let V be a Hermitian inner product space. For any subspace $U \subseteq V$ we define its orthogonal complement:

$$
U^{\perp}:=\{\mathbf{v} \in V:\langle\mathbf{u}, \mathbf{v}\rangle=0 \text { for all } \mathbf{u} \in U\} .
$$

(a) Prove that U^{\perp} is also a subspace of V.
(b) Prove that $U \cap U^{\perp}=\{\mathbf{0}\}$.
(c) If U is finite dimensional with basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$, show that

$$
\mathbf{v} \in U^{\perp} \quad \Longleftrightarrow \quad\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle=0 \text { for all } i
$$

(d) If U is finite dimensional, prove that $U+U^{\perp}=V$, which means that any vector $\mathbf{v} \in V$ can be expressed as $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$ for some $\mathbf{v}_{1} \in U$ and $\mathbf{v}_{2} \in U^{\perp}$. [Hint: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ be an orthonormal basis for U and define the projection function $\pi: V \rightarrow V$ by

$$
\pi(\mathbf{v})=\sum_{i=1}^{m}\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle \mathbf{u}_{i}
$$

For any $\mathbf{v} \in V$, use part (c) to show that $\mathbf{v}-\pi(\mathbf{v}) \in U^{\perp}$.]
(e) Combine (b) and (d) to prove that $U \oplus U^{\perp}=V$, which means that any vector $\mathbf{v} \in V$ can be expressed as $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$ for some unique $\mathbf{v}_{1} \in U$ and $\mathbf{v}_{2} \in U^{\perp}$.
(f) If V is finite dimensional, prove that $\operatorname{dim} U+\operatorname{dim} U^{\perp}=\operatorname{dim} V$. [Hint: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ be an orthonormal basis for U and let $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ be an orthonormal basis for U^{\perp}. Use part (e) to prove that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ is a basis for V.]
(a): For any $\mathbf{v}_{i} \in U^{\perp}$ and for any $\mathbf{u} \in U$ we have $\left\langle\mathbf{u}, \mathbf{v}_{i}\right\rangle=0$. Then for any scalars a_{i} we have $\left\langle\mathbf{u}, \sum a_{i} \mathbf{v}_{i}\right\rangle=\sum a_{i}\left\langle\mathbf{u}, \mathbf{v}_{i}\right\rangle=\sum a_{i} \cdot 0=0$, and hence $\sum a_{i} \mathbf{v}_{i} \in U^{\perp}$.
(b): Suppose that $\mathbf{u} \in U$ and $\mathbf{u} \in U^{\perp}$. By definition, this means that $\langle\mathbf{u}, \mathbf{u}\rangle=0$. Since $\langle-,-\rangle$ is an innder product, this implies that $\mathbf{u}=\mathbf{0}$.
(c): Suppose that U is finite dimensional with basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m} \in U$. If $\mathbf{v} \in U^{\perp}$ then for all i we have $\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle=0$ because $\mathbf{u}_{i} \in U$. Conversely, suppose that $\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle=0$ for all i. In this case we will show that $\langle\mathbf{u}, \mathbf{v}\rangle=0$ for all $\mathbf{u} \in U$, and hence $\mathbf{v} \in U^{\perp}$. Indeed, any element $\mathbf{u} \in U$ can be expressed as $\mathbf{u}=\sum a_{i} \mathbf{u}_{i}$, which implies that

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\left\langle\sum a_{i} \mathbf{u}_{i}, \mathbf{v}\right\rangle=\sum a_{i}\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle=\sum a_{i} 0=0
$$

(d): Let U be finite dimensional with orthonormal basis $\left.\mathbf{u}_{1}, \ldots, \mathbf{u}_{m} \in U\right]^{3}$ Our goal is to prove that every $\mathbf{v} \in V$ can be expressed as $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$ with $\mathbf{v}_{1} \in U$ and $\mathbf{v}_{2} \in U^{\perp}$. To do this, we first consider the projection function $\pi: V \rightarrow V$ defined by ${ }^{4}$

$$
\pi(\mathbf{v})=\sum\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle \mathbf{u}_{i}
$$

Note that $\pi(\mathbf{v})$ is a linear combination of the basis vectors $\mathbf{u}_{i} \in U$, and hence $\pi(\mathbf{v}) \in U$. Furthermore, for any $\mathbf{v} \in V$ and for any basis element $\mathbf{u}_{j} \in U$ we have

$$
\begin{aligned}
\left\langle\mathbf{u}_{j}, \mathbf{v}-\pi(\mathbf{v})\right\rangle & =\left\langle\mathbf{u}_{j}, \mathbf{v}\right\rangle-\left\langle\mathbf{u}_{j}, \pi(\mathbf{v})\right\rangle \\
& =\left\langle\mathbf{u}_{j}, \mathbf{v}\right\rangle-\left\langle\mathbf{u}_{j}, \sum_{i}\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle \mathbf{u}_{i}\right\rangle \\
& =\left\langle\mathbf{u}_{j}, \mathbf{v}\right\rangle-\sum_{i}\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle\left\langle\mathbf{u}_{j}, \mathbf{u}_{i}\right\rangle \\
& =\left\langle\mathbf{u}_{j}, \mathbf{v}\right\rangle-\sum_{i}\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle \delta_{i j} \\
& =\left\langle\mathbf{u}_{j}, \mathbf{v}\right\rangle-\left\langle\mathbf{u}_{j}, \mathbf{v}\right\rangle \\
& =0
\end{aligned}
$$

It follows from part (c) that $\mathbf{v}-\pi(\mathbf{v}) \in U^{\perp}$ for all \mathbf{v}. Hence for all $\mathbf{v} \in V$ we can write $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$ with $\mathbf{v}_{1}:=\pi(\mathbf{v}) \in U$ and $\mathbf{v}_{2}:=\mathbf{v}-\pi(\mathbf{v}) \in U^{\perp}$.
(e): Consider any $\mathbf{v} \in V$. From part (d) we can write $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$ for some $\mathbf{v}_{1} \in U$ and $\mathbf{v}_{2} \in U^{\perp}$. Suppose we also have $\mathbf{v}=\mathbf{w}_{1}+\mathbf{w}_{2}$ with $\mathbf{w}_{1} \in U$ and $\mathbf{w}_{2} \in U^{\perp}$, so that

$$
\begin{aligned}
\mathbf{v}_{1}+\mathbf{v}_{2} & =\mathbf{w}_{1}+\mathbf{w}_{2} \\
\mathbf{v}_{1}-\mathbf{w}_{1} & =\mathbf{w}_{2}-\mathbf{v}_{2}
\end{aligned}
$$

[^2]Since subspaces are closed under subtraction, we have $\mathbf{v}_{1}-\mathbf{w}_{1} \in U$ and $\mathbf{w}_{2}-\mathbf{v}_{2} \in U^{\perp}$. Hence the vector $\mathbf{v}_{1}-\mathbf{w}_{1}=\mathbf{w}_{2}-\mathbf{v}_{2}$ is in $U \cap U^{\perp}$. But from part (b) we know that $U \cap U^{\perp}=\{\mathbf{0}\}$, so we must have $\mathbf{v}_{1}-\mathbf{w}_{1}=\mathbf{0}$ and $\mathbf{w}_{2}-\mathbf{v}_{2}=\mathbf{0}$, i.e., $\mathbf{v}_{1}=\mathbf{w}_{1}$ and $\mathbf{v}_{2}=\mathbf{w}_{2}$.
(f): Suppose that V is finite dimensional, so that U and U^{\perp} are finite dimensional. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ be a basis for U and let $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ be a basis for U^{\perp}, so that $\operatorname{dim} U=m$ and $\operatorname{dim} U^{\perp}=n$. In this case I claim that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ is a basis for V, so that

$$
\operatorname{dim} V=m+n=\operatorname{dim} U+\operatorname{dim} U^{\perp}
$$

Spanning. Consider any $\mathbf{v} \in V$. From part (d) we can write $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$ with $\mathbf{v}_{1} \in U$ and $\mathbf{v}_{2} \in U^{\perp}$. But then we can write $\mathbf{v}_{1}=\sum a_{i} \mathbf{u}_{i}$ and $\mathbf{v}_{2}=\sum b_{j} \mathbf{w}_{j}$, and hence

$$
\mathbf{v}=\sum a_{i} \mathbf{u}_{i}+\sum b_{j} \mathbf{w}_{j}
$$

for some scalars a_{1}, \ldots, a_{m} and b_{1}, \ldots, b_{n}.
Independence. Suppose that $\sum a_{i} \mathbf{u}_{i}+\sum b_{j} \mathbf{w}_{j}=\mathbf{0}$ for some scalars a_{1}, \ldots, a_{m} and b_{1}, \ldots, b_{n}. Here we have written $\mathbf{0}=\mathbf{u}+\mathbf{w}$ with $\mathbf{u}=\sum a_{i} \mathbf{u}_{i} \in U$ and $\mathbf{w}=\sum b_{j} \mathbf{w}_{j} \in U^{\perp}$. On the other hand, we can write $\mathbf{0}=\mathbf{0}+\mathbf{0}$ with $\mathbf{0} \in U$ and $\mathbf{0} \in U^{\perp}$. Hence from part (e) $)^{5}$ we must have $\mathbf{u}=\mathbf{0}$ and $\mathbf{w}=\mathbf{0}$, i.e., we must have $\sum a_{i} \mathbf{u}_{i}=\mathbf{0}$ and $\sum b_{j} \mathbf{w}_{j}=\mathbf{0}$. Then the independence of the \mathbf{u}_{i} gives $a_{i}=0$ for all i and the independence of the \mathbf{w}_{j} gives $b_{j}=0$ for all j.

[^3]
[^0]: ${ }^{1}$ By definition, the rank is the dimension of the column space.

[^1]: ${ }^{2}$ If P is not square then $I-P$ makes no sense.

[^2]: ${ }^{3}$ Any basis can be turned into an orthonormal basis via the Gram-Schmidt process.
 ${ }^{4}$ One can show that π is a linear function with image U and kernel U^{\perp}, but we don't need these facts.

[^3]: ${ }^{5}$ Alternatively, we just prove part (e) from scratch in this case. If $\mathbf{u}+\mathbf{w}=\mathbf{0}$ then $\mathbf{u}=-\mathbf{w}$. Since $\mathbf{u} \in U$ and $\mathbf{w} \in U^{\perp}$ this implies that \mathbf{u} and \mathbf{w} are in $U \cap U^{\perp}$, hence $\mathbf{u}=\mathbf{w}=\mathbf{0}$.

