Math 510 Fall 2022
Homework 3 Drew Armstrong

1. The Important Matrices A”A and AA”. Let A be any m x n matrix. Consider the
n x n (symmetric) matrix AT A and the m x m (symmetric) matrix AA7.

(a) Show that N(ATA) = N(A). [Hint: Use the trick formula x7 AT Ax = || Ax||?.]
(b) Use part (a) to show that

rank(AT A) = rank(A) = rank(AAT).
[Hint: The Fundamental Theorem says that rank(A) = rank(A7).]
(c) If A has independent columns, prove that (A7 A)~! exists. If A has independent rows,
prove that (AAT)~! exists. [Hint: Use part (b).]
(a): Suppose that x € N(A), so that Ax = 0. Then we also have
(ATA)x = AT (Ax) = ATx =0,

so that x € N (AT A). Conversely, suppose that x € N (AT A), so that (AT A)x. Then we also
have

|Ax|?> = (Ax)T (Ax) = xT AT Ax = xT0 = 0.
By properties of the norm || — ||, this implies that Ax = 0 and hence x € N'(4).

b): By the Rank-Nullity Theorem applied to AT A and A we have
(

rank(AT A) = (# columns of AT A) — dim N (AT A) Rank-Nullity
=n —dim N (AT A)
=n —dimN(A) part (a)
= (# columns of A) + dim N (A)
= rank(A). Rank-Nullity

The other equality follows by taking B = AT and applying the Fundamental Theorem:
rank(AAT) = rank(BT B)

= rank(B) previous result
= rank(AT)
= rank(A). Fundamental Theorem

(c): Suppose that the columns of A are independent, so that rank(A) equals the number of
columns of AE] Recall that a square matrix is invertible if and only if its rank equals the
number of columns. From part (b) we have

rank(AT A) = rank(A)
= (# columns of A),
= (# columns of AT A).

Since AT A is square this implies that (AT A)~! exists.

1By definition, the rank is the dimension of the column space.
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2. Projection Matrices. A square matrix P is called a projection matriz when
PP=pP and P'=P
(a) If P is a projection matrix, show that P+ (I — P) =1 and P(I — P) = O.
(b) If P is a projection matrix, show that I — P is also a projection matrix.
(c) Let P be a projection matrix. For any vector x we define x; = Px and x2 = (I — P)x.
Show that x = x; + X and x? x5 = 0. This is the geometric meaning of projection.

(d) Let A be any matrix with independent columns, so that (A7 A)~! exists. Check that
the following matrix is a projection matrix:

P =A(ATA)71AT,

[Remark: This matrix projects onto the column space of A.]

(e) Use part (d) to find the 3 x 3 matrix that projects onto the plane x — 2y + 1z = 0.
[Hint: It is easier to find the matrix P that projects onto the orthogonal complement,
which is the line spanned by (1, —2,1). Then the projection onto the plane is I — P.]

(a): For any squareﬂ matrix P we have P+ (I — P) = I. If P2 = P then we also have

P(I-P)y=P—-P?=P-P=0.

(b): Suppose that P2 = P and PT = P. Then we have
(I-P?=I1?-2P+P>*=1-2P+P=1-P and (I-P)l=1"-P'=1-P

(c): Suppose that P? = P and PT = P. For any x, let x; = Px and x3 = (I — P)x. Then we
have
X1 +x9=Px+ (I -P)x=Px+x—Px=x
and
x1xy = (Px)1(I = P)x =x"PT(I - P)x =x"P(I - P)x =x"0Ox = 0.
(d): Let A be any matrix with independent columns, so that (A7 A)~! exists, and define
P =A(ATA)71AT,
Then we have
P2 = [A(ATA)TAT][A(AT A) 71 AT]
= AATAFHATA) (AT A) AT
= AI(ATA)~1AT
=P
and
PT = [A(AT A)~1AT]T
(ADTAT AT (AT
A[(AT A)T]L AT
— A[AT(AT)T)1AT
A
P

2If P is not square then I — P makes no sense.
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(e): Let P be the 3 x 3 matrix that projects onto the plane z — 2y + 1z = 0 in R3. Then
@ = I — P is the matrix that projects onto the line spanned by (1,—2,1). The matrix @ is
easier to compute:

-1

Q=|-2 -21(1 -2 1) (1 -2 1)

It follows that

P=1-Q

600y /1 -2 1

o6 0]—2[-2 4 -2
60 06/ O\1 —2 1
5 2 -1

_1l o 9 o
6\_1 2 5

That was the quick method. On the other hand, we can choose any basis for the plane
x —2y+ 1z =0, such as (1,0, —1) and (0,1,2), and form the matrix

1 0
A=10 1
-1 2

Then the projection onto the plane is

P = A(ATA)~ AT

_[1)(1)<10—1>(1)(1) (10—1)
1 o 01 2/)\ 5 01 2
3 (1) (1) <2 —2>1<10—1>

4 o) \"2 5 01 2

_(1)(1) 52)<10 1)

1 o 2 2)\0 1 2



3. CMR Factorization. Let A be any m x n matrix of rank r. Pick any r columns of A

that form a basis for the column space and call them cq,...,c, € R™. Pick any r rows of A
that form a basis for the row space and call them rq,...,r, € R™. Define the matrices
T
| | I
C=|c1 -+ ¢, and R= :
| | o

T

(a) Prove that there exists an invertible r x r matrix M such that A = CMR. [Hint:
We know from Problem 1 that (C7C)~! and (RRT)~! exist. Check that M =
(CCTYy=1(CTART)(RRT)~! works.]

(b) Compute a C MR factorization for the rank 1 matrix

(2

(¢) Compute a CM R factorization for the rank 2 matrix

1 3 8
A=|1 2 6
01 2

[Hint: Use the first two columns and the first two rows.]

(a): Assuming that that there exists a matrix M satisfying A = CMR, it is easy to find a
formula for M. Since C' has independent columns and R has independent rows by definition,
the matrices (CTC)~! and (RRT)~! exist, and hence

CMR=A
CT(CMR)R" = CTART
(CTCYM(RRT) = CTART
M = (CTC)"*CcTART (RRT)71.
However, it is harder than I realized to prove that this formula for M actually satisfies A =
CMR. Let M be defined by the previous formula and consider the matrix
A'=CMR=c(CTc)"'cTART(RRT)R.
Our goal is to prove that A’ = A. Notice that
A" = PAQ,

where P = C(CTC)~1C7 is the projection onto the column space C(A) and Q@ = RT(RRT)~'RT
is the projection onto the row space R(A). Any x € R” can be expressed as x = X; + X2 with
x1 € R(A) and x5 € R(A)* = N(A), in which case we have Ax = Ax;+Axy = Ax;+0 = Ax.
On the other hand, since @ is the projection onto R(A) we have @x = x;. Then since
AQx; = Ax; is in the column space C(A), the projection P onto the column space does
nothing:

A'x = PAQx = PAx; = Ax; = Ax.
Since A’x = Ax for all x € R", we conclude that A’ = A as desired.
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It is also true that the (unique) matrix M is invertible, but at the moment I don’t see a slick
proof of this. See the course notes for an ugly proof. It is even true that M ~! consists of the
r X r submatrix of A that is the intersection of the columns of C' with the rows of R.

(b): Here we can choose the first column and the first row, so that
2 4 2
A= <3 6), C = <3) R=(2 4).

M = (CTC)*CTART(RRT)!

—a7 2 9) (5 ) (§) 0
“5 9 ()

_ b
260
1

5"

Then we must have

-130

Indeed, we observe that

CMR:@);@ 4)=§<§ 182):@ é)ZA'

(b): Here we can choose the first two columns and the first two rows, so that

1 3 8 1 3
A=11 2 6|, Cc= 12,32(122).
01 2 01

Then we must have

M = (CTC)*CTART(RRT)!

_<2 5)‘1<110> }gz é; (74 55)‘1
5 14 32 1)\, 1 of \5 5\ a1

CI

= (5 2)(
21 \—5 2 19 14
1 (14 -5\ (120 96\ (41 55
o7 \—5 2 )\351 261) =55 74
114 =5\ (9 9
27 \—5 2 ) {36 9
1 (-54 81
o7\ 2 —27

2
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Indeed, we observe that

1 3
-2 3\ (1 3 8
crr=(12) (%) (15 5)
0 1 1 -1)\1 2 6
_13(102)
o 1/ \0 12
1 3 8
=112 6
01 2

I
B

4. Distance Between Skew Lines. Consider two lines (1,0,0) 4+ s(1,2,1) and (1,1,1) +
t(1,1,1) living in R3.
(a) Suppose that the lines intersect, so that (1,0,0) + s(1,2,1) = (1,1,1) +#(1,1,1) for
some values of s and t. Express this as a single matrix equation:

A (j) =b,

(b) If the lines don’t intersect then the matrix equation in part (a) has no solution. In
this case, find the least squares solution for (s,?).

(a): Let x;3 = (1,0,0) + s(1,2,1) and x2 = (1,1,1) 4+ ¢(1,1,1) be general points on the two
lines. Assuming that the lines intersect, we have

X1 = X2
1 1 1 1
Of+sl2|=1[1]+1¢]1
0 1 1 1
1 1 1 1
sl2]—-t|1)]=11]-10
1 1 1 0
1 -1 s 0
2 -1 <t>: 1
1 -1 1

(b): Since the lines don’t intersect, the equation in part (a) has no solution. In this case we
multiply both sides on the left by AT to get

-1 s 0
20
—1 t 1

[ IOy

/I\
.-l;@
|
«“ A
~_
7N\
~ O
~_
|
/I\
py X
~__
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-~ »n + »
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=W
[«2IN'>N
N~
/I\\

MOJ
N~

P VI I

?f\
~__

(12
=5 )
The least squares solution (s,t) = (1/2,0) corresponds to the points

1
xi=(1,0,0) + 5(1,2,1) = (3/2,1,1/2)  and  x2=(1,1,1) +0(1,1,1) = (1,1,1).

5. Bilinear Forms. Given a matrix B € R™ we define a function (—, —)p : R x R” — R by

(x,y)p := X" By.
Remark: If I is the identity matrix then (x,y)s is just the dot product on R™.

(a) Show that this function is bilinear.
(b) Let eq,...,e, € R" be the standard basis. In this case show that

(ei,ej)p = (ij entry of B).
(¢) For any two n x n matrices B and C, show that
B=C <<= (x,¥)B=(x,y)c forall x,y € R".

[Hint: One direction uses part (b).]
(d) Symmetric. Show that B = BT if and only if (x,y)5 = (y,x)p for all x,y € R".
(e) Semi-Definite. If B = AT A for some rectangular A € R™*", show that

(x,x)p > 0 for all x € R".
(f) Definite. If B = AT A for some A with independent columns, show that
(x,x)p=0 <= x=0.

[Hint for parts (e) and (f): Use the trick formula (x,x)p = ||Ax]?]

(a): For all linear combinations ) a;x; we have

<Z aixi,y>B = (Z aixi)T By = (Z apc?) By = Z%’X@TBZY = Zai(xi,y>3.

And for all linear combinations ) b;y; we have
<X7 Z aibi>B =x'B (Z ai}’z’) = Z ax' By; = Z ai(X,¥i)B-

(b): For any basis vectors e;,e; € R™ we have

<ei, ej>B = e;?FBej

bir -+ bin



= bij.

(c): If B = C then we have (x,y)p = x! Oy = x/ By = (x,y)¢ for all x,y)c. Conversely,
suppose that (x,y)p = (x,y)c for all x,y € R". In particular, we can take x = e; and y = e;.
Then part (b) gives

bij = (ei,e;)B = (ei, ;)¢ = cij,
so that B = C.

(d): First suppose that BT = B. Then for all x,y € R" we have
(x,y)p =x'By =x"Bly = (Bx)'y =y"(Bx) =y" Bx = (y,x)5.
Conversely, suppose that (x,y)p = (y,x)p for all x,y € R". In particular, we may choose
x = e; and y = e;. Then part (b) gives
bij = (ei,e;)B = (ej, €i) B = bji,

so that BT = B.

(e): If B = AT A then for all x € R” we have
(x,x)p = xT Bx = x? AT Ax = (Ax)T (Ax) = | Ax|? > 0.

(f): We have (0,0)5 = 07 B0 = 0 for any matrix B. Now suppose that B = AT A where A
has independent columns. From part (e) we have (x,x)p = ||Ax||?. If (x,x)p = 0 then this
implies that ||Ax|| = 0 and hence Ax = 0. If A has independent columns, then Ax = 0 implies
x = 0 because N'(A) = {0}. Alternatively, we can use the fact that (AT A)~! exists to get

Ax =0
ATAx = ATo
x = (ATA)"1AT0
x =0.

6. Orthogonal Subspaces (Optional). Let V be a Hermitian inner product space. For
any subspace U C V we define its orthogonal complement:

Ul :={veV:(uv)=0foraluecU}.

(a) Prove that U~ is also a subspace of V.
(b) Prove that U N U+ = {0}.
(c) If U is finite dimensional with basis {uy,...,u,,}, show that

veUt <« (u;,v)=0 foralli.

(d) If U is finite dimensional, prove that U + U+ = V, which means that any vector v € V'
can be expressed as v = vy +vy for some vi € U and vy € U+t [Hint: Let {uy,...,un}
be an orthonormal basis for U and define the projection function = :V — V by

m
(v) = Z(ui,v)ui.

i=1



For any v € V, use part (c) to show that v — 7(v) € U]

(e) Combine (b) and (d) to prove that U @& U+ = V, which means that any vector v € V
can be expressed as v = vi + vy for some unique v; € U and vy € Ut

(f) If V is finite dimensional, prove that dim U +dim U+ = dim V. [Hint: Let {uy,...,u,}
be an orthonormal basis for U and let w1, ..., w, be an orthonormal basis for U+. Use
part (e) to prove that {uy,..., Wy, wi,...,w,} is a basis for V]

(a): For any v; € U+ and for any u € U we have (u,v;) = 0. Then for any scalars a; we have
(w, Y, a;v;) = Y a;{(u,v;) = > a;-0 =0, and hence > a;v; € U™.

(b): Suppose that u € U and u € U+. By definition, this means that (u,u) = 0. Since (—, —)
is an innder product, this implies that u = 0.

(c): Suppose that U is finite dimensional with basis uy,...,u,, € U. If v € U then for all
we have (u;, v) = 0 because u; € U. Conversely, suppose that (u;, v) = 0 for all 4. In this case
we will show that (u,v) = 0 for all u € U, and hence v € U*. Indeed, any element u € U
can be expressed as u = > a;u;, which implies that

(u,v) = <Z aiui,v> = Za,~<ui,v> = ZaiO =0.

(d): Let U be finite dimensional with orthonormal basis uy, ..., u,, € U H Our goal is to prove
that every v € V' can be expressed as v = v; + vo with vi € U and vy € U+. To do this, we
first consider the projection function 7 : V' — V defined by}

m(v) = (u,v)u.
Note that m(v) is a linear combination of the basis vectors u; € U, and hence w(v) € U.

Furthermore, for any v € V and for any basis element u; € U we have

(uj, v —m(v)) = (u;,v) — (u;, 7(v))

= (uj,v) — <uj7z<um’>uz‘>

= (w;,v) = > (g, v)(uy, w)

= (uj,v) — Z(ui,vﬁ%

= (u]-,v> - <Uj,V>

= 0.
It follows from part (c) that v — 7(v) € Ut for all v. Hence for all v € V we can write
v =v] + ve with vi :=7(v) €U and vy :=v —n(v) € U*.

(e): Consider any v € V. From part (d) we can write v = vy + vg for some v; € U and
vy € UL, Suppose we also have v = wq + wy with wy € U and wy € UL, so that
Vi + Ve =W+ Wy

V] — W1 = W9 — Va.

3Any basis can be turned into an orthonormal basis via the Gram-Schmidt process.
4One can show that  is a linear function with image U and kernel U™, but we don’t need these facts.
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Since subspaces are closed under subtraction, we have vi —wy € U and wo — vy € U-L. Hence
the vector vi — wi = wo — vy is in U N UL. But from part (b) we know that U N U+ = {0},
so we must have vi — w; =0 and wg — vy =0, i.e., vi = wy and vy = wo.

(f): Suppose that V is finite dimensional, so that U and U+t are finite dimensional. Let
ui,...,u,, be a basis for U and let wi,...,w, be a basis for U, so that dimU = m and
dim U+ = n. In this case I claim that uy,..., Uy, Wi, ..., W, is a basis for V, so that

dmV =m4+n=dimU + dimU~+.

Spanning. Consider any v € V. From part (d) we can write v = vj + vy with vi € U and
vo € U+, But then we can write vi = > a;u; and vo = > bjw;, and hence

V= Zaiui +ijwj7

for some scalars aq,...,a, and by,...,by,.

Independence. Suppose that > a;u;+)  bjw; = 0 for some scalars ay, . .., ay and by, . .., by.
Here we have written 0 = u + w with u = 3" a;u; € U and w = > bjw; € UL. On the other
hand, we can write 0 = 0 4+ 0 with 0 € U and 0 € UL. Hence from part (e)E] we must have
u=0and w =0, i.e., we must have ) a;u; =0 and ) _b;w; = 0. Then the independence of
the u; gives a; = 0 for all 7 and the independence of the w; gives b; = 0 for all j.

5Alternatively, we just prove part (e) from scratch in this case. If u4+w = 0 then u = —w. Since u € U
and w € U? this implies that u and w are in U NU~, hence u =w = 0.



