
Math 510 Fall 2022
Homework 3 Drew Armstrong

1. The Important Matrices ATA and AAT . Let A be any m × n matrix. Consider the
n× n (symmetric) matrix ATA and the m×m (symmetric) matrix AAT .

(a) Show that N(ATA) = N(A). [Hint: Use the trick formula xTATAx = ‖Ax‖2.]
(b) Use part (a) to show that

rank(ATA) = rank(A) = rank(AAT ).

[Hint: The Fundamental Theorem says that rank(A) = rank(AT ).]
(c) If A has independent columns, prove that (ATA)−1 exists. If A has independent rows,

prove that (AAT )−1 exists. [Hint: Use part (b).]

2. Projection Matrices. A square matrix P is called a projection matrix when

P 2 = P and P T = P.

(a) If P is a projection matrix, show that P + (I − P ) = I and P (I − P ) = O.
(b) If P is a projection matrix, show that I − P is also a projection matrix.
(c) Let P be a projection matrix. For any vector x we define x1 = Px and x2 = (I −P )x.

Show that x = x1 + x2 and xT
1 x2 = 0. This is the geometric meaning of projection.

(d) Let A be any matrix with independent columns, so that (ATA)−1 exists. Check that
the following matrix is a projection matrix:

P = A(ATA)−1AT .

[Remark: This matrix projects onto the column space of A.]
(e) Use part (d) to find the 3 × 3 matrix that projects onto the plane x − 2y + 1z = 0.

[Hint: It is easier to find the matrix P that projects onto the orthogonal complement,
which is the line spanned by (1,−2, 1). Then the projection onto the plane is I − P .]

3. CMR Factorization. Let A be any m × n matrix of rank r. Pick any r columns of A
that form a basis for the column space and call them c1, . . . , cr ∈ Rm. Pick any r rows of A
that form a basis for the row space and call them r1, . . . , rr ∈ Rn. Define the matrices

C =

 | |
c1 · · · cr
| |

 and R =

− rT1 −
...

− rTr −

 .

(a) Prove that there exists an invertible r × r matrix M such that A = CMR. [Hint:
We know from Problem 1 that (CTC)−1 and (RRT )−1 exist. Check that M =
(CCT )−1(CTART )(RRT )−1 works.]

(b) Compute a CMR factorization for the rank 1 matrix

A =

(
2 4
3 6

)
.

(c) Compute a CMR factorization for the rank 2 matrix

A =

1 3 8
1 2 6
0 1 2

 .

[Hint: Use the first two columns and the first two rows.]



4. Distance Between Skew Lines. Consider two lines (1, 0, 0) + s(1, 2, 1) and (1, 1, 1) +
t(1, 1, 1) living in R3.

(a) Suppose that the lines intersect, so that (1, 0, 0) + s(1, 2, 1) = (1, 1, 1) + t(1, 1, 1) for
some values of s and t. Express this as a single matrix equation:

A

(
s
t

)
= b,

(b) If the lines don’t intersect then the matrix equation in part (a) has no solution. In
this case, find the least squares solution for (s, t).

5. Bilinear Forms. Given a matrix B ∈ Rn we define a function 〈−,−〉B : Rn×Rn → R by

〈x,y〉B := xTBy.

Remark: If I is the identity matrix then 〈x,y〉I is just the dot product on Rn.

(a) Show that this function is bilinear.
(b) Let e1, . . . , en ∈ Rn be the standard basis. In this case show that

〈ei, ej〉B = (ij entry of B).

(c) For any two n× n matrices B and C, show that

B = C ⇐⇒ 〈x,y〉B = 〈x,y〉C for all x,y ∈ Rn.

[Hint: One direction uses part (b).]
(d) Symmetric. Show that B = BT if and only if 〈x,y〉B = 〈y,x〉B for all x,y ∈ Rn.
(e) Semi-Definite. If B = ATA for some rectangular A ∈ Rm×n, show that

〈x,x〉B ≥ 0 for all x ∈ Rn.

(f) Definite. If B = ATA for some A with independent columns, show that

〈x,x〉B = 0 ⇐⇒ x = 0.

[Hint for parts (e) and (f): Use the trick formula 〈x,x〉B = ‖Ax‖2.]

6. Orthogonal Subspaces (Optional). Let V be a Hermitian inner product space. For
any subspace U ⊆ V we define its orthogonal complement:

U⊥ := {v ∈ V : 〈u,v〉 = 0 for all u ∈ U}.

(a) Prove that U⊥ is also a subspace of V .
(b) Prove that U ∩ U⊥ = {0}.
(c) If U is finite dimensional with basis {u1, . . . ,um}, show that

v ∈ U⊥ ⇐⇒ 〈ui,v〉 = 0 for all i.

(d) If U is finite dimensional, prove that U +U⊥ = V , which means that any vector v ∈ V
can be expressed as v = v1+v2 for some v1 ∈ U and v2 ∈ U⊥. [Hint: Let {u1, . . . ,um}
be an orthonormal basis for U and define the projection function π : V → U by

π(v) =
m∑
i=1

〈ui,v〉ui.

For any v ∈ V , use part (c) to show that v − π(v) ∈ U⊥.]
(e) Combine (b) and (d) to prove that U ⊕ U⊥ = V , which means that any vector v ∈ V

can be expressed as v = v1 + v2 for some unique v1 ∈ U and v2 ∈ U⊥.



(f) If V is finite dimensional, prove that dimU+dimU⊥ = dimV . [Hint: Let {u1, . . . ,um}
be an orthonormal basis for U and let w1, . . . ,wn be an orthonormal basis for U⊥. Use
part (e) to prove that {u1, . . . ,um,w1, . . . ,wn} is a basis for V .]


