1. The Important Matrices $A^T A$ and $A A^T$. Let A be any $m \times n$ matrix. Consider the $n \times n$ (symmetric) matrix $A^T A$ and the $m \times m$ (symmetric) matrix $A A^T$.

- (a) Show that $N(A^T A) = N(A)$. [Hint: Use the trick formula $\mathbf{x}^T A^T A \mathbf{x} = ||A\mathbf{x}||^2$.]
- (b) Use part (a) to show that

$$\operatorname{rank}(A^T A) = \operatorname{rank}(A) = \operatorname{rank}(A A^T)$$

[Hint: The Fundamental Theorem says that $rank(A) = rank(A^T)$.]

- (c) If A has independent columns, prove that $(A^T A)^{-1}$ exists. If A has independent rows, prove that $(AA^T)^{-1}$ exists. [Hint: Use part (b).]
- 2. Projection Matrices. A square matrix P is called a projection matrix when

$$P^2 = P$$
 and $P^T = P$.

- (a) If P is a projection matrix, show that P + (I P) = I and P(I P) = O.
- (b) If P is a projection matrix, show that I P is also a projection matrix.
- (c) Let P be a projection matrix. For any vector \mathbf{x} we define $\mathbf{x}_1 = P\mathbf{x}$ and $\mathbf{x}_2 = (I P)\mathbf{x}$. Show that $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ and $\mathbf{x}_1^T \mathbf{x}_2 = 0$. This is the geometric meaning of projection.
- (d) Let A be any matrix with independent columns, so that $(A^T A)^{-1}$ exists. Check that the following matrix is a projection matrix:

$$P = A(A^T A)^{-1} A^T.$$

[Remark: This matrix projects onto the column space of A.]

(e) Use part (d) to find the 3×3 matrix that projects onto the plane x - 2y + 1z = 0. [Hint: It is easier to find the matrix P that projects onto the orthogonal complement, which is the line spanned by (1, -2, 1). Then the projection onto the plane is I - P.]

3. CMR Factorization. Let A be any $m \times n$ matrix of rank r. Pick any r columns of A that form a basis for the column space and call them $\mathbf{c}_1, \ldots, \mathbf{c}_r \in \mathbb{R}^m$. Pick any r rows of A that form a basis for the row space and call them $\mathbf{r}_1, \ldots, \mathbf{r}_r \in \mathbb{R}^n$. Define the matrices

$$C = \begin{pmatrix} | & | \\ \mathbf{c}_1 & \cdots & \mathbf{c}_r \\ | & | \end{pmatrix} \quad \text{and} \quad R = \begin{pmatrix} - & \mathbf{r}_1^T & - \\ \vdots \\ - & \mathbf{r}_r^T & - \end{pmatrix}.$$

- (a) Prove that there exists an invertible $r \times r$ matrix M such that A = CMR. [Hint: We know from Problem 1 that $(C^T C)^{-1}$ and $(RR^T)^{-1}$ exist. Check that $M = (CC^T)^{-1}(C^T AR^T)(RR^T)^{-1}$ works.]
- (b) Compute a CMR factorization for the rank 1 matrix

$$A = \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix}.$$

(c) Compute a CMR factorization for the rank 2 matrix

$$A = \begin{pmatrix} 1 & 3 & 8 \\ 1 & 2 & 6 \\ 0 & 1 & 2 \end{pmatrix}.$$

[Hint: Use the first two columns and the first two rows.]

4. Distance Between Skew Lines. Consider two lines (1,0,0) + s(1,2,1) and (1,1,1) + t(1,1,1) living in \mathbb{R}^3 .

(a) Suppose that the lines intersect, so that (1,0,0) + s(1,2,1) = (1,1,1) + t(1,1,1) for some values of s and t. Express this as a single matrix equation:

$$A\begin{pmatrix}s\\t\end{pmatrix} = \mathbf{b},$$

- (b) If the lines **don't** intersect then the matrix equation in part (a) has no solution. In this case, find the least squares solution for (s, t).
- **5. Bilinear Forms.** Given a matrix $B \in \mathbb{R}^n$ we define a function $\langle -, \rangle_B : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by

$$\langle \mathbf{x}, \mathbf{y} \rangle_B := \mathbf{x}^T B \mathbf{y}$$

Remark: If I is the identity matrix then $\langle \mathbf{x}, \mathbf{y} \rangle_I$ is just the dot product on \mathbb{R}^n .

- (a) Show that this function is bilinear.
- (b) Let $\mathbf{e}_1, \ldots, \mathbf{e}_n \in \mathbb{R}^n$ be the standard basis. In this case show that

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle_B = (ij \text{ entry of } B)$$

(c) For any two $n \times n$ matrices B and C, show that

$$B = C \quad \iff \quad \langle \mathbf{x}, \mathbf{y} \rangle_B = \langle \mathbf{x}, \mathbf{y} \rangle_C \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

[Hint: One direction uses part (b).]

- (d) Symmetric. Show that $\hat{B} = \hat{B}^{T'}$ if and only if $\langle \mathbf{x}, \mathbf{y} \rangle_B = \langle \mathbf{y}, \mathbf{x} \rangle_B$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- (e) Semi-Definite. If $B = A^T A$ for some rectangular $A \in \mathbb{R}^{m \times n}$, show that

 $\langle \mathbf{x}, \mathbf{x} \rangle_B \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$.

(f) **Definite.** If $B = A^T A$ for some A with independent columns, show that

$$\langle \mathbf{x}, \mathbf{x} \rangle_B = 0 \quad \Longleftrightarrow \quad \mathbf{x} = \mathbf{0}.$$

[Hint for parts (e) and (f): Use the trick formula $\langle \mathbf{x}, \mathbf{x} \rangle_B = ||A\mathbf{x}||^2$.]

6. Orthogonal Subspaces (Optional). Let V be a Hermitian inner product space. For any subspace $U \subseteq V$ we define its *orthogonal complement*:

$$U^{\perp} := \{ \mathbf{v} \in V : \langle \mathbf{u}, \mathbf{v} \rangle = 0 \text{ for all } \mathbf{u} \in U \}.$$

- (a) Prove that U^{\perp} is also a subspace of V.
- (b) Prove that $U \cap U^{\perp} = \{\mathbf{0}\}.$
- (c) If U is finite dimensional with basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$, show that

$$\mathbf{v} \in U^{\perp} \iff \langle \mathbf{u}_i, \mathbf{v} \rangle = 0 \text{ for all } i.$$

(d) If U is finite dimensional, prove that $U + U^{\perp} = V$, which means that any vector $\mathbf{v} \in V$ can be expressed as $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ for some $\mathbf{v}_1 \in U$ and $\mathbf{v}_2 \in U^{\perp}$. [Hint: Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ be an orthonormal basis for U and define the projection function $\pi : V \to U$ by

$$\pi(\mathbf{v}) = \sum_{i=1}^{m} \langle \mathbf{u}_i, \mathbf{v} \rangle \mathbf{u}_i.$$

For any $\mathbf{v} \in V$, use part (c) to show that $\mathbf{v} - \pi(\mathbf{v}) \in U^{\perp}$.]

(e) Combine (b) and (d) to prove that $U \oplus U^{\perp} = V$, which means that any vector $\mathbf{v} \in V$ can be expressed as $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ for some **unique** $\mathbf{v}_1 \in U$ and $\mathbf{v}_2 \in U^{\perp}$.

(f) If V is finite dimensional, prove that dim $U + \dim U^{\perp} = \dim V$. [Hint: Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ be an orthonormal basis for U and let $\mathbf{w}_1, \ldots, \mathbf{w}_n$ be an orthonormal basis for U^{\perp} . Use part (e) to prove that $\{\mathbf{u}_1, \ldots, \mathbf{u}_m, \mathbf{w}_1, \ldots, \mathbf{w}_n\}$ is a basis for V.]