1. The Important Matrices $A^{T} A$ and $A A^{T}$. Let A be any $m \times n$ matrix. Consider the $n \times n$ (symmetric) matrix $A^{T} A$ and the $m \times m$ (symmetric) matrix $A A^{T}$.
(a) Show that $N\left(A^{T} A\right)=N(A)$. [Hint: Use the trick formula $\mathbf{x}^{T} A^{T} A \mathbf{x}=\|A \mathbf{x}\|^{2}$.]
(b) Use part (a) to show that

$$
\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)=\operatorname{rank}\left(A A^{T}\right) .
$$

[Hint: The Fundamental Theorem says that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.]
(c) If A has independent columns, prove that $\left(A^{T} A\right)^{-1}$ exists. If A has independent rows, prove that $\left(A A^{T}\right)^{-1}$ exists. [Hint: Use part (b).]
2. Projection Matrices. A square matrix P is called a projection matrix when

$$
P^{2}=P \quad \text { and } \quad P^{T}=P .
$$

(a) If P is a projection matrix, show that $P+(I-P)=I$ and $P(I-P)=O$.
(b) If P is a projection matrix, show that $I-P$ is also a projection matrix.
(c) Let P be a projection matrix. For any vector \mathbf{x} we define $\mathbf{x}_{1}=P \mathbf{x}$ and $\mathbf{x}_{2}=(I-P) \mathbf{x}$. Show that $\mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2}$ and $\mathbf{x}_{1}^{T} \mathbf{x}_{2}=0$. This is the geometric meaning of projection.
(d) Let A be any matrix with independent columns, so that $\left(A^{T} A\right)^{-1}$ exists. Check that the following matrix is a projection matrix:

$$
P=A\left(A^{T} A\right)^{-1} A^{T} .
$$

[Remark: This matrix projects onto the column space of A.]
(e) Use part (d) to find the 3×3 matrix that projects onto the plane $x-2 y+1 z=0$. [Hint: It is easier to find the matrix P that projects onto the orthogonal complement, which is the line spanned by $(1,-2,1)$. Then the projection onto the plane is $I-P$.]
3. CMR Factorization. Let A be any $m \times n$ matrix of rank r. Pick any r columns of A that form a basis for the column space and call them $\mathbf{c}_{1}, \ldots, \mathbf{c}_{r} \in \mathbb{R}^{m}$. Pick any r rows of A that form a basis for the row space and call them $\mathbf{r}_{1}, \ldots, \mathbf{r}_{r} \in \mathbb{R}^{n}$. Define the matrices

$$
C=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{c}_{1} & \cdots & \mathbf{c}_{r} \\
\mid & & \mid
\end{array}\right) \quad \text { and } \quad R=\left(\begin{array}{ccc}
- & \mathbf{r}_{1}^{T} & - \\
& \vdots & \\
- & \mathbf{r}_{r}^{T} & -
\end{array}\right)
$$

(a) Prove that there exists an invertible $r \times r$ matrix M such that $A=C M R$. [Hint: We know from Problem 1 that $\left(C^{T} C\right)^{-1}$ and $\left(R R^{T}\right)^{-1}$ exist. Check that $M=$ $\left(C C^{T}\right)^{-1}\left(C^{T} A R^{T}\right)\left(R R^{T}\right)^{-1}$ works.]
(b) Compute a $C M R$ factorization for the rank 1 matrix

$$
A=\left(\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right)
$$

(c) Compute a $C M R$ factorization for the rank 2 matrix

$$
A=\left(\begin{array}{lll}
1 & 3 & 8 \\
1 & 2 & 6 \\
0 & 1 & 2
\end{array}\right) .
$$

[Hint: Use the first two columns and the first two rows.]
4. Distance Between Skew Lines. Consider two lines $(1,0,0)+s(1,2,1)$ and $(1,1,1)+$ $t(1,1,1)$ living in \mathbb{R}^{3}.
(a) Suppose that the lines intersect, so that $(1,0,0)+s(1,2,1)=(1,1,1)+t(1,1,1)$ for some values of s and t. Express this as a single matrix equation:

$$
A\binom{s}{t}=\mathbf{b},
$$

(b) If the lines don't intersect then the matrix equation in part (a) has no solution. In this case, find the least squares solution for (s, t).
5. Bilinear Forms. Given a matrix $B \in \mathbb{R}^{n}$ we define a function $\langle-,-\rangle_{B}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\langle\mathbf{x}, \mathbf{y}\rangle_{B}:=\mathbf{x}^{T} B \mathbf{y} .
$$

Remark: If I is the identity matrix then $\langle\mathbf{x}, \mathbf{y}\rangle_{I}$ is just the dot product on \mathbb{R}^{n}.
(a) Show that this function is bilinear.
(b) Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}$ be the standard basis. In this case show that

$$
\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle_{B}=(i j \text { entry of } B) .
$$

(c) For any two $n \times n$ matrices B and C, show that

$$
B=C \quad \Longleftrightarrow \quad\langle\mathbf{x}, \mathbf{y}\rangle_{B}=\langle\mathbf{x}, \mathbf{y}\rangle_{C} \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

[Hint: One direction uses part (b).]
(d) Symmetric. Show that $B=B^{T}$ if and only if $\langle\mathbf{x}, \mathbf{y}\rangle_{B}=\langle\mathbf{y}, \mathbf{x}\rangle_{B}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
(e) Semi-Definite. If $B=A^{T} A$ for some rectangular $A \in \mathbb{R}^{m \times n}$, show that

$$
\langle\mathbf{x}, \mathbf{x}\rangle_{B} \geq 0 \text { for all } \mathbf{x} \in \mathbb{R}^{n} .
$$

(f) Definite. If $B=A^{T} A$ for some A with independent columns, show that

$$
\langle\mathbf{x}, \mathbf{x}\rangle_{B}=0 \quad \Longleftrightarrow \quad \mathbf{x}=\mathbf{0}
$$

[Hint for parts (e) and (f): Use the trick formula $\langle\mathbf{x}, \mathbf{x}\rangle_{B}=\|A \mathbf{x}\|^{2}$.]
6. Orthogonal Subspaces (Optional). Let V be a Hermitian inner product space. For any subspace $U \subseteq V$ we define its orthogonal complement:

$$
U^{\perp}:=\{\mathbf{v} \in V:\langle\mathbf{u}, \mathbf{v}\rangle=0 \text { for all } \mathbf{u} \in U\} .
$$

(a) Prove that U^{\perp} is also a subspace of V.
(b) Prove that $U \cap U^{\perp}=\{\mathbf{0}\}$.
(c) If U is finite dimensional with basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$, show that

$$
\mathbf{v} \in U^{\perp} \quad \Longleftrightarrow \quad\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle=0 \text { for all } i .
$$

(d) If U is finite dimensional, prove that $U+U^{\perp}=V$, which means that any vector $\mathbf{v} \in V$ can be expressed as $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$ for some $\mathbf{v}_{1} \in U$ and $\mathbf{v}_{2} \in U^{\perp}$. [Hint: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ be an orthonormal basis for U and define the projection function $\pi: V \rightarrow U$ by

$$
\pi(\mathbf{v})=\sum_{i=1}^{m}\left\langle\mathbf{u}_{i}, \mathbf{v}\right\rangle \mathbf{u}_{i}
$$

For any $\mathbf{v} \in V$, use part (c) to show that $\mathbf{v}-\pi(\mathbf{v}) \in U^{\perp}$.]
(e) Combine (b) and (d) to prove that $U \oplus U^{\perp}=V$, which means that any vector $\mathbf{v} \in V$ can be expressed as $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$ for some unique $\mathbf{v}_{1} \in U$ and $\mathbf{v}_{2} \in U^{\perp}$.
(f) If V is finite dimensional, prove that $\operatorname{dim} U+\operatorname{dim} U^{\perp}=\operatorname{dim} V$. [Hint: Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ be an orthonormal basis for U and let $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ be an orthonormal basis for U^{\perp}. Use part (e) to prove that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ is a basis for $\left.V.\right]$

