
Math 510 Fall 2022
Homework 2 Drew Armstrong

1. Matrix Arithmetic. You will practice matrix arithmetic by examining the formula for
block matrix inversion. Consider a block matrix

P =

(
A B

C D

)
,

where A and D are square, and where the inverse matrices A−1 and (D − CA−1B)−1 exist.
To save notation, let’s write E = D − CA−1B. In this case we consider the block matrix

Q =

(
A−1 +A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

)
.

Check that PQ = I. It is also true that QP = I but please don’t check this.

Solution. We want to show that

PQ =

(
I O

O I

)
,

where the blocks on the diagonal are identity matrices with the same sizes as A and D. First
we observe that the top left entry of PQ is

A(A−1 +A−1BE−1CA−1) +B(−E−1CA−1)

= AA−1 +AA−1BE−1CA−1 +B(−E−1CA−1)

= I + IBE−1CA−1 −BE−1CA−1

= I +BE−1CA−1 −BE−1CA−1

= I +O

= I.

The bottom left entry of PQ is

C(A−1 +A−1BE−1CA−1) +D(−E−1CA−1)

= (CA−1) + CA−1BE−1(CA−1)−DE−1(CA−1)

= (I + CA−1BE−1 −DE−1)(CA−1)

= (I + (CA−1B −D)E−1)(CA−1)

= (I + (−E)E−1)(CA−1)

= (I − I)(CA−1)

= O(CA−1)

= O.

The top right entry is

A(−A−1BE−1) +BE−1

= −(AA−1)BE−1 +BE−1

= −BE−1 +BE−1

= O.



And the bottom right entry is

C(−A−1BE−1) +DE−1

= −CA−1BE−1 +DE−1

= (−CA−1B +D)E−1

= EE−1

= I.

Done.

Remark: According to Wikipedia this formula was reinvented many times and is due to Hans
Boltz (1923). Suppose that A,B,C,D are just 1× 1 scalars a, b, c, d, with e = d− bc/a. Then
the block inverse formula becomes the familiar formula for the inverse of a 2× 2 matrix:(

a b
c d

)−1

=

(
1/a+ bc/a2e −b/ae
−c/ae 1/e

)
=

(
(ae+ bc)/a2e −b/(ad− bc)
−c/(ad− bc) a/(ad− bc)

)
=

(
(ad)/a(ad− bc) −b/(ad− bc)
−c/(ad− bc) a/(ad− bc)

)
=

(
d/(ad− bc) −b/(ad− bc)
−c/(ad− bc) a/(ad− bc)

)
=

1

ad− bc

(
d −b
−c a

)
.

2. Special 2× 2 Matrices. For any real number t we define the following matrices:

Rt =

(
cos t − sin t
sin t cos t

)
, Ft =

(
cos t sin t
sin t − cos t

)
, Pt =

(
cos2 t cos t sin t

cos t sin t sin2 t

)
.

(a) Describe what each matrix does geometrically. [Hint: Rotate, reFlect, Project.]
(b) Check that RsRt = Rs+t. What does this mean geometrically?
(c) Check that F 2

t = I. What does this mean geometrically?
(d) Check that P 2

t = Pt. What does this mean geometrically?
(e) Check that F2t + I = 2Pt. Draw a picture to show what this means geometrically. [For

example, maybe take t = π/3 and x = (1, 0). Draw the line y =
√

3x and the four
points x, Ptx, F2tx, and 2Ptx.]

(a): See the course notes for a discussion of the geometry.

(b): Using the angle sum formulas gives

RsRt =

(
cos s − sin s
sin s cos s

)(
cos t − sin t
sin t cos t

)
=

(
cos s cos t− sin s sin t − cos s sin t− sin s cos t
sin t cos s+ cos s sin t − sin s sin t+ cos s cos t

)
=

(
cos(s+ t) − sin(s+ t)
sin(s+ t) cos(s+ t)

)
= Rs+t.



Geometric meaning: Multiplication of matrices is the same as composition of linear functions.
Rotating by angle t and then by angle s is the same as rotating once by angle s + t. We see
from these arguments that rotation matrices commute:

RsRt = Rs+t = RtRs.

(b): We have

F 2
t =

(
cos t sin t
sin t − cos t

)(
cos t sin t
sin t − cos t

)
=

(
cos2 t+ sin2 t cos t sin t− sin t cos t

sin t cos t− cos t sin t sin2 t+ cos2 t

)
=

(
1 0
0 1

)
= I.

Geometric meaning: Reflecting twice is the same as doing nothing.

(c): We have

P 2
t =

(
cos2 t cos t sin t

cos t sin t sin2 t

)(
cos2 t cos t sin t

cos t sin t sin2 t

)
=

(
cos4 t+ cos2 t sin2 t cos3 t sin t+ cos t sin3 t

cos3 t sin t+ cos t sin3 t cos2 t sin2 t+ sin4 t

)
=

(
cos2 t(cos2 t+ sin2 t) cos t sin t(cos2 t+ sin2 t)

cos t sin t(cos2 t+ sin2 t) sin2 t(cos2 t+ sin2 t)

)
=

(
cos2 t cos t sin t

cos t sin t sin2 t

)
= Pt.

Geometric meaning: Projecting twice is the same as projecting once.

(d): Using the double angle formulas gives

F2t + I =

(
cos(2t) sin(2t)
sin(2t) − cos(2t)

)
+

(
1 0
0 1

)
=

(
cos(2t) + 1 sin(2t)

sin(2t) − cos(2t) + 1

)
=

(
2 cos2 t 2 cos t sin t

2 cos t sin t 2 sin2 t

)
= 2

(
cos2 t cos t sin t

cos t sin t sin2 t

)
= 2Pt.

Geometric meaning: This identity expresses the relationship between projection and reflection.
Recall that F2t (resp. Pt) are the reflection across (resp. projection onto) the line in R2 with
positive angle t from the x-axis. Here is a picture:



3. Examples of Matrix Groups. Consider the following sets of matrices:

GLn(R) = {matrices A ∈ Rn×n such that A−1 exists},
On(R) = {matrices A ∈ Rn×n such that A−1 = AT }.

(a) Check that each of these sets is a group. That is, it contains the identity matrix, it is
closed under under taking inverses, and it is closed under taking products.

(b) The equation ATA = I tells us that the columns of A are an orthonormal set of vectors.
Use this fact to show that every matrix in O2(R) is equal to Rt or Ft from Problem 2.
[Hint: Since the first column has length 1 it equals (cos t, sin t) for some angle t. The
second column must be a unit vector that is perpendicular to the first column.]

(a): The identity matrix is invertible with I−1 = I. If A−1 exists then (A−1)−1 exists (and is
equal to A). If A−1 and B−1 exist then we saw in class that (AB)−1 exists (and is equal to
B−1A−1). Thus we have shown that GLn(R) is a group, called the general linear group.

A matrix satisfying A−1 = AT is called orthogonal. The identity matrix is orthogonal because
I−1 = I = IT . If A is orthogonal then so is A−1 because

(A−1)−1 = A = (AT )T = (A−1)T .

If A and B are orthogonal then so is AB because

(AB)−1 = B−1A−1 = BTAT = (AB)T .

Thus we have shown that On(R) is a group, called the orthogonal group.

(b): The condition A−1 = AT is equivalent to ATA = AAT = I.1 The statement ATA = I
says that A has orthonormal columns and the statement AAT = I says that A has orthonormal
rows. Indeed, let a1, . . . ,an be the columns of A then we have

(ij entry of ATA) = (ith row of AT )(jth col of A)

= aT
i aj

1And it follows from the Fundamental Theorem that the statements ATA = I and AAT = I are equivalent
to each other.



= (dot product of ai and aj).

But the ij entry of the identity matrix is the Kronecker delta δij . Hence if ATA = I then

(dot product of ai and aj) = δij

and we see that the columns of A are orthonormal.

Now let A ∈ O2(R) with columns a1,a2 ∈ R2. Since ‖a1‖2 we can write a1 = (cos t, sin t)
for some unique angle t ∈ [0, 2π). Then since a1 • a2 = 0 and ‖a2‖ = 1 we must have
a2 = (− sin t, cos t) or a2 = (sin t,− cos t). Picture:

Hence the group O2(R) consists of rotations and reflections. Remark: Continuing from Prob-
lem 2, one can check the identities:

• RsRt = Rs+t,
• RsFt = Fs+t,
• FsRt = Fs−t,
• FsFt = Rs−t.

The product of two rotations is a rotation. The product of a rotation and a reflection is a
reflection. The product of two reflections is a rotation. Rotations commute with each other,
but they don’t commute with reflections. Reflections do not commute with each other.

4. Frobenius Norm. For any complex matrix A = (aij) we define the Frobenius norm:

‖A‖F :=

√∑
i,j

|aij |2.

We already know that ‖ · ‖F is a norm on the vector space Cm×n of m × n matrices under
addition and scalar multiplication. In this problem you will show that ‖AB‖F ≤ ‖A‖F ‖B‖F
for any matrices A,B where the product is AB defined.



(a) If a1, . . . ,am ∈ R` are the columns of A ∈ C`×m, show that

‖A‖F =
√
‖a1‖2 + · · ·+ ‖am‖2.

(b) For any column vectors a,b ∈ C`, show that ‖abT ‖F = ‖a‖‖b‖.
(c) For any real numbers x1, . . . , xm and y1, . . . , ym use Cauchy-Schwarz to show that

x1y1 + · · ·+ xmym ≤
√
x21 + · · ·+ x2m ·

√
y21 + · · · y2m.

(d) Let A ∈ C`×m have column vectors a1, . . . ,am ∈ C` and let B ∈ Cm×n have row
vectors bT

1 , . . . ,b
T
m ∈ Cn. Combine (abc) with the usual triangle inequality to show

that ‖AB‖F ≤ ‖A‖F ‖B‖F . Hint: Apply ‖ · ‖F to both sides of the formula

AB = a1b
T
1 + · · ·+ ambT

m.

(a): The jth column of A is aj = (a1j , a2j , . . . , a`j), hence

‖aj‖2F = ‖aj‖2 = |a1j |2 + · · ·+ |a`j |2 =
∑̀
i=1

|aij |2.

Then the Frobenius norm of A satisfies

‖A‖2F =
∑
i,j

|aij |2 =
∑̀
i=1

m∑
j=1

|aij |2 =
m∑
j=1

(∑̀
i=1

|aij |2
)

=
m∑
j=1

‖aj‖2.

(b): For any column vectors a = (a1, . . . , a`) and b = (b1, . . . , b`) note that the ij entry of the
`× ` matrix abT is aibj . Recall that the absolute value of complex numbers is multiplicative:
|aibj | = |ai||bj |. Hence we have

‖abT ‖2F =
∑
i,j

|aibj |2

=
∑
i,j

|ai|2|bj |2

=

(∑
i

|ai|2
)∑

j

|bj |2


= ‖a‖2F ‖b‖2F .

(c): Given real vectors x = (x1, . . . , xm) and y = (y1, . . . , ym), the Cauchy-Schwarz inequality
for the dot product in Rm tells us that

|x • y|2 ≤ (x • x)(y • y),

|x • y| ≤
√

x • x
√

y • y,

x • y ≤
√

x • x
√

y • y,

x1y1 + · · ·+ xmym ≤
√
x21 + · · ·+ x2m ·

√
y21 + · · · y2m.

(d): Finally, let A ∈ C`×m have column vectors a1, . . . ,am ∈ C` and let B ∈ Cm×n have row
vectors bT

1 , . . . ,b
T
m ∈ Cn. From the definition of matrix multiplication we have

AB = a1b
T
1 + · · ·+ ambT

m.



Now we apply the Frobenius norm to both sides:

‖AB‖F = ‖a1b
T
1 + · · ·+ ambT

m‖F
≤ ‖a1b

T
1 ‖F + · · ·+ ‖ambT

m‖F triangle inequality

= ‖a1‖‖b1‖+ · · ·+ ‖am‖‖bm‖ part (b)

≤
√
‖a1‖2 + · · ·+ ‖am‖2

√
‖b1‖2 + · · ·+ ‖bm‖2 part (c)

= ‖A‖F ‖B‖F . part (a)

�

5. Geometric Series of Matrices (Optional). Let A be a square matrix with ‖A‖F < 1.
In this problem you will show that I − A is invertible, with a power series expansion that
converges with respect to the Frobenius norm:2

(I −A)−1 = I +A2 +A3 + · · · =
∑
k≥0

Ak.

(a) Show that ‖An‖F ≤ ‖A‖nF . Use this to show that An converges to the zero matrix.

(b) Let Sn =
∑n

k=0A
k, and show that ‖Sn‖F ≤

∑n
k=0 ‖A‖kF . Then the usual geometric

series implies that Sn is a Cauchy sequence, hence Sn converges to some matrix T .
(c) Observe that (I − A)Sn = I − An+1. Use (a) to show that the right side converges to

I and use (b) to show that the left side converges to (I −A)T . Hence (I −A)T = I.
(d) Application. Consider a partitioned matrix

P =

(
I R

O Q

)
,

where I is an identity matrix, R is any rectangular matrix and Q is a square matrix
satisfying ‖Q‖F < 1. Use the geometric series for matrices to show that

Pn →

(
I R(I −Q)−1

O O

)
as n→∞.

[Hint: Compute the first few powers of P and observe a pattern.]

(a): It follows directly from Problem 4(d) that 0 ≤ ‖An‖F ≤ ‖A‖nF for any square matrix. If
‖A‖F < 1 then this implies that ‖A‖nF → 0 and hence ‖An − O‖F = ‖An‖F → 0 as n → ∞.
By definition this means that An → O with respect to the Frobenius norm.3

(b): I guess I should have asked you to prove that Sn is a Cauchy sequence with respect to the
Frobenius norm. So consider integers 0 < N ≤ m < n and let λ := ‖A‖F . Assuming λ 6= 1
we have4

0 ≤ ‖Sn − Sm‖F =

∥∥∥∥∥
n∑

k=m+1

Ak

∥∥∥∥∥ ≤
n∑

k=m+1

‖A‖kF =

n∑
k=m+1

λk =
λm+1 − λn+1

1− λ
.

2To be precise, for any sequence of matrices X1, X2, . . . and for any matrix Y , we say that Xn converges to
Y if and only if ‖Xn − Y ‖F converges to the number zero. It follows from the completeness of the complex
numbers that if ‖Xn−Xm‖F gets arbitrarily small for n and m arbitrarily large (i.e., if Xn is a Cauchy sequence)
then there exists some matrix Y such that Xn → Y .

3In fact, An → O with respect to any norm on Cn×n because any two norms on a finite dimensional vector
space are topologically equivalent. Never mind what that means.

4The last equality uses
∑m

k=0 λ
k = (λm+1 − 1)/(λ− 1) and

∑n
k=0 λ

k = (λn+1 − 1)/(λ− 1).



If 0 ≤ λ < 1 then since n−m ≥ 1 we have 0 ≤ λn−m < 1 and hence 0 < 1− λn−m ≤ 1. But
we also have 0 < 1− λ and 0 < λm+1/(1− λ), hence

0 ≤ λm+1 − λn+1

1− λ
=
λm+1

1− λ
(1− λn−m) ≤ λm+1

1− λ
.

Since λm+1 → 0 as m→∞, it follows that (λm+1 − λn+1)/(1− λ)→ 0 as N →∞.5 We have
shown that Sn is a Cauchy sequence with respect to the Frobenius norm. By the completeness
of Hermitian space it follows that Sn converges to some matrix T .

(c): We have a straightforward algebraic identity:

(I −A)Sn =
n∑

k=0

Ak −
n+1∑
k=1

Ak = I −An+1.

Since An+1 → O, the right hand side converges to I. To be precise, we have ‖I−(I−An+1)‖F =
‖An+1‖F → 0, so I − An+1 → I by definition of convergence with respect to the Frobenius
norm. On the other hand, since Sn converges to T , the left hand side converges to (I −A)T .
To be precise, since ‖Sn − T‖F → 0 by definition, we have

0 ≤ ‖(I −A)Sn − (I −A)T‖F = ‖(I −A)(Sn − T )‖F ≤ ‖I −A‖F ‖Sn − T‖F → 0.

Thus we have shown that (I − A)T = I. We could also show that T (I − A) = I by using
the identity Sn(I − A) = I − An+1, but this is not necessary because (I − A)T = I implies
T (I −A) = I by the Fundamental Theorem. �

Remark: As I mentioned above, the Frobenius norm is not special. Essentially the same proof
works for any matrix norm ‖ − ‖ satisfying ‖A‖ < 1. The furthest we can push this is to say
that the geometric series

∑
k A

k converges if and only if the maximum of the absolute values
of the eigenvalues of A is < 1. That result is harder to prove and requires something like the
Jordan Canonical Form.

Reminder: Problem 5 was optional.

(d): Application. Let Q be a square matrix with ‖Q‖F < 1 and consider the matrix

P =

(
I R

O Q

)
.

By induction we can show that

Pn =

(
I R(I +Q+ · · ·+Qn−1)

O Qn

)
,

whence

Pn →

(
I R(I −Q)−1

O O

)
as n→∞.

In class we will apply this result to Markov chains.

5Isn’t analysis fun?


