Math 510 Fall 2022
Homework 2 Drew Armstrong

1. Matrix Arithmetic. You will practice matrix arithmetic by examining the formula for
block matriz inversion. Consider a block matrix

()

where A and D are square, and where the inverse matrices A~! and (D — CA7!B)™! exist.
To save notation, let’s write E = D — CA~!'B. In this case we consider the block matrix

o A+ ATIBETICAT? ‘ —A"'BE!
- —glcat | B '
Check that PQ = I. It is also true that QP = I but please don’t check this.

o (42)

where the blocks on the diagonal are identity matrices with the same sizes as A and D. First
we observe that the top left entry of PQ is

A(AT' + AT'BETICA™Y) + B(—E7'CA™Y)
= AA™ ' 4+ AAT'BETICAT + B(—E7'CA™Y)
=4+ IBE'CA™' - BE"'CcA™!
=I+BE 'CA"' - BE~'CA™!
=I+0
=
The bottom left entry of PQ is
C(A '+ A 'BE'CA™Y Y + D(-E'CA™Y)
= (CA Y+ CA'BEY(CA™Y Y= DE}(CcA™)
=({I+CA'BE"' - DE Y (CA™TY)
= +(CA'B-D)EH(CA™)
=T+ (-E)E"H(CcA™)
= -D(CA™
(CA™)

Solution. We want to show that

O
@)

The top right entry is
A(—A'BE™Y) + BE™!
= —(AAHYBE '+ BE!
=—-BE '+ BE!
=0.



And the bottom right entry is
C(-A™'BE™"Y + DE™!
=-CA'BE"'+DE!
= (-CA™'B+ D)E™!
=EE!
=1
Done.
Remark: According to Wikipedia this formula was reinvented many times and is due to Hans

Boltz (1923). Suppose that A, B,C, D are just 1 x 1 scalars a, b, ¢, d, with e = d — bc/a. Then
the block inverse formula becomes the familiar formula for the inverse of a 2 x 2 matrix:

(20) = (Ve )
_ <(ae +be)/a%e —b/(ad — b@)
—¢/(ad—be)  af(ad — be)

_ ((ad)/a(ad —bc) —b/(ad — bc)>
—c/(ad —be)  a/(ad — bc)

_ < d/(ad —bc) —b/(ad — bc)>
—c/(ad —be)  a/(ad — bc)

1 d —b
ad—bc \—c a )’
2. Special 2 x 2 Matrices. For any real number ¢ we define the following matrices:

cost —sint cost sint cos?t costsint
Ry = (sint cost )  hi= (sint —cost> = (costsint sin’t > ’

(a) Describe what each matrix does geometrically. [Hint: Rotate, reFlect, Project.]

(b) Check that RsR; = Rs1¢. What does this mean geometrically?

(c) Check that F? = I. What does this mean geometrically?

(d) Check that P? = P,. What does this mean geometrically?

(e) Check that Fy;+ I = 2P,. Draw a picture to show what this means geometrically. [For
example, maybe take ¢ = 7/3 and x = (1,0). Draw the line y = v/3z and the four
points x, P;x, Fyx, and 2P;x.]

(a): See the course notes for a discussion of the geometry.
(b): Using the angle sum formulas gives
coss —sins\ (cost —sint
RsRy = | . .
sins  coss sint  cost
__ [cosscost —sinssint —cosssint —sinscost
~ \sintcoss+ cosssint —sinssint + cos s cost

= (et sy

= Rs—&—t'



Geometric meaning: Multiplication of matrices is the same as composition of linear functions.
Rotating by angle ¢ and then by angle s is the same as rotating once by angle s +t. We see
from these arguments that rotation matrices commute:

R,R; = Repy = RyR,.

(b): We have

cost sint cost sint

sint —cost sint —cost

B cos?t +sin?t costsint — sintcost
~ \sintcost — costsint sin?t + cos?t

(3

Geometric meaning: Reflecting twice is the same as doing nothing.

(c): We have

cos?t costsint cos?t costsint
costsint sin? ¢ costsint sin? ¢

cos t + cos? t sin? t cos® tsint + costsin3 ¢
cos® tsint + costsin® t cos?tsin?t + sin*t

cos? t(cos? t + sin t) costsint(cos®t + sin?t)
costsint(cos®t +sin?t)  sin?#(cos?t + sin’ )

_ cos?t costsint
" \costsint sin? ¢
= P,.

Geometric meaning: Projecting twice is the same as projecting once.

(d): Using the double angle formulas gives
cos(2t

Fo+ 1= (sin(Zt)) —Stzr(l)(s?(;)t)> + <(1) (1)>
_ [cos(2t) +1 sin(2t)
~ )
sin(2t) —cos(2t) + 1

B 2cos?t 2costsint
~ \2costsint 2sin?t

_9 cos? t costsint
~ “\costsint  sin?t
=2P;.

Geometric meaning: This identity expresses the relationship between projection and reflection.
Recall that Fy; (resp. P;) are the reflection across (resp. projection onto) the line in R? with
positive angle t from the z-axis. Here is a picture:



o)

3. Examples of Matrix Groups. Consider the following sets of matrices:
GL,(R) = {matrices A € R™" such that A~} exists},
O, (R) = {matrices A € R™*" such that A=* = AT}

(a) Check that each of these sets is a group. That is, it contains the identity matrix, it is
closed under under taking inverses, and it is closed under taking products.

(b) The equation AT A = I tells us that the columns of A are an orthonormal set of vectors.
Use this fact to show that every matrix in O2(R) is equal to R; or F} from Problem 2.
[Hint: Since the first column has length 1 it equals (cost,sint) for some angle ¢. The
second column must be a unit vector that is perpendicular to the first column.]

(a): The identity matrix is invertible with 1= = I. If A~! exists then (A71)~! exists (and is
equal to A). If A=! and B! exist then we saw in class that (AB)~! exists (and is equal to
B71A~1). Thus we have shown that GL,(R) is a group, called the general linear group.

A matrix satisfying A~! = AT is called orthogonal. The identity matrix is orthogonal because
I=' =71 =17 If Ais orthogonal then so is A~! because
(A—l)—l — A= (AT)T — (A_I)T.
If A and B are orthogonal then so is AB because
(AB)"' =B 1At = BTAT = (4B)".
Thus we have shown that O, (R) is a group, called the orthogonal group.

(b): The condition A=' = AT is equivalent to ATA = AAT = IEI The statement ATA = T
says that A has orthonormal columns and the statement AA” = I says that A has orthonormal

rows. Indeed, let ay,...,a, be the columns of A then we have
(ij entry of ATA) = (ith row of AT)(jth col of A)
—ala,

1And it follows from the Fundamental Theorem that the statements AT A = I and AA” = I are equivalent
to each other.



= (dot product of a; and a;).
But the ij entry of the identity matrix is the Kronecker delta &;;. Hence if AT A = I then
(dot product of a; and a;) = d;;
and we see that the columns of A are orthonormal.
Now let A € O2(R) with columns aj,as € R2. Since ||a;||? we can write a; = (cost,sint)

for some unique angle t € [0,27). Then since a; e ap = 0 and |laz|| = 1 we must have
ap = (—sint,cost) or ag = (sint, — cost). Picture:

. sia
(U"St cos €

Sin t

t 51 €

— cos5 ¢t

Hence the group O2(R) consists of rotations and reflections. Remark: Continuing from Prob-
lem 2, one can check the identities:

o RsRy = Ry,
o RyFy = Fyyy,
o [\Ry = Fyy,
° FsFt = Rs—t-

The product of two rotations is a rotation. The product of a rotation and a reflection is a
reflection. The product of two reflections is a rotation. Rotations commute with each other,
but they don’t commute with reflections. Reflections do not commute with each other.

4. Frobenius Norm. For any complex matrix A = (a;;) we define the Frobenius norm:
1Al = > lagl>
ihj
We already know that || - || is a norm on the vector space C™*™ of m x n matrices under

addition and scalar multiplication. In this problem you will show that ||AB||r < ||A||r||Blr
for any matrices A, B where the product is AB defined.



(a) If a,...,a, € R are the columns of A € C**™, show that

1AllF = Va2 + - - + llam]|2.

(b) For any column vectors a,b € C*, show that [lab” ||z = ||al||/b].
(c¢) For any real numbers x1, ..., 2, and yi,. .., yn, use Cauchy-Schwarz to show that

(d) Let A € C™™ have column vectors ay,...,a, € C’ and let B € C™ ™ have row
vectors b, ... bl € C". Combine (abc) with the usual triangle inequality to show
that ||[AB||r < ||A||r||B||r. Hint: Apply || - |7 to both sides of the formula

AB =abl + ... +a,bl.

(a): The jth column of A is a; = (a1, a2, ..., as;), hence

¢
a3 = llay |2 = lag 2 + -+ Jag > = 3 lay[>.
i=1
Then the Frobenius norm of A satisfies

{ m m 4 m
JANE = las =)0 la? =) <Z |az'j|2> => llayl*.
1,7 j

i=1 j=1 j=1 \i=1 j=1

(b): For any column vectors a = (ai,...,ar) and b = (by,...,by) note that the ij entry of the
¢ x ¢ matrix ab” is a;bj. Recall that the absolute value of complex numbers is multiplicative:
la;b;j| = |ai||bj|. Hence we have

lab” 5 = > Jaiby?
i?j

= lai’[b;?

Z'7j

- (hett) (o
( J
= |lal%[Ib]%-
(c): Given real vectors x = (z1,...,2y) andy = (Y1, ..., Ym), the Cauchy-Schwarz inequality
for the dot product in R™ tells us that
xey> < (xex)(yey),
xoy| < VEOXVTOY,
xey <Vxex\yey,

By Ty <73 U g

(d): Finally, let A € C**™ have column vectors ai,...,a,, € C’ and let B € C™*" have row
vectors b{, e ,b% € C™. From the definition of matrix multiplication we have

AB=abl +... +a,bl.



Now we apply the Frobenius norm to both sides:

IAB||F = llasb{ + -+ + amby,|IF

< |laib{ || + -+ + |ambl || triangle inequality
= llaal[[[bafl + - -+ llam|[[[bm]] part (b)
< Vllal? + -+ laml2y/[b1]? + - + [ part (c)
= | Allr||IBllF- part (a)

O

5. Geometric Series of Matrices (Optional). Let A be a square matrix with ||Al|r < 1.
In this problem you will show that I — A is invertible, with a power series expansion that
converges with respect to the Frobenius normﬂ

(I-A) ' =I+A+A4%4...=> 4~
k>0

(a) Show that ||A"||r < ||Al|#. Use this to show that A™ converges to the zero matrix.
(b) Let S, = >_p_o A*, and show that [|S,|r < >p_, [|All%. Then the usual geometric

series implies that S, is a Cauchy sequence, hence S,, converges to some matrix 7.
(c) Observe that (I — A)S, = I — A"*L. Use (a) to show that the right side converges to

I and use (b) to show that the left side converges to (I — A)T. Hence (I — A)T = I.
(d) Application. Consider a partitioned matrix

(0

where [ is an identity matrix, R is any rectangular matrix and @ is a square matrix
satisfying ||Q||F < 1. Use the geometric series for matrices to show that

< I R(I—Q)_1>
P — as n — oo.
ol o

[Hint: Compute the first few powers of P and observe a pattern.|

(a): It follows directly from Problem 4(d) that 0 < [|[A"||r < ||A||% for any square matrix. If
|A|lF < 1 then this implies that ||A||%» — 0 and hence |A™ — Ol|r = ||A™||Fr — 0 as n — oo.
By definition this means that A™ — O with respect to the Frobenius norm

(b): I guess I should have asked you to prove that S,, is a Cauchy sequence with respect to the

Frobenius norm. So consider integers 0 < N < m < n and let A := ||A]|p. Assuming A # 1
we have]
n n n
)\m—f—l o )\n+1
_ k k _ k _
08— Sullr=| > A%< S A= Y M=t
k=m+1 k=m+1 k=m+1

2To be precise, for any sequence of matrices X1, Xo,... and for any matrix Y, we say that X,, converges to

Y if and only if || X, — Y||F converges to the number zero. It follows from the completeness of the complex
numbers that if || X, — X || gets arbitrarily small for n and m arbitrarily large (i.e., if X, is a Cauchy sequence)
then there exists some matrix Y such that X, — Y.

3In fact, A™ — O with respect to any norm on C™*™ because any two norms on a finite dimensional vector
space are topologically equivalent. Never mind what that means.

4The last equality uses S A = — 1)/ (A =1) and Sp_ AF = (AT —1)/(A - 1).



IfO<A<1lthensincen—m>1wehave 0 < A" ™ <1 and hence 0 <1—-A""" < 1. But

we also have 0 < 1 — X and 0 < \™*1 /(1 — X), hence

)\m+1 _ )\n+1 )\m+1 )\m+1

0< = (I1-=A"""™< :
1-—A 1—A 1—A

Since A™ ! — 0 as m — o0, it follows that (A™+! — X\"+1) /(1 — \) — 0 as N — oco[] We have

shown that .5, is a Cauchy sequence with respect to the Frobenius norm. By the completeness

of Hermitian space it follows that S, converges to some matrix 7.

(c): We have a straightforward algebraic identity:

n n+1
(I—A)S,=> AF=> AF =1 — AL
k=0 k=1

Since A"*! — O, the right hand side converges to I. To be precise, we have ||[[—(I—A"T1)||p =
A" | — 0, s0 I — A"l — I by definition of convergence with respect to the Frobenius
norm. On the other hand, since S,, converges to T', the left hand side converges to (I — A)T.
To be precise, since ||S, — T'||[r — 0 by definition, we have

0< (I =A)Sn = (I = A)T|r = (I = A)(Sn = D)llr < I = Allp[|Sn = T|r = 0.

Thus we have shown that (I — A)T = I. We could also show that T(I — A) = I by using
the identity S,(I — A) = I — A", but this is not necessary because (I — A)T = I implies
T(I — A) = I by the Fundamental Theorem. (]

Remark: As I mentioned above, the Frobenius norm is not special. Essentially the same proof
works for any matrix norm || — || satisfying ||A|| < 1. The furthest we can push this is to say
that the geometric series Y, A¥ converges if and only if the maximum of the absolute values
of the eigenvalues of A is < 1. That result is harder to prove and requires something like the
Jordan Canonical Form.

Reminder: Problem 5 was optional.

(d): Application. Let @ be a square matrix with ||Q||r < 1 and consider the matrix

IR
P= .
(@)
By induction we can show that

o ( I R(I+Q+~-+Q"—1)>
(o] o :

whence

P”—><IR<I_Q)1> as n — oo.
ol o

In class we will apply this result to Markov chains.

SIsn’t analysis fun?



