1. Matrix Arithmetic. You will practice matrix arithmetic by examining the formula for block matrix inversion. Consider a block matrix

$$
P=\left(\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right)
$$

where A and D are square, and where the inverse matrices A^{-1} and $\left(D-C A^{-1} B\right)^{-1}$ exist. To save notation, let's write $E=D-C A^{-1} B$. In this case we consider the block matrix

$$
Q=\left(\begin{array}{c|c}
A^{-1}+A^{-1} B E^{-1} C A^{-1} & -A^{-1} B E^{-1} \\
\hline-E^{-1} C A^{-1} & E^{-1}
\end{array}\right)
$$

Check that $P Q=I$. It is also true that $Q P=I$ but please don't check this.
Solution. We want to show that

$$
P Q=\left(\begin{array}{c|c}
I & O \\
\hline O & I
\end{array}\right)
$$

where the blocks on the diagonal are identity matrices with the same sizes as A and D. First we observe that the top left entry of $P Q$ is

$$
\begin{aligned}
A\left(A^{-1}\right. & \left.+A^{-1} B E^{-1} C A^{-1}\right)+B\left(-E^{-1} C A^{-1}\right) \\
& =A A^{-1}+A A^{-1} B E^{-1} C A^{-1}+B\left(-E^{-1} C A^{-1}\right) \\
& =I+I B E^{-1} C A^{-1}-B E^{-1} C A^{-1} \\
& =I+B E^{-1} C A^{-1}-B E^{-1} C A^{-1} \\
& =I+O \\
& =I .
\end{aligned}
$$

The bottom left entry of $P Q$ is

$$
\begin{aligned}
C\left(A^{-1}\right. & \left.+A^{-1} B E^{-1} C A^{-1}\right)+D\left(-E^{-1} C A^{-1}\right) \\
& =\left(C A^{-1}\right)+C A^{-1} B E^{-1}\left(C A^{-1}\right)-D E^{-1}\left(C A^{-1}\right) \\
& =\left(I+C A^{-1} B E^{-1}-D E^{-1}\right)\left(C A^{-1}\right) \\
& =\left(I+\left(C A^{-1} B-D\right) E^{-1}\right)\left(C A^{-1}\right) \\
& =\left(I+(-E) E^{-1}\right)\left(C A^{-1}\right) \\
& =(I-I)\left(C A^{-1}\right) \\
& =O\left(C A^{-1}\right) \\
& =O .
\end{aligned}
$$

The top right entry is

$$
\begin{aligned}
A\left(-A^{-1}\right. & \left.B E^{-1}\right)+B E^{-1} \\
& =-\left(A A^{-1}\right) B E^{-1}+B E^{-1} \\
& =-B E^{-1}+B E^{-1} \\
& =O
\end{aligned}
$$

And the bottom right entry is

$$
\begin{aligned}
C\left(-A^{-1}\right. & \left.B E^{-1}\right)+D E^{-1} \\
& =-C A^{-1} B E^{-1}+D E^{-1} \\
& =\left(-C A^{-1} B+D\right) E^{-1} \\
& =E E^{-1} \\
& =I
\end{aligned}
$$

Done.
Remark: According to Wikipedia this formula was reinvented many times and is due to Hans Boltz (1923). Suppose that A, B, C, D are just 1×1 scalars a, b, c, d, with $e=d-b c / a$. Then the block inverse formula becomes the familiar formula for the inverse of a 2×2 matrix:

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
1 / a+b c / a^{2} e & -b / a e \\
-c / a e & 1 / e
\end{array}\right) \\
& =\left(\begin{array}{cc}
(a e+b c) / a^{2} e & -b /(a d-b c) \\
-c /(a d-b c) & a /(a d-b c)
\end{array}\right) \\
& =\left(\begin{array}{cc}
(a d) / a(a d-b c) & -b /(a d-b c) \\
-c /(a d-b c) & a /(a d-b c)
\end{array}\right) \\
& =\left(\begin{array}{cc}
d /(a d-b c) & -b /(a d-b c) \\
-c /(a d-b c) & a /(a d-b c)
\end{array}\right) \\
& =\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
\end{aligned}
$$

2. Special 2×2 Matrices. For any real number t we define the following matrices:

$$
R_{t}=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right), \quad F_{t}=\left(\begin{array}{cc}
\cos t & \sin t \\
\sin t & -\cos t
\end{array}\right), \quad P_{t}=\left(\begin{array}{cc}
\cos ^{2} t & \cos t \sin t \\
\cos t \sin t & \sin ^{2} t
\end{array}\right)
$$

(a) Describe what each matrix does geometrically. [Hint: Rotate, reFlect, Project.]
(b) Check that $R_{s} R_{t}=R_{s+t}$. What does this mean geometrically?
(c) Check that $F_{t}^{2}=I$. What does this mean geometrically?
(d) Check that $P_{t}^{2}=P_{t}$. What does this mean geometrically?
(e) Check that $F_{2 t}+I=2 P_{t}$. Draw a picture to show what this means geometrically. [For example, maybe take $t=\pi / 3$ and $\mathbf{x}=(1,0)$. Draw the line $y=\sqrt{3} x$ and the four points $\mathbf{x}, P_{t} \mathbf{x}, F_{2 t} \mathbf{x}$, and $2 P_{t} \mathbf{x}$.]
(a): See the course notes for a discussion of the geometry.
(b): Using the angle sum formulas gives

$$
\begin{aligned}
R_{s} R_{t} & =\left(\begin{array}{cc}
\cos s & -\sin s \\
\sin s & \cos s
\end{array}\right)\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos s \cos t-\sin s \sin t & -\cos s \sin t-\sin s \cos t \\
\sin t \cos s+\cos s \sin t & -\sin s \sin t+\cos s \cos t
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos (s+t) & -\sin (s+t) \\
\sin (s+t) & \cos (s+t)
\end{array}\right) \\
& =R_{s+t} .
\end{aligned}
$$

Geometric meaning: Multiplication of matrices is the same as composition of linear functions. Rotating by angle t and then by angle s is the same as rotating once by angle $s+t$. We see from these arguments that rotation matrices commute:

$$
R_{s} R_{t}=R_{s+t}=R_{t} R_{s}
$$

(b): We have

$$
\begin{aligned}
F_{t}^{2} & =\left(\begin{array}{cc}
\cos t & \sin t \\
\sin t & -\cos t
\end{array}\right)\left(\begin{array}{cc}
\cos t & \sin t \\
\sin t & -\cos t
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos ^{2} t+\sin ^{2} t & \cos t \sin t-\sin t \cos t \\
\sin t \cos t-\cos t \sin t & \sin ^{2} t+\cos ^{2} t
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =I .
\end{aligned}
$$

Geometric meaning: Reflecting twice is the same as doing nothing.
(c): We have

$$
\begin{aligned}
P_{t}^{2} & =\left(\begin{array}{cc}
\cos ^{2} t & \cos t \sin t \\
\cos t \sin t & \sin ^{2} t
\end{array}\right)\left(\begin{array}{cc}
\cos ^{2} t & \cos t \sin t \\
\cos t \sin t & \sin ^{2} t
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos ^{4} t+\cos ^{2} t \sin ^{2} t & \cos ^{3} t \sin t+\cos t \sin ^{3} t \\
\cos ^{3} t \sin t+\cos t \sin ^{3} t & \cos ^{2} t \sin ^{2} t+\sin ^{4} t
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos ^{2} t\left(\cos ^{2} t+\sin ^{2} t\right) & \cos t \sin t\left(\cos ^{2} t+\sin ^{2} t\right) \\
\cos t \sin t\left(\cos ^{2} t+\sin ^{2} t\right) & \sin ^{2} t\left(\cos ^{2} t+\sin ^{2} t\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos ^{2} t & \cos t \sin t \\
\cos t \sin t & \sin ^{2} t
\end{array}\right) \\
& =P_{t} .
\end{aligned}
$$

Geometric meaning: Projecting twice is the same as projecting once.
(d): Using the double angle formulas gives

$$
\begin{aligned}
F_{2 t}+I & =\left(\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
\sin (2 t) & -\cos (2 t)
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos (2 t)+1 & \sin (2 t) \\
\sin (2 t) & -\cos (2 t)+1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 \cos ^{2} t & 2 \cos t \sin t \\
2 \cos t \sin t & 2 \sin ^{2} t
\end{array}\right) \\
& =2\left(\begin{array}{cc}
\cos ^{2} t & \cos t \sin t \\
\cos t \sin t & \sin ^{2} t
\end{array}\right) \\
& =2 P_{t} .
\end{aligned}
$$

Geometric meaning: This identity expresses the relationship between projection and reflection. Recall that $F_{2 t}$ (resp. P_{t}) are the reflection across (resp. projection onto) the line in \mathbb{R}^{2} with positive angle t from the x-axis. Here is a picture:

3. Examples of Matrix Groups. Consider the following sets of matrices:

$$
\begin{aligned}
\mathrm{GL}_{n}(\mathbb{R}) & =\left\{\text { matrices } A \in \mathbb{R}^{n \times n} \text { such that } A^{-1} \text { exists }\right\} \\
\mathrm{O}_{n}(\mathbb{R}) & =\left\{\text { matrices } A \in \mathbb{R}^{n \times n} \text { such that } A^{-1}=A^{T}\right\} .
\end{aligned}
$$

(a) Check that each of these sets is a group. That is, it contains the identity matrix, it is closed under under taking inverses, and it is closed under taking products.
(b) The equation $A^{T} A=I$ tells us that the columns of A are an orthonormal set of vectors. Use this fact to show that every matrix in $\mathrm{O}_{2}(\mathbb{R})$ is equal to R_{t} or F_{t} from Problem 2. [Hint: Since the first column has length 1 it equals $(\cos t, \sin t)$ for some angle t. The second column must be a unit vector that is perpendicular to the first column.]
(a): The identity matrix is invertible with $I^{-1}=I$. If A^{-1} exists then $\left(A^{-1}\right)^{-1}$ exists (and is equal to A). If A^{-1} and B^{-1} exist then we saw in class that $(A B)^{-1}$ exists (and is equal to $B^{-1} A^{-1}$). Thus we have shown that $\mathrm{GL}_{n}(\mathbb{R})$ is a group, called the general linear group.

A matrix satisfying $A^{-1}=A^{T}$ is called orthogonal. The identity matrix is orthogonal because $I^{-1}=I=I^{T}$. If A is orthogonal then so is A^{-1} because

$$
\left(A^{-1}\right)^{-1}=A=\left(A^{T}\right)^{T}=\left(A^{-1}\right)^{T} .
$$

If A and B are orthogonal then so is $A B$ because

$$
(A B)^{-1}=B^{-1} A^{-1}=B^{T} A^{T}=(A B)^{T} .
$$

Thus we have shown that $\mathrm{O}_{n}(\mathbb{R})$ is a group, called the orthogonal group.
(b): The condition $A^{-1}=A^{T}$ is equivalent to $A^{T} A=A A^{T}=I$ The statement $A^{T} A=I$ says that A has orthonormal columns and the statement $A A^{T}=I$ says that A has orthonormal rows. Indeed, let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ be the columns of A then we have

$$
\begin{aligned}
\left(i j \text { entry of } A^{T} A\right) & =\left(i \text { th row of } A^{T}\right)(j \text { th col of } A) \\
& =\mathbf{a}_{i}^{T} \mathbf{a}_{j}
\end{aligned}
$$

[^0]$$
=\left(\text { dot product of } \mathbf{a}_{i} \text { and } \mathbf{a}_{j}\right) .
$$

But the $i j$ entry of the identity matrix is the Kronecker delta $\delta_{i j}$. Hence if $A^{T} A=I$ then

$$
\left(\text { dot product of } \mathbf{a}_{i} \text { and } \mathbf{a}_{j}\right)=\delta_{i j}
$$

and we see that the columns of A are orthonormal.
Now let $A \in \mathrm{O}_{2}(\mathbb{R})$ with columns $\mathbf{a}_{1}, \mathbf{a}_{2} \in \mathbb{R}^{2}$. Since $\left\|\mathbf{a}_{1}\right\|^{2}$ we can write $\mathbf{a}_{1}=(\cos t, \sin t)$ for some unique angle $t \in[0,2 \pi)$. Then since $\mathbf{a}_{1} \bullet \mathbf{a}_{2}=0$ and $\left\|\mathbf{a}_{2}\right\|=1$ we must have $\mathbf{a}_{2}=(-\sin t, \cos t)$ or $\mathbf{a}_{2}=(\sin t,-\cos t)$. Picture:

Hence the group $\mathrm{O}_{2}(\mathbb{R})$ consists of rotations and reflections. Remark: Continuing from Problem 2 , one can check the identities:

- $R_{s} R_{t}=R_{s+t}$,
- $R_{s} F_{t}=F_{s+t}$,
- $F_{s} R_{t}=F_{s-t}$,
- $F_{s} F_{t}=R_{s-t}$.

The product of two rotations is a rotation. The product of a rotation and a reflection is a reflection. The product of two reflections is a rotation. Rotations commute with each other, but they don't commute with reflections. Reflections do not commute with each other.
4. Frobenius Norm. For any complex matrix $A=\left(a_{i j}\right)$ we define the Frobenius norm:

$$
\|A\|_{F}:=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}
$$

We already know that $\|\cdot\|_{F}$ is a norm on the vector space $\mathbb{C}^{m \times n}$ of $m \times n$ matrices under addition and scalar multiplication. In this problem you will show that $\|A B\|_{F} \leq\|A\|_{F}\|B\|_{F}$ for any matrices A, B where the product is $A B$ defined.
(a) If $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{\ell}$ are the columns of $A \in \mathbb{C}^{\ell \times m}$, show that

$$
\|A\|_{F}=\sqrt{\left\|\mathbf{a}_{1}\right\|^{2}+\cdots+\left\|\mathbf{a}_{m}\right\|^{2}}
$$

(b) For any column vectors $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{\ell}$, show that $\left\|\mathbf{a b}^{T}\right\|_{F}=\|\mathbf{a}\|\|\mathbf{b}\|$.
(c) For any real numbers x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{m} use Cauchy-Schwarz to show that

$$
x_{1} y_{1}+\cdots+x_{m} y_{m} \leq \sqrt{x_{1}^{2}+\cdots+x_{m}^{2}} \cdot \sqrt{y_{1}^{2}+\cdots y_{m}^{2}}
$$

(d) Let $A \in \mathbb{C}^{\ell \times m}$ have column vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{C}^{\ell}$ and let $B \in \mathbb{C}^{m \times n}$ have row vectors $\mathbf{b}_{1}^{T}, \ldots, \mathbf{b}_{m}^{T} \in \mathbb{C}^{n}$. Combine (abc) with the usual triangle inequality to show that $\|A B\|_{F} \leq\|A\|_{F}\|B\|_{F}$. Hint: Apply $\|\cdot\|_{F}$ to both sides of the formula

$$
A B=\mathbf{a}_{1} \mathbf{b}_{1}^{T}+\cdots+\mathbf{a}_{m} \mathbf{b}_{m}^{T}
$$

(a): The j th column of A is $\mathbf{a}_{j}=\left(a_{1 j}, a_{2 j}, \ldots, a_{\ell j}\right)$, hence

$$
\left\|\mathbf{a}_{j}\right\|_{F}^{2}=\left\|\mathbf{a}_{j}\right\|^{2}=\left|a_{1 j}\right|^{2}+\cdots+\left|a_{\ell j}\right|^{2}=\sum_{i=1}^{\ell}\left|a_{i j}\right|^{2}
$$

Then the Frobenius norm of A satisfies

$$
\|A\|_{F}^{2}=\sum_{i, j}\left|a_{i j}\right|^{2}=\sum_{i=1}^{\ell} \sum_{j=1}^{m}\left|a_{i j}\right|^{2}=\sum_{j=1}^{m}\left(\sum_{i=1}^{\ell}\left|a_{i j}\right|^{2}\right)=\sum_{j=1}^{m}\left\|\mathbf{a}_{j}\right\|^{2} .
$$

(b): For any column vectors $\mathbf{a}=\left(a_{1}, \ldots, a_{\ell}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{\ell}\right)$ note that the $i j$ entry of the $\ell \times \ell$ matrix $\mathbf{a b}^{T}$ is $a_{i} b_{j}$. Recall that the absolute value of complex numbers is multiplicative: $\left|a_{i} b_{j}\right|=\left|a_{i}\right|\left|b_{j}\right|$. Hence we have

$$
\begin{aligned}
\left\|\mathbf{a b}^{T}\right\|_{F}^{2} & =\sum_{i, j}\left|a_{i} b_{j}\right|^{2} \\
& =\sum_{i, j}\left|a_{i}\right|^{2}\left|b_{j}\right|^{2} \\
& =\left(\sum_{i}\left|a_{i}\right|^{2}\right)\left(\sum_{j}\left|b_{j}\right|^{2}\right) \\
& =\|\mathbf{a}\|_{F}^{2}\|\mathbf{b}\|_{F}^{2} .
\end{aligned}
$$

(c): Given real vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)$, the Cauchy-Schwarz inequality for the dot product in \mathbb{R}^{m} tells us that

$$
\begin{aligned}
|\mathbf{x} \bullet \mathbf{y}|^{2} & \leq(\mathbf{x} \bullet \mathbf{x})(\mathbf{y} \bullet \mathbf{y}), \\
|\mathbf{x} \bullet \mathbf{y}| & \leq \sqrt{\mathbf{x} \bullet \mathbf{x}} \sqrt{\mathbf{y} \bullet \mathbf{y}}, \\
\mathbf{x} \bullet \mathbf{y} & \leq \sqrt{\mathbf{x} \bullet \mathbf{x}} \sqrt{\mathbf{y} \bullet \mathbf{y}} \\
x_{1} y_{1}+\cdots+x_{m} y_{m} & \leq \sqrt{x_{1}^{2}+\cdots+x_{m}^{2}} \cdot \sqrt{y_{1}^{2}+\cdots y_{m}^{2}} .
\end{aligned}
$$

(d): Finally, let $A \in \mathbb{C}^{\ell \times m}$ have column vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{C}^{\ell}$ and let $B \in \mathbb{C}^{m \times n}$ have row vectors $\mathbf{b}_{1}^{T}, \ldots, \mathbf{b}_{m}^{T} \in \mathbb{C}^{n}$. From the definition of matrix multiplication we have

$$
A B=\mathbf{a}_{1} \mathbf{b}_{1}^{T}+\cdots+\mathbf{a}_{m} \mathbf{b}_{m}^{T}
$$

Now we apply the Frobenius norm to both sides:

$$
\begin{array}{rlr}
\|A B\|_{F} & =\left\|\mathbf{a}_{1} \mathbf{b}_{1}^{T}+\cdots+\mathbf{a}_{m} \mathbf{b}_{m}^{T}\right\|_{F} & \\
& \leq\left\|\mathbf{a}_{1} \mathbf{b}_{1}^{T}\right\|_{F}+\cdots+\left\|\mathbf{a}_{m} \mathbf{b}_{m}^{T}\right\|_{F} & \text { triangle inequality } \\
& =\left\|\mathbf{a}_{1}\right\|\left\|\mathbf{b}_{1}\right\|+\cdots+\left\|\mathbf{a}_{m}\right\|\left\|\mathbf{b}_{m}\right\| & \text { part }(\mathrm{b}) \\
& \leq \sqrt{\left\|\mathbf{a}_{1}\right\|^{2}+\cdots+\left\|\mathbf{a}_{m}\right\|^{2}} \sqrt{\left\|\mathbf{b}_{1}\right\|^{2}+\cdots+\left\|\mathbf{b}_{m}\right\|^{2}} & \text { part }(\mathrm{c}) \\
& =\|A\|_{F}\|B\|_{F} . & \text { part }(\mathrm{a})
\end{array}
$$

5. Geometric Series of Matrices (Optional). Let A be a square matrix with $\|A\|_{F}<1$. In this problem you will show that $I-A$ is invertible, with a power series expansion that converges with respect to the Frobenius norm, 22

$$
(I-A)^{-1}=I+A^{2}+A^{3}+\cdots=\sum_{k \geq 0} A^{k}
$$

(a) Show that $\left\|A^{n}\right\|_{F} \leq\|A\|_{F}^{n}$. Use this to show that A^{n} converges to the zero matrix.
(b) Let $S_{n}=\sum_{k=0}^{n} A^{k}$, and show that $\left\|S_{n}\right\|_{F} \leq \sum_{k=0}^{n}\|A\|_{F}^{k}$. Then the usual geometric series implies that S_{n} is a Cauchy sequence, hence S_{n} converges to some matrix T.
(c) Observe that $(I-A) S_{n}=I-A^{n+1}$. Use (a) to show that the right side converges to I and use (b) to show that the left side converges to $(I-A) T$. Hence $(I-A) T=I$.
(d) Application. Consider a partitioned matrix

$$
P=\left(\begin{array}{c|c}
I & R \\
\hline O & Q
\end{array}\right)
$$

where I is an identity matrix, R is any rectangular matrix and Q is a square matrix satisfying $\|Q\|_{F}<1$. Use the geometric series for matrices to show that

$$
P^{n} \rightarrow\left(\begin{array}{c|c}
I & R(I-Q)^{-1} \\
\hline O & O
\end{array}\right) \quad \text { as } n \rightarrow \infty
$$

[Hint: Compute the first few powers of P and observe a pattern.]
(a): It follows directly from Problem $4(\mathrm{~d})$ that $0 \leq\left\|A^{n}\right\|_{F} \leq\|A\|_{F}^{n}$ for any square matrix. If $\|A\|_{F}<1$ then this implies that $\|A\|_{F}^{n} \rightarrow 0$ and hence $\left\|A^{n}-O\right\|_{F}=\left\|A^{n}\right\|_{F} \rightarrow 0$ as $n \rightarrow \infty$. By definition this means that $A^{n} \rightarrow O$ with respect to the Frobenius norm \square^{3}
(b): I guess I should have asked you to prove that S_{n} is a Cauchy sequence with respect to the Frobenius norm. So consider integers $0<N \leq m<n$ and let $\lambda:=\|A\|_{F}$. Assuming $\lambda \neq 1$ we have ${ }^{4}$

$$
0 \leq\left\|S_{n}-S_{m}\right\|_{F}=\left\|\sum_{k=m+1}^{n} A^{k}\right\| \leq \sum_{k=m+1}^{n}\|A\|_{F}^{k}=\sum_{k=m+1}^{n} \lambda^{k}=\frac{\lambda^{m+1}-\lambda^{n+1}}{1-\lambda}
$$

[^1]If $0 \leq \lambda<1$ then since $n-m \geq 1$ we have $0 \leq \lambda^{n-m}<1$ and hence $0<1-\lambda^{n-m} \leq 1$. But we also have $0<1-\lambda$ and $0<\lambda^{m+1} /(1-\lambda)$, hence

$$
0 \leq \frac{\lambda^{m+1}-\lambda^{n+1}}{1-\lambda}=\frac{\lambda^{m+1}}{1-\lambda}\left(1-\lambda^{n-m}\right) \leq \frac{\lambda^{m+1}}{1-\lambda}
$$

Since $\lambda^{m+1} \rightarrow 0$ as $m \rightarrow \infty$, it follows that $\left(\lambda^{m+1}-\lambda^{n+1}\right) /(1-\lambda) \rightarrow 0$ as $N \rightarrow \infty .^{5}$ We have shown that S_{n} is a Cauchy sequence with respect to the Frobenius norm. By the completeness of Hermitian space it follows that S_{n} converges to some matrix T.
(c): We have a straightforward algebraic identity:

$$
(I-A) S_{n}=\sum_{k=0}^{n} A^{k}-\sum_{k=1}^{n+1} A^{k}=I-A^{n+1}
$$

Since $A^{n+1} \rightarrow O$, the right hand side converges to I. To be precise, we have $\left\|I-\left(I-A^{n+1}\right)\right\|_{F}=$ $\left\|A^{n+1}\right\|_{F} \rightarrow 0$, so $I-A^{n+1} \rightarrow I$ by definition of convergence with respect to the Frobenius norm. On the other hand, since S_{n} converges to T, the left hand side converges to $(I-A) T$. To be precise, since $\left\|S_{n}-T\right\|_{F} \rightarrow 0$ by definition, we have

$$
0 \leq\left\|(I-A) S_{n}-(I-A) T\right\|_{F}=\left\|(I-A)\left(S_{n}-T\right)\right\|_{F} \leq\|I-A\|_{F}\left\|S_{n}-T\right\|_{F} \rightarrow 0
$$

Thus we have shown that $(I-A) T=I$. We could also show that $T(I-A)=I$ by using the identity $S_{n}(I-A)=I-A^{n+1}$, but this is not necessary because $(I-A) T=I$ implies $T(I-A)=I$ by the Fundamental Theorem.

Remark: As I mentioned above, the Frobenius norm is not special. Essentially the same proof works for any matrix norm $\|-\|$ satisfying $\|A\|<1$. The furthest we can push this is to say that the geometric series $\sum_{k} A^{k}$ converges if and only if the maximum of the absolute values of the eigenvalues of A is <1. That result is harder to prove and requires something like the Jordan Canonical Form.

Reminder: Problem 5 was optional.
(d): Application. Let Q be a square matrix with $\|Q\|_{F}<1$ and consider the matrix

$$
P=\left(\begin{array}{c|c}
I & R \\
\hline O & Q
\end{array}\right)
$$

By induction we can show that

$$
P^{n}=\left(\begin{array}{c|c}
I & R\left(I+Q+\cdots+Q^{n-1}\right) \\
\hline O & Q^{n}
\end{array}\right)
$$

whence

$$
P^{n} \rightarrow\left(\begin{array}{c|c}
I & R(I-Q)^{-1} \\
\hline O & O
\end{array}\right) \quad \text { as } n \rightarrow \infty
$$

In class we will apply this result to Markov chains.

[^2]
[^0]: ${ }^{1}$ And it follows from the Fundamental Theorem that the statements $A^{T} A=I$ and $A A^{T}=I$ are equivalent to each other.

[^1]: ${ }^{2}$ To be precise, for any sequence of matrices X_{1}, X_{2}, \ldots and for any matrix Y, we say that X_{n} converges to Y if and only if $\left\|X_{n}-Y\right\|_{F}$ converges to the number zero. It follows from the completeness of the complex numbers that if $\left\|X_{n}-X_{m}\right\|_{F}$ gets arbitrarily small for n and m arbitrarily large (i.e., if X_{n} is a Cauchy sequence) then there exists some matrix Y such that $X_{n} \rightarrow Y$.
 ${ }^{3}$ In fact, $A^{n} \rightarrow O$ with respect to any norm on $\mathbb{C}^{n \times n}$ because any two norms on a finite dimensional vector space are topologically equivalent. Never mind what that means.
 ${ }^{4}$ The last equality uses $\sum_{k=0}^{m} \lambda^{k}=\left(\lambda^{m+1}-1\right) /(\lambda-1)$ and $\sum_{k=0}^{n} \lambda^{k}=\left(\lambda^{n+1}-1\right) /(\lambda-1)$.

[^2]: ${ }^{5}$ Isn't analysis fun?

