1. Matrix Arithmetic. You will practice matrix arithmetic by examining the formula for block matrix inversion. Consider a block matrix

$$
P=\left(\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right)
$$

where $A$ and $D$ are square, and where the inverse matrices $A^{-1}$ and $\left(D-C A^{-1} B\right)^{-1}$ exist. To save notation, let's write $E=D-C A^{-1} B$. In this case we consider the block matrix

$$
Q=\left(\begin{array}{c|c}
A^{-1}+A^{-1} B E^{-1} C A^{-1} & -A^{-1} B E^{-1} \\
\hline-E^{-1} C A^{-1} & E^{-1}
\end{array}\right)
$$

Check that $P Q=I$. It is also true that $Q P=I$ but please don't check this.
2. Special $2 \times 2$ Matrices. For any real number $t$ we define the following matrices:

$$
R_{t}=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right), \quad F_{t}=\left(\begin{array}{cc}
\cos t & \sin t \\
\sin t & -\cos t
\end{array}\right), \quad P_{t}=\left(\begin{array}{cc}
\cos ^{2} t & \cos t \sin t \\
\cos t \sin t & \sin ^{2} t
\end{array}\right) .
$$

(a) Describe what each matrix does geometrically. [Hint: Rotate, reFlect, Project.]
(b) Check that $R_{s} R_{t}=R_{s+t}$. What does this mean geometrically?
(c) Check that $F_{t}^{2}=I$. What does this mean geometrically?
(d) Check that $P_{t}^{2}=P_{t}$. What does this mean geometrically?
(e) Check that $F_{2 t}+I=2 P_{t}$. Draw a picture to show what this means geometrically. [For example, maybe take $t=\pi / 3$ and $\mathbf{x}=(1,0)$. Draw the line $y=\sqrt{3} x$ and the four points $\mathbf{x}, P_{t} \mathbf{x}, F_{2 t} \mathbf{x}$, and $2 P_{t} \mathbf{x}$.]
3. Examples of Matrix Groups. Consider the following sets of matrices:

$$
\begin{aligned}
\mathrm{GL}_{n}(\mathbb{R}) & =\left\{\text { matrices } A \in \mathbb{R}^{n \times n} \text { such that } A^{-1} \text { exists }\right\}, \\
\mathrm{O}_{n}(\mathbb{R}) & =\left\{\text { matrices } A \in \mathbb{R}^{n \times n} \text { such that } A^{-1}=A^{T}\right\} .
\end{aligned}
$$

(a) Check that each of these sets is a group. That is, it contains the identity matrix, it is closed under under taking inverses, and it is closed under taking products.
(b) The equation $A^{T} A=I$ tells us that the columns of $A$ are an orthonormal set of vectors. Use this fact to show that every matrix in $\mathrm{O}_{2}(\mathbb{R})$ is equal to $R_{t}$ or $F_{t}$ from Problem 2. [Hint: Since the first column has length 1 it equals $(\cos t, \sin t)$ for some angle $t$. The second column must be a unit vector that is perpendicular to the first column.]
4. Frobenius Norm. For any complex matrix $A=\left(a_{i j}\right)$ we define the Frobenius norm:

$$
\|A\|_{F}:=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}
$$

We already know that $\|\cdot\|_{F}$ is a norm on the vector space $\mathbb{C}^{m \times n}$ of $m \times n$ matrices under addition and scalar multiplication. In this problem you will show that $\|A B\|_{F} \leq\|A\|_{F}\|B\|_{F}$ for any matrices $A, B$ where the product is $A B$ defined.
(a) If $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{\ell}$ are the columns of $A \in \mathbb{C}^{\ell \times m}$, show that

$$
\|A\|_{F}=\sqrt{\left\|\mathbf{a}_{1}\right\|_{F}^{2}+\cdots+\left\|\mathbf{a}_{m}\right\|_{F}^{2}}
$$

(b) For any column vectors $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{\ell}$, show that $\left\|\mathbf{a b}^{T}\right\|_{F}=\|\mathbf{a}\|_{F}\|\mathbf{b}\|_{F}$.
(c) For any real numbers $x_{1}, \ldots, x_{m}$ and $y_{1}, \ldots, y_{m}$ use Cauchy-Schwarz to show that

$$
x_{1} y_{1}+\cdots+x_{m} y_{m} \leq \sqrt{x_{1}^{2}+\cdots+x_{m}^{2}} \cdot \sqrt{y_{1}^{2}+\cdots y_{m}^{2}} .
$$

(d) Let $A \in \mathbb{C}^{\ell \times m}$ have column vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{C}^{\ell}$ and let $B \in \mathbb{C}^{m \times n}$ have row vectors $\mathbf{b}_{1}^{T}, \ldots, \mathbf{b}_{m}^{T} \in \mathbb{C}^{n}$. Combine (abc) with the usual triangle inequality to show that $\|A B\|_{F} \leq\|A\|_{F}\|B\|_{F}$. Hint: Apply $\|\cdot\|_{F}$ to both sides of the formula

$$
A B=\mathbf{a}_{1} \mathbf{b}_{1}^{T}+\cdots+\mathbf{a}_{m} \mathbf{b}_{m}^{T}
$$

5. Geometric Series of Matrices (Optional). Let $A$ be a square matrix with $\|A\|_{F}<1$. In this problem you will show that $I-A$ is invertible, with a power series expansion that converges with respect to the Frobenius norm ${ }^{1}$

$$
(I-A)^{-1}=I+A^{2}+A^{3}+\cdots=\sum_{k \geq 0} A^{k}
$$

(a) Show that $\left\|A^{n}\right\|_{F} \leq\|A\|_{F}^{n}$. Use this to show that $A^{n}$ converges to the zero matrix.
(b) Let $S_{n}=\sum_{k=0}^{n} A^{k}$, and show that $\left\|S_{n}\right\|_{F} \leq \sum_{k=0}^{n}\|A\|_{F}^{k}$. Then the usual geometric series implies that $S_{n}$ is a Cauchy sequence, hence $S_{n}$ converges to some matrix $T$.
(c) Observe that $(I-A) S_{n}=I-I-A^{n+1}$. Use (a) to show that the right side converges to $I$ and use (b) to show that the left side converges to $(I-A) T$. Hence $(I-A) T=I$.
(d) Application. Consider a partitioned matrix

$$
P=\left(\begin{array}{c|c}
I & R \\
\hline 0 & Q
\end{array}\right)
$$

where $I$ is an identity matrix, $R$ is any rectangular matrix and $Q$ is a square matrix satisfying $\|Q\|_{F}<1$. Use the geometric series for matrices to show that

$$
P^{n} \rightarrow\left(\begin{array}{c|c}
I & R(I-Q)^{-1} \\
\hline 0 & 0
\end{array}\right) \quad \text { as } n \rightarrow \infty .
$$

[Hint: Compute the first few powers of $P$ and observe a pattern.]

[^0]
[^0]:    ${ }^{1}$ To be precise, for any sequence of matrices $X_{1}, X_{2}, \ldots$ and for any matrix $Y$, we say that $X_{n}$ converges to $Y$ if and only if $\left\|X_{n}-Y\right\|_{F}$ converges to the number zero. It follows from the completeness of the complex numbers that if $\left\|X_{n}-X_{m}\right\|_{F}$ gets arbitrarily small for $n$ and $m$ arbitrarily large (i.e., if $X_{n}$ is a Cauchy sequence) then there exists some matrix $Y$ such that $X_{n} \rightarrow Y$.

