Math 510 Fall 2022
Homework 1 Drew Armstrong

1. The Cauchy-Schwarz Inequality. Let V be an inner product space over R. Prove that
for all vectors u,v € V we have

[(u, v)[? < (u,u)(v,v).
[Hint: If u = 0 and v = O then it’s easy, so let’s assume that v # 0. From Axiom (3d) we
must have (u — tv,u — tv) > 0 for any scalar ¢t € R. Expand this expression using bilinearity
and then substitute t = (u,v)/(v,v).]
Proof. Consider vectors u,v € V with v # 0, and a scalar t € R. Then we have
0<(u—tv,u—tv)
= (u,u) — 2t{u,v) + t2(v, v).
Since this holds for any ¢ € R we may substitute t = (u,v)/(v,v) to get

u,u) — -<u’V>-uv <u’v>2-vv
0< -2 Y )+ BV

0 < (u,u)(v,v) —2(u,v)? + (u,v)? multiply by (v, v)
(u,v)? < (u,u)(v,v).
O

Remark: Here we have |(u, v)|?> = (u,v)? because (u,v) is a real number. In the next proof

we will allow (u,v) to be complex.
Proof for Hermitian Spaces. Let (—, —) be a Hermitian inner product on a complex vector
space V. Then for any vectors u,v € V and for any complex scalar t € C we have
0<(u—tv,u—tv)
= (u,u) — t(u,v) — t*(v,u) + t"t({v,v).

Now suppose that v # 0, so that (v, v) is a positive real number. Since the above inequality
holds for any complex ¢t we may substitute ¢t = (u, v)*/(v,v) to get

0 < (u,u) —t(u,v) —t*(v,u) + t*t(v,v)

0< (u,u)— 2‘:""2; S, v) — <<V“":’>>* (v,u) + 2:3('&"‘)’) (v, v)
0< - P ) - Py YT gy
N L% N O [l

(v,v) (v,v) (v,v)
0 < (u,u)({v,v) — |[(u,v)|?
[(u, v)[2 < (u,u)(v,v).

O

2. Normed Vector Spaces. Let V be an inner product space and consider the function

V]l == v/ ({v,v).



Use the axioms for inner products to prove the following properties.

(a) We have ||v|| > 0 for all v € V, with ||v|| =0 if and only if v = 0.

(b) For all a € R and v € V' we have ||av|| = |al||v].

(¢) For all u,v € V we have [u+v|| < |uf+|lv||. [Hint: Expand [[u+v|?> = (u+v,u+v)
and use the Cauchy-Schwarz inequality to show that |[[u + v|* < (Jlul| + ||v]))?)]

I will prove these for the slightly more general case of Hermitian inner products.

(a): Since (v,v) > 0 we have y/(v,v) > 0. Furthermore, we have

(v,v) =0 <= (v,v)=0 <<= v=0.

(b): For all @« € C and v € V we have
lav]* = (av,av) = a*alv,v) = |o*|v]*.
Then taking the square root of each side gives ||av]|| = |a|||v]|-
(c): From the Cauchy-Schwarz inequality we have |(u,v)|? < |Ju||?||v||?, and hence |[(u, V)| <

|ull/|v]]. Now consider any complex number aw = a 4 ib € C. By thinking of the right triangle
in R? with side lengths |a|, |b], Va2 + b2 we see that

Re(a) < |[Re(a)| = |a] < Va2 +b% = |al.

In particular, for any vectors u,v € V we have Re({u,v)) < |(u,v)|. Combining this obser-
vation with Cauchy Schwarz gives

Finally, we take square roots to obtain [[u+ v|| < |lul| + [|v]. O

3. Orthonormal Sets of Vectors. Let V be an inner product space. Suppose that a set of
vectors by, bs, ..., b, € V satisfies

1 i=j
b;,b;) =
(bi, by) {0 i # j.
In this case we say that the vectors are orthonormal.

(a) If v=aiby + - - - + a, by, show that a; = (v,b;) for all i.

se part (a) to show that the set by, bo, ..., b, 1s linearly independent.
b) U h hat th bi,b b,, is li ly ind d
(c) If v=aiby + -+ a,by,, show that ||v||? =a? + - + a%H

IDefine ||v||®> = (v, v) as in Problem 2.



I will prove these in the slightly more general case of Hermitian inner products.

(a): Suppose that (b;,b;) = d;; and v =ai;by + -+ + a,by,. Then we have
<b27v> - <b27 albl + -+ (77 b]>
- a1<bi7b1> + -+ an<bl7bn>
=ai(bs,by) + - +a;(b;,b;) + -+ a,(b;,by)
:0a1+---+0ai_1+1ai+0ai+1—|—---+0an
= ay.

Alternatively, we can use symbolic notation:
bl,V = bZ,Za] Zaz<bub]> :Zaj@-j = a;.
J J

Remark: If the coefficients are complex then we also have (v,b;) = a’.

(b): Suppose that we have a1by + - - - + a,b,, = 0 for some constants ay,...,a, € C. Then for

all 7, we have from part (a) that
a; = <bi,0> =0.

Hence the set {by,..., by} is linearly independent. Remark: In fact, we only needed to assume
that (b;,b;) = 0 for all i # j. The specific values of (b;, b;) are not important. In summary:

Fvery orthogonal set of vectors is independent.

(c): This time I will just use the symbolic notation. If you don’t follow the steps, try writing
out a long form proof as in part (a). Let v =) . a;b; where (b;,b;) = d;;. Then we have

IVI[* = (v, v)

= Zazbz,z%
—Za aj bz,b
—Za a;jdi
:Zaiai
:Z|ai|2.

Remark: If the coefficients a; are real then we have |a;|?> = a? and hence ||v||? =

2

i @

4. Fourier Series. Consider the space L?[0,1] of functionﬂ [0,1] — R with inner product

1
(f(2),g(z)) = /0 f(2)g(x) de

2We require that fo 2 dz exists and is finite.



For any integer n > 1 we define the functions s, () := v/2sin(27nz) and ¢, (z) := /2 cos(2mnz).
Recall the trigonometric angle sum identities:

cos(a £ B) = cos awcos 3 F sin acsin 3,
sin(a + ) = sinacos B =+ cos asin .
(a) Prove that (1,s,(z)) = (1,c,(z)) = 0 for all n.
(b) Use the angle sum identities to prove that
2sinacos f = sin(a + () + sin(a — ),
2sinasin 8 = cos(a — 3) — cos(a + f3),
2cosacos B = cos(a — 3) + cos(a + ).

—
)

) Use (b) to prove that (s, (z),cn(z)) =0 for all m,n > 1.
) Use (b) to prove that (sy,(z), sn(x)) = dmn.
e) Use (b) to prove that (¢, (x), ch(x)) = dpmn.

(o}

(

—

(a): For any n € Z we have cos(2mn) = 1 and hence

1
(1,85(x)) = \/5/0 1sin(2wnz) dx
V2

=" [- cos(27rn93)](1)

2mn
= —;/f [— cos(2mn) + cos(0)]
= _Qii [—1+1]

Similarly, we have
1
(1,cn(x)) = \/i/ 1 cos(2mnx) dx
0

= = [sin(2mna)];

2mn
= 2\/3 [sin(27n) — sin(0)]
= sz [0—0]
=0.

(b): Add the relevant angle sum/difference formulas.

(c): For all m,n € Z, part (b) tells us that

2sin(2wmz) cos(2mnz) = sin(2w(m + n)x) + sin(2w(m — n)z).



If m = n then this gives

(8m(z), cn())

(sn(2), en())

/ 2sin(2mnx) cos(2mnx) dx
0

1
/ sin(2w(n + n)zx) + sin(2w(n — n)z)] dx
0

1

[sin(2w(n + n)z) + 0] dx
0

1

cos 2m(n+n)x )L

{%
s )

=0.

And if m # n then we have

1
(Sm(x), cn(x)) :/0 2sin(2wma) cos(2mnx) dx

1
= /0 [sin(27m(m + n)z) + sin(27(m — n)x)] dx

. 1

- [_WWC cos(2m(m +n)x) — m cos(2m(m —n)x) ,
1 1

B [_27r(m+n) ( ) 27r(m—n)(1 2

=0

(d): If m = n then we have

(sm (), 5n(2)) = (0 (2), 5n(2))

:/ 2sin(2wnx) sin(2rnx) dz

0
1

= / cos(2m(n — n)x) — cos(2m(n + n)x)] dx
0

1
:/ [1 —cos(2m(n + n)zx)| dz
0

1
[a: 27rn+n sin(2m(n + n)x) )

—[(1—0)— (0 —0)]



And if m # n then we have

1
($m(x), sn(x)) —/ 2sin(2mme) sin(2mnx) dz

1
/0 cos(2m(m — n)x) — cos(2m(m + n)z)| dx

1

= [271' s1n(27r( —n)x) — D sin(2m(m + n)z) .
1

- [27r —0)- 27T(m+n)(0_0)

=0.

(e): If m = n then we have
(em (@), en(@)) = (en(2), cn(2))

= /1 2 cos(2mnx) cos(2mnx) dx
0
1
= /0 [cos(2m(n — n)x) + cos(2m(n + n)x)] dx

1
= /0 [1 4 cos(2m(n + n)z)] dz
1

1
= |z + m Sin(27r(n + n)m) .

=[1-0)+(0-0)]

And if m # n then we have

1
(em (), cn(x)) :/ 2 cos(2mma) cos(2mnx) dx

1
/0 cos(2m(m — n)x) 4+ cos(2m(m + n)z)] dx
1
= |:27T s1n(27r( —n)zr) + Inm ) sin(2m(m + n)z) )
1
- [277 —0+ 27T(m+n)(070)
=0.

Remark: Those calculations are certainly annoying, and I'm certain I made several typos.
Complex Fourier series make the calculations much easier. In that case, for each integer n € Z
we define the function x,(z) = €™ from the real interval [0, 1] to the complex numbers C.
We view these as elements of the space L?[0,1] with Hermitian inner product

1
x>>—/0 f(2)g() da



I claim that (xm (), xn(x)) = Omn. Indeed, if m = n then we have

1 1
(Xm(7), xn(2)) = (xXn(), Xn(7)) = /0 e~ 2N GI2TNT (10 /0 ldr = 1.

And if m # n then we have

1
Ot (@), X (2)) = /0 (¢i2mmay s idans g,

1
:/ 6—127rmm6127m:p dax
0

1 .
_ / ez27r(n—m):r dr
0

_ 1 i2m(n—m)x !
~i2n(n —m) [e }0
1
=—7[1-1
i2m(n —m) [ ]
=0.

Wasn’t that easier?

5. Steinitz Exchange (Optional). Let I and S be finite subsets of a vector space V', where
I is an independent set and S is a spanning set. Let’s say #1 = m and #S = n. Our goal
is to show that m < n. To prove this, we will use the method of Steinitz (1913). For any
1 < k <min{m,n} consider the following statement:

P(k):

(a)

(b)

(c)

(d)

For any k elements uy,...,u; € I, there exist some n — k elements vi,...,Vp_ € S
such that the set {uy,...,uk,vi,...,Va_k} spans all of V.

Prove that P(1) is a true statement. [Hint: Write S = {vi,...,v,} and choose any
vector u € I. Since S spans V we can write u = ) a;v;, and since u # 0 we must
have ap, # 0 for some p. Show that {u,vi,...,v,_1,Vp,...,V,} is a spanning set.]
Assume that P(k) is true for some 1 < k < min{m,n}. In this case prove that
P(k+ 1) is also true. [Hint: Choose any uj,...,ux+1 € I. Since P(k) is true we can
find vi,...,v,_ € S such that {uy,...,ug, vi,...,v,_r} spans V. In particular we
can write ugy1 = Y bju; + Y a;v;. By the independence of I we must have a, # 0 for
some p. Show that {ui,..., Wp41, V1, .., Vp—1,Vpi1,..., Vp_k} spans V]

It follows from (a) and (b) that P(k) is true for all 1 < k < min{m,n}. Use this fact
to prove that m < n. [Hint: Write I = {uy,...,uy,}. If m > n then taking k = n
shows that {uj,...,u,} is a spanning set. But then we can write u,+1 = > a;u;,
which contradicts the fact that I is independent.]

Use part (c) to prove that any two bases for V have the same number of elements.

Remark: There is another way to prove this using matrix arithmetic, which will seem easier
when we get there, but which is ultimately a much longer proof.

(a): Consider any vector u € I. Since the set S spans V there exist scalars a; such that
u = aivy + -+ a,vy, and since u # 0 at least one of these scalars is nonzero. Let’s say
ap # 0. Then we can solve for v, as follows:

1 —aq —Qyy— —a —a
p—1 p+1 n
Vp=—u+ —Vvi+---+ Vp—1+ Vp+1 + o+
a a a a
P P P P P

Vi



To show that {u,v1,...,Vp_1,Vpi1,...,Vy} is a spanning set, consider any x € V. Since S is
spanning there exist some coeflicients dy, ..., d, such that

x=divi+ - +dyvp+ -+ dyvp.

Then substituting our previous expression for v, gives

d d dpay,—
X:pu+(d1— pa1>V1+"'+<dp1— pr 1>Vp1

ap ap P
dpapi1 dpa
+<dp+1_ L )Vp+1++<dn_ pn>vna
ap ap
which shows that x is in the span of {u,vi,...,Vp—1,Vpi1,..., Vol O

(b): Now fix some 1 < k < min{m,n} and assume for induction that P(k) is true. In order to
prove that P(k-+1) is also true, we consider any set of k41 elements: uy,...,ux1q € I. Apply-
ing the statement P (k) to the subset uy, ..., uy tells us that there exist some vq,...,v,,_x € S
such that the set {uy,...,ug, vi,...,v,_r} spans all of V. In particular, we can express ugi1
as a linear combination

Uiy =biug + - +bpug +arvi + - F @k Vi

for some scalars by, ...,b; and aq, ..., a,_;. Observe that not all of the coefficients a; are zero,
since otherwise this would give a nontrivial linear relation

Ug+1 = blul + -+ bkuk,

contradicting the fact that the u; are independent. To be specific, let’s say that a, # 0. Then

we can solve for v, in terms of uq,..., Wky1,Vi,. oo, Vpo1, Vptl, - - o5 Vi

—by —by, 1
(¥*) Vvp=—ur+--+ —u, + —upy

ap ap ap

d al —Ap—1 —Aap+1 —Qp—L
+(d1— - Vit vy v Vg
Ap ap ap ap

Finally, I claim that the set {uq,..., g1, Vi, ..., Vp—1, Vps1,. .., Vn—k} spans all of V. Indeed,
for any x € V we have assumed the existence of coefficients ¢y, ..., cg,d1,...,d,_; such that

Xx=cu+- - +eup +divi+ -+ dpvp o dy g Vg

Substituting the expression (x) gives

dyb dpb d
X = <Clp1>u1++<ckpk>uk:+apuk+l

ap ap p
dya dpay,—
+(d1— pl)V1+---+(dp1— pp1>Vp1
ap ap
dpapyi1 dpp—p
N <dp+1  dpapt > Vi1 et (dn—k _ M) _—
ap ap
which shows that x is in the span of {uy, ..., Ugt+1, V1, ..., Vp—1,Vpi1,. .-, Vi) O

(c): It follows from (a) and (b) that P(k) is true for all 1 < k& < min{m,n}. We will use this to
prove that m < n. Indeed, suppose for contradiction that m > n + 1, so that min{m,n} = n.
Taking k& = n tells us that P(n) is a true statement, which means that {u,...,u,} is a
spanning set. But since m > n + 1 there exists another vector u,+1, and since {uy,...,u,}



is a spanning set we can write u,11 = ajuj + - - - + a,u,. This nontrivial relation contradicts
the fact that I is independent.

(d): Combining (a), (b) and (c) we have shown that for any independent set I and spanning
set S we must have #I < #S. Now suppose that Bj, By are two bases for V. Since B;
is independent and Bs is spanning we have #B; < #Bs. On the other hand, since Bs is
independent and Bj is spanning we have # By < #Bj. It follows that #B1 = # B as desired.



