
Math 510 Fall 2022
Homework 1 Drew Armstrong

1. The Cauchy-Schwarz Inequality. Let V be an inner product space over R. Prove that
for all vectors u,v ∈ V we have

|〈u,v〉|2 ≤ 〈u,u〉〈v,v〉.
[Hint: If u = 0 and v = 0 then it’s easy, so let’s assume that v 6= 0. From Axiom (3d) we
must have 〈u− tv,u− tv〉 ≥ 0 for any scalar t ∈ R. Expand this expression using bilinearity
and then substitute t = 〈u,v〉/〈v,v〉.]

Proof. Consider vectors u,v ∈ V with v 6= 0, and a scalar t ∈ R. Then we have

0 ≤ 〈u− tv,u− tv〉
= 〈u,u〉 − 2t〈u,v〉+ t2〈v,v〉.

Since this holds for any t ∈ R we may substitute t = 〈u,v〉/〈v,v〉 to get

0 ≤ 〈u,u〉 − 2 · 〈u,v〉
〈v,v〉

· 〈u,v〉+
〈u,v〉2

〈v,v〉2
· 〈v,v〉

0 ≤ 〈u,u〉〈v,v〉 − 2〈u,v〉2 + 〈u,v〉2 multiply by 〈v,v〉
〈u,v〉2 ≤ 〈u,u〉〈v,v〉.

�

Remark: Here we have |〈u,v〉|2 = 〈u,v〉2 because 〈u,v〉 is a real number. In the next proof
we will allow 〈u,v〉 to be complex.

Proof for Hermitian Spaces. Let 〈−,−〉 be a Hermitian inner product on a complex vector
space V . Then for any vectors u,v ∈ V and for any complex scalar t ∈ C we have

0 ≤ 〈u− tv,u− tv〉
= 〈u,u〉 − t〈u,v〉 − t∗〈v,u〉+ t∗t〈v,v〉.

Now suppose that v 6= 0, so that 〈v,v〉 is a positive real number. Since the above inequality
holds for any complex t we may substitute t = 〈u,v〉∗/〈v,v〉 to get

0 ≤ 〈u,u〉 − t〈u,v〉 − t∗〈v,u〉+ t∗t〈v,v〉

0 ≤ 〈u,u〉 − 〈u,v〉
∗

〈v,v〉
· 〈u,v〉 − 〈u,v〉

〈v,v〉∗
· 〈v,u〉+

〈u,v〉〈u,v〉∗

〈v,v〉∗〈v,v〉
· 〈v,v〉

0 ≤ 〈u,u〉 − 〈u,v〉
∗

〈v,v〉
· 〈u,v〉 − 〈u,v〉

〈v,v〉
· 〈u,v〉∗ +

〈u,v〉〈u,v〉∗

〈v,v〉〈v,v〉
· 〈v,v〉

0 ≤ 〈u,u〉 − |〈u,v〉|
2

〈v,v〉
− |〈u,v〉|

2

〈v,v〉
+
|〈u,v〉|2

〈v,v〉
0 ≤ 〈u,u〉〈v,v〉 − |〈u,v〉|2

|〈u,v〉|2 ≤ 〈u,u〉〈v,v〉.
�

2. Normed Vector Spaces. Let V be an inner product space and consider the function

‖v‖ :=
√
〈v,v〉.



Use the axioms for inner products to prove the following properties.

(a) We have ‖v‖ ≥ 0 for all v ∈ V , with ‖v‖ = 0 if and only if v = 0.
(b) For all a ∈ R and v ∈ V we have ‖av‖ = |a|‖v‖.
(c) For all u,v ∈ V we have ‖u+v‖ ≤ ‖u‖+‖v‖. [Hint: Expand ‖u+v‖2 = 〈u+v,u+v〉

and use the Cauchy-Schwarz inequality to show that ‖u + v‖2 ≤ (‖u‖+ ‖v‖)2.]

I will prove these for the slightly more general case of Hermitian inner products.

(a): Since 〈v,v〉 ≥ 0 we have
√
〈v,v〉 ≥ 0. Furthermore, we have√

〈v,v〉 = 0 ⇐⇒ 〈v,v〉 = 0 ⇐⇒ v = 0.

(b): For all α ∈ C and v ∈ V we have

‖αv‖2 = 〈αv, αv〉 = α∗α〈v,v〉 = |α|2‖v‖2.

Then taking the square root of each side gives ‖αv‖ = |α|‖v‖.

(c): From the Cauchy-Schwarz inequality we have |〈u,v〉|2 ≤ ‖u‖2‖v‖2, and hence |〈u,v〉| ≤
‖u‖‖v‖. Now consider any complex number α = a+ ib ∈ C. By thinking of the right triangle

in R2 with side lengths |a|, |b|,
√
a2 + b2 we see that

Re(α) ≤ |Re(α)| = |a| ≤
√
a2 + b2 = |α|.

In particular, for any vectors u,v ∈ V we have Re(〈u,v〉) ≤ |〈u,v〉|. Combining this obser-
vation with Cauchy Schwarz gives

‖u + v‖2 = 〈u + v,u + v〉
= 〈u,u〉+ 〈u,v〉+ 〈v,u〉+ 〈v,v〉
= 〈u,u〉+ 〈u,v〉+ 〈u,v〉∗ + 〈v,v〉
= 〈u,u〉+ 2 · Re(〈u,v〉) + 〈v,v〉
≤ 〈u,u〉+ 2 · |〈u,v〉|+ 〈v,v〉
≤ 〈u,u〉+ 2‖u‖‖v‖+ 〈v,v〉
= ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2

= (‖u‖+ ‖v‖)2 .

Finally, we take square roots to obtain ‖u + v‖ ≤ ‖u‖+ ‖v‖. �

3. Orthonormal Sets of Vectors. Let V be an inner product space. Suppose that a set of
vectors b1,b2, . . . ,bn ∈ V satisfies

〈bi,bj〉 =

{
1 i = j,

0 i 6= j.

In this case we say that the vectors are orthonormal.

(a) If v = a1b1 + · · ·+ anbn, show that ai = 〈v,bi〉 for all i.
(b) Use part (a) to show that the set b1,b2, . . . ,bn is linearly independent.
(c) If v = a1b1 + · · ·+ anbn, show that ‖v‖2 = a21 + · · ·+ a2n.1

1Define ‖v‖2 = 〈v,v〉 as in Problem 2.



I will prove these in the slightly more general case of Hermitian inner products.

(a): Suppose that 〈bi,bj〉 = δij and v = a1b1 + · · ·+ anbn. Then we have

〈bi,v〉 = 〈bi, a1b1 + · · ·+ an,bj〉
= a1〈bi,b1〉+ · · ·+ an〈bi,bn〉
= a1〈bi,b1〉+ · · ·+ ai〈bi,bi〉+ · · ·+ an〈bi,bn〉
= 0a1 + · · ·+ 0ai−1 + 1ai + 0ai+1 + · · ·+ 0an

= ai.

Alternatively, we can use symbolic notation:

〈bi,v〉 = 〈bi,
∑
j

ajbj〉 =
∑
j

ai〈bi,bj〉 =
∑
j

ajδij = ai.

Remark: If the coefficients are complex then we also have 〈v,bi〉 = a∗i .

(b): Suppose that we have a1b1 + · · ·+ anbn = 0 for some constants a1, . . . , an ∈ C. Then for
all i, we have from part (a) that

ai = 〈bi,0〉 = 0.

Hence the set {b1, . . . ,bn} is linearly independent. Remark: In fact, we only needed to assume
that 〈bi,bj〉 = 0 for all i 6= j. The specific values of 〈bi,bi〉 are not important. In summary:

Every orthogonal set of vectors is independent.

(c): This time I will just use the symbolic notation. If you don’t follow the steps, try writing
out a long form proof as in part (a). Let v =

∑
i aibi where 〈bi,bj〉 = δij . Then we have

‖v‖2 = 〈v,v〉

= 〈
∑
i

aibi,
∑
j

ajbj〉

=
∑
i,j

a∗i aj〈bi,bj〉

=
∑
i,j

a∗i ajδi,j

=
∑
i

a∗i ai

=
∑
i

|ai|2.

Remark: If the coefficients ai are real then we have |ai|2 = a2i and hence ‖v‖2 =
∑

i a
2
i .

4. Fourier Series. Consider the space L2[0, 1] of functions2 [0, 1]→ R with inner product

〈f(x), g(x)〉 =

∫ 1

0
f(x)g(x) dx.

2We require that
∫ 1

0
f(x)2 dx exists and is finite.



For any integer n ≥ 1 we define the functions sn(x) :=
√

2 sin(2πnx) and cn(x) :=
√

2 cos(2πnx).
Recall the trigonometric angle sum identities:

cos(α± β) = cosα cosβ ∓ sinα sinβ,

sin(α± β) = sinα cosβ ± cosα sinβ.

(a) Prove that 〈1, sn(x)〉 = 〈1, cn(x)〉 = 0 for all n.
(b) Use the angle sum identities to prove that

2 sinα cosβ = sin(α+ β) + sin(α− β),

2 sinα sinβ = cos(α− β)− cos(α+ β),

2 cosα cosβ = cos(α− β) + cos(α+ β).

(c) Use (b) to prove that 〈sm(x), cn(x)〉 = 0 for all m,n ≥ 1.
(d) Use (b) to prove that 〈sm(x), sn(x)〉 = δmn.
(e) Use (b) to prove that 〈cm(x), cn(x)〉 = δmn.

(a): For any n ∈ Z we have cos(2πn) = 1 and hence

〈1, sn(x)〉 =
√

2

∫ 1

0
1 sin(2πnx) dx

= −
√

2

2πn
[− cos(2πnx)]10

= −
√

2

2π
[− cos(2πn) + cos(0)]

= −
√

2

2πn
[−1 + 1]

= 0.

Similarly, we have

〈1, cn(x)〉 =
√

2

∫ 1

0
1 cos(2πnx) dx

=

√
2

2πn
[sin(2πnx)]10

=

√
2

2π
[sin(2πn)− sin(0)]

=

√
2

2πn
[0− 0]

= 0.

(b): Add the relevant angle sum/difference formulas.

(c): For all m,n ∈ Z, part (b) tells us that

2 sin(2πmx) cos(2πnx) = sin(2π(m+ n)x) + sin(2π(m− n)x).



If m = n then this gives

〈sm(x), cn(x)〉 = 〈sn(x), cn(x)〉

=

∫ 1

0
2 sin(2πnx) cos(2πnx) dx

=

∫ 1

0
[sin(2π(n+ n)x) + sin(2π(n− n)x)] dx

=

∫ 1

0
[sin(2π(n+ n)x) + 0] dx

=

[
− 1

2π(n+ n)x
cos(2π(n+ n)x)

]1
0

=

[
− 1

2π(n+ n)x
(1− 1)

]
= 0.

And if m 6= n then we have

〈sm(x), cn(x)〉 =

∫ 1

0
2 sin(2πmx) cos(2πnx) dx

=

∫ 1

0
[sin(2π(m+ n)x) + sin(2π(m− n)x)] dx

=

[
− 1

2π(m+ n)x
cos(2π(m+ n)x)− 1

2π(m− n)
cos(2π(m− n)x)

]1
0

=

[
− 1

2π(m+ n)x
(1− 1)− 1

2π(m− n)
(1− 1)

]
= 0.

(d): If m = n then we have

〈sm(x), sn(x)〉 = 〈sn(x), sn(x)〉

=

∫ 1

0
2 sin(2πnx) sin(2πnx) dx

=

∫ 1

0
[cos(2π(n− n)x)− cos(2π(n+ n)x)] dx

=

∫ 1

0
[1− cos(2π(n+ n)x)] dx

=

[
x− 1

2π(n+ n)
sin(2π(n+ n)x)

]1
0

= [(1− 0)− (0− 0)]

= 1.



And if m 6= n then we have

〈sm(x), sn(x)〉 =

∫ 1

0
2 sin(2πmx) sin(2πnx) dx

=

∫ 1

0
[cos(2π(m− n)x)− cos(2π(m+ n)x)] dx

=

[
1

2π(m− n)
sin(2π(m− n)x)− 1

2π(m+ n)
sin(2π(m+ n)x)

]1
0

=

[
1

2π(m− n)
(0− 0)− 1

2π(m+ n)
(0− 0)

]
= 0.

(e): If m = n then we have

〈cm(x), cn(x)〉 = 〈cn(x), cn(x)〉

=

∫ 1

0
2 cos(2πnx) cos(2πnx) dx

=

∫ 1

0
[cos(2π(n− n)x) + cos(2π(n+ n)x)] dx

=

∫ 1

0
[1 + cos(2π(n+ n)x)] dx

=

[
x+

1

2π(n+ n)
sin(2π(n+ n)x)

]1
0

= [(1− 0) + (0− 0)]

= 1.

And if m 6= n then we have

〈cm(x), cn(x)〉 =

∫ 1

0
2 cos(2πmx) cos(2πnx) dx

=

∫ 1

0
[cos(2π(m− n)x) + cos(2π(m+ n)x)] dx

=

[
1

2π(m− n)
sin(2π(m− n)x) +

1

2π(m+ n)
sin(2π(m+ n)x)

]1
0

=

[
1

2π(m− n)
(0− 0) +

1

2π(m+ n)
(0− 0)

]
= 0.

Remark: Those calculations are certainly annoying, and I’m certain I made several typos.
Complex Fourier series make the calculations much easier. In that case, for each integer n ∈ Z
we define the function χn(x) = ei2πnx from the real interval [0, 1] to the complex numbers C.
We view these as elements of the space L2[0, 1] with Hermitian inner product

〈f(x), g(x)〉 =

∫ 1

0
f(x)∗g(x) dx.



I claim that 〈χm(x), χn(x)〉 = δmn. Indeed, if m = n then we have

〈χm(x), χn(x)〉 = 〈χn(x), χn(x)〉 =

∫ 1

0
e−2πnxei2πnx dx =

∫ 1

0
1 dx = 1.

And if m 6= n then we have

〈χm(x), χn(x)〉 =

∫ 1

0
(ei2πmx)∗ei2πnx dx

=

∫ 1

0
e−i2πmxei2πnx dx

=

∫ 1

0
ei2π(n−m)x dx

=
1

i2π(n−m)

[
ei2π(n−m)x

]1
0

=
1

i2π(n−m)
[1− 1]

= 0.

Wasn’t that easier?

5. Steinitz Exchange (Optional). Let I and S be finite subsets of a vector space V , where
I is an independent set and S is a spanning set. Let’s say #I = m and #S = n. Our goal
is to show that m ≤ n. To prove this, we will use the method of Steinitz (1913). For any
1 ≤ k ≤ min{m,n} consider the following statement:

P (k): For any k elements u1, . . . ,uk ∈ I, there exist some n − k elements v1, . . . ,vn−k ∈ S
such that the set {u1, . . . ,uk,v1, . . . ,vn−k} spans all of V .

(a) Prove that P (1) is a true statement. [Hint: Write S = {v1, . . . ,vn} and choose any
vector u ∈ I. Since S spans V we can write u =

∑
aivi, and since u 6= 0 we must

have ap 6= 0 for some p. Show that {u,v1, . . . ,vp−1,vp, . . . ,vn} is a spanning set.]
(b) Assume that P (k) is true for some 1 ≤ k < min{m,n}. In this case prove that

P (k + 1) is also true. [Hint: Choose any u1, . . . ,uk+1 ∈ I. Since P (k) is true we can
find v1, . . . ,vn−k ∈ S such that {u1, . . . ,uk,v1, . . . ,vn−k} spans V . In particular we
can write uk+1 =

∑
biui +

∑
aivi. By the independence of I we must have ap 6= 0 for

some p. Show that {u1, . . . ,uk+1,v1, . . . ,vp−1,vp+1, . . . ,vn−k} spans V .]
(c) It follows from (a) and (b) that P (k) is true for all 1 ≤ k ≤ min{m,n}. Use this fact

to prove that m ≤ n. [Hint: Write I = {u1, . . . ,um}. If m > n then taking k = n
shows that {u1, . . . ,un} is a spanning set. But then we can write un+1 =

∑
aiui,

which contradicts the fact that I is independent.]
(d) Use part (c) to prove that any two bases for V have the same number of elements.

Remark: There is another way to prove this using matrix arithmetic, which will seem easier
when we get there, but which is ultimately a much longer proof.

(a): Consider any vector u ∈ I. Since the set S spans V there exist scalars ai such that
u = a1v1 + · · · + anvn, and since u 6= 0 at least one of these scalars is nonzero. Let’s say
ap 6= 0. Then we can solve for vp as follows:

vp =
1

ap
u +
−a1
ap

v1 + · · ·+ −ap−1

ap
vp−1 +

−ap+1

ap
vp+1 + · · ·+ −an

ap
vn.



To show that {u,v1, . . . ,vp−1,vp+1, . . . ,vn} is a spanning set, consider any x ∈ V . Since S is
spanning there exist some coefficients d1, . . . , dn such that

x = d1v1 + · · ·+ dpvp + · · ·+ dnvn.

Then substituting our previous expression for vp gives

x =
dp
ap

u +

(
d1 −

dpa1
ap

)
v1 + · · ·+

(
dp−1 −

dpap−1

ap

)
vp−1

+

(
dp+1 −

dpap+1

ap

)
vp+1 + · · ·+

(
dn −

dpan
ap

)
vn,

which shows that x is in the span of {u,v1, . . . ,vp−1,vp+1, . . . ,vn}. �

(b): Now fix some 1 ≤ k < min{m,n} and assume for induction that P (k) is true. In order to
prove that P (k+1) is also true, we consider any set of k+1 elements: u1, . . . ,uk+1 ∈ I. Apply-
ing the statement P (k) to the subset u1, . . . ,uk tells us that there exist some v1, . . . ,vn−k ∈ S
such that the set {u1, . . . ,uk,v1, . . . ,vn−k} spans all of V . In particular, we can express uk+1

as a linear combination

uk+1 = b1u1 + · · ·+ bkuk + a1v1 + · · ·+ an−kvn−k

for some scalars b1, . . . , bk and a1, . . . , an−k. Observe that not all of the coefficients ai are zero,
since otherwise this would give a nontrivial linear relation

uk+1 = b1u1 + · · ·+ bkuk,

contradicting the fact that the ui are independent. To be specific, let’s say that ap 6= 0. Then
we can solve for vp in terms of u1, . . . ,uk+1,v1, . . . ,vp−1,vp+1, . . . ,vn−k:

(∗) vp =
−b1
ap

u1 + · · ·+ −bk
ap

uk +
1

ap
uk+1

+

(
d1 −

dpa1
ap

)
v1 + · · ·+ −ap−1

ap
vp−1 +

−ap+1

ap
vp+1 + · · ·+ −an−k

ap
vn−k.

Finally, I claim that the set {u1, . . . ,uk+1,v1, . . . ,vp−1,vp+1, . . . ,vn−k} spans all of V . Indeed,
for any x ∈ V we have assumed the existence of coefficients c1, . . . , ck, d1, . . . , dn−k such that

x = c1u1 + · · ·+ ckuk + d1v1 + · · ·+ dpvp + · · ·+ dn−kvn−k.

Substituting the expression (∗) gives

x =

(
c1 −

dpb1
ap

)
u1 + · · ·+

(
ck −

dpbk
ap

)
uk +

dp
ap

uk+1

+

(
d1 −

dpa1
ap

)
v1 + · · ·+

(
dp−1 −

dpap−1

ap

)
vp−1

+

(
dp+1 −

dpap+1

ap

)
vp+1 + · · ·+

(
dn−k −

dpan−k
ap

)
vn−k,

which shows that x is in the span of {u1, . . . ,uk+1,v1, . . . ,vp−1,vp+1, . . . ,vn−k}. �

(c): It follows from (a) and (b) that P (k) is true for all 1 ≤ k ≤ min{m,n}. We will use this to
prove that m ≤ n. Indeed, suppose for contradiction that m ≥ n+ 1, so that min{m,n} = n.
Taking k = n tells us that P (n) is a true statement, which means that {u1, . . . ,un} is a
spanning set. But since m ≥ n + 1 there exists another vector un+1, and since {u1, . . . ,un}



is a spanning set we can write un+1 = a1u1 + · · ·+ anun. This nontrivial relation contradicts
the fact that I is independent.

(d): Combining (a), (b) and (c) we have shown that for any independent set I and spanning
set S we must have #I ≤ #S. Now suppose that B1, B2 are two bases for V . Since B1

is independent and B2 is spanning we have #B1 ≤ #B2. On the other hand, since B2 is
independent and B1 is spanning we have #B2 ≤ #B1. It follows that #B1 = #B2 as desired.


