
Math 510 Fall 2022
Notes for Homework 1 Drew Armstrong

Let R be the set of real numbers. A vector space over R consists of a set V (of “vectors”),
with two algebraic operations, called addition and scalar multiplication:

u,v ∈ V  u + v ∈ V
a ∈ R,v ∈ V  av ∈ V.

[Remark: We could also write scalar multiplication as va; the order doesn’t matter.] These
two operations are required to satisfy the following eight axioms:

(1) Axioms of Addition.

(a) u + v = v + u
(b) u + (v + w) = (u + v) + w
(c) There exists a vector 0 ∈ V such that 0 + v = v + 0 = v for all v ∈ V .
(d) For every vector v ∈ V there exists a vector u ∈ V such that u + v = v + u = 0.

Remarks: The vector 0 in axiom (1c) is unique. Indeed, if 0 and 0′ are two vectors satisfying
(1c) then we must have

0 = 0 + 0′ = 0′.

We call the unique element 0 ∈ V satisfying (1c) the zero vector. The vector u in axiom (1d)
is also unique. Indeed, suppose we have two vectors u and u′ satisfying (1d). Then from
axioms (1abc) we must have

u = u + 0 = u + (v + u′) = (u + v) + u′ = 0 + u′ = u′.

The unique element u satisfying (1d) is called the additive inverse of v. We denote it by −v.
In other words, we have

v + u = 0 ⇐⇒ u = −v.

Based on this, we define the operation of vector subtraction:

u− v := u + (−v).

(2) Axioms of Scalar Multiplication.

(a) For the real number 1 ∈ R we have 1v = v for all v ∈ V .
(b) For all real numbers a, b ∈ R and vectors v ∈ V we have a(bv) = (ab)v.1

(c) For all a, b ∈ R and v ∈ V we have (a+ b)v = av + bv.2

(d) For all a ∈ R and u,v ∈ V we have a(u + v) = au + av.

Remarks: These eight axioms imply many other basic properties. For example, I claim that
the real number 0 ∈ R satisfies 0v = 0 for all vectors v ∈ V , where 0 is the zero vector.

1Note that this identity involves two different operations: multiplication of real numbers and scalar multi-
plication in V . This identity is the reason that we use the same notation for both operations.

2This identity is the reason that we use the same notation for addition in R and addition in V .
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Indeed, since 0 + 0 = 0 as real numbers, we have

0 + 0 = 0

(0 + 0)v = 0v

0v + 0v = 0v

(0v + 0v)− 0v = 0v − 0v

0v + (0v − 0v) = 0

0v + 0 = 0

0v = 0.

[We could have taken this as another axiom, but we didn’t need to.] It follows from this that
the additive inverse −v is the same as (−1)v for the real number −1 ∈ R. Indeed, since
1 + (−1) = 0 as real numbers, we have

1 + (−1) = 0

(1 + (−1))v = 0v

1v + (−1)v = 0v

v + (−1)v = 0

−v + (v + (−1)v) = −v + 0

(−v + v) + (−1)v = −v

0 + (−1)v = −v

(−1)v = −v.

If this is too pedantic for you, feel free to take the properties 0v = 0 and (−1)v = −v as
axioms.

The Prorotype: Euclidean Space. Let Rn denote the set of ordered n-tupes of real
numbers:

Rn = {v = (v1, v2, . . . , vn) : v1, v2, . . . , vn ∈ R}.

It is easy to check that the following operations make Rn into a vector space over R:

(u1, . . . , un) + (v1, . . . , vn) := (u1 + v1, . . . , un + vn),

a(v1, . . . , vn) := (av1, . . . , avn).

We can think of v = (v1, . . . , vn) as the coordinates of a point in n-dimensional Euclidean
space. In this case, the point 0 = (0, . . . , 0) is called the origin. The Parallelogram Law
says that for any points u,v ∈ Rn, the four points 0, u, v and u + v are the vertices of a
parallelogram. Picture:
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We can also think of an n-tuple v = (v1, . . . , vn) as a directed line segment (an “arrow”) with
head at the point v and tail at the origin 0. According to the Pythagorean Theorem, the
length ‖v‖ of this line segment satisfies

‖v‖ =
√
v2

1 + v2
2 · · ·+ v2

n.

Geometrically, arrows add “head-to-tail” and subtract “tail-to-tail”:

If we let θ denote the angle between arrows u and v then the Law of Cosines tells us that

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ.

On the other hand, the algebraic formula for the length of an arrow tells us that

‖u− v‖2 = ‖(u1 − v1, . . . , un − vn)‖2

= (u1 − v1)2 + · · ·+ (un − vn)2

= (u2
1 − 2u1v1 + v2

1) + · · ·+ (u2
n − 2unvn + v2

n)

= (u2
1 + · · ·+ un)2 + (v2

1 + · · ·+ v2
n)− 2(u1v1 + · · ·+ unvn)

= ‖u‖2 + ‖v‖2 − 2(u1v1 + · · ·+ unvn).

Then comparing the two equations gives the amazing formula

u1v1 + · · ·+ unvn = ‖u‖‖v‖ cos θ.
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This formula allows us to express angles simply in terms of the coordinates. To be precise, we
define the dot product of two arrows:

u • v := u1v1 + u2v2 + · · ·+ unvn.

Observe that

v • v = v1v1 + · · ·+ vnvn = v2
1 + · · ·+ v2

n = ‖v‖2.
Hence we have

cos θ =
u • v

‖u‖‖v‖
=

u • v√
u • u

√
v • v

.

Note that θ is a right angle if and only if u • v = 0.

More generally, an inner product space over R consists of a vector space V over R together
with another algebraic operation

u,v ∈ V  〈u,v〉 ∈ R,

which must satisfy the following axioms:

(3) Axioms of Inner Products.

(a) 〈u,v〉 = 〈v,u〉
(b) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉3
(c) For all a ∈ R and u,v ∈ V we have 〈au,v〉 = 〈u, av〉 = a〈u,v〉.
(d) For all v ∈ V we have 〈v,v〉 ≥ 0, with 〈v,v〉 = 0 if and only if v = 0.

The following important inequality is a direct consequence of the axioms, but its proof is just
a little bit tricky. I’ll give you a hint and have you prove it on the homework.

Cauchy-Schwarz Inequality. For any vectors u,v ∈ V in an inner product space we have

|〈u,v〉|2 ≤ 〈u,u〉〈v,v〉.

Why should we bother with this level of abstraction? There are two reasons.

First of all, there exist important examples of abstract inner product spaces that have nothing
to do with arrows or points in Euclidean space.

Example: L2 Space. Let L2[0, 1] denote the set of real-valued functions f(x) on the interval
[0, 1] such that the integral of f(x) converges:4

L2[0, 1] = {f : [0, 1]→ R,
∫ 1

0
f(x)2 dx <∞}.

Given functions f, g ∈ L2[0, 1] and scalar a ∈ R we define the new functions f + g ∈ L2[0, 1]
and af ∈ L2[0, 1] by adding and multiplying their values, as one does in Calculus:

(f + g)(x) := f(x) + g(x),

(af)(x) := af(x).

3By combining (3ab) we also have 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉.
4Any statement about integrals has some very technical conditions, but we will proceed intuitively, just as

a physicist would.
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One can check that these operations make L2[0, 1] into a vector space over R.5 Furthermore,
one can check that the following operation satisfies the inner product axioms:

〈f(x), g(x)〉 :=

∫ 1

0
f(x)g(x) dx.

Such inner product spaces of functions are extremely important in applied mathematics. We
will say more below.

Another reason for abstraction in linear algebra has to do with “subspaces”.

(4) Axioms of Subspaces. Given a vector space V over R and a subset U ⊆ V , we say that
U is a subspace when it satisfies the following axioms:

(a) 0 ∈ U
(b) If u,v ∈ U then u + v ∈ U .
(c) If a ∈ R and v ∈ U then av ∈ U .

For example, any line or plane through the origin in Euclidean space is a subspace.6 We note
that Euclidean spaces comes with a collection of standard basis vectors:

e1 = (1, 0, 0, . . . , 0, 0),

e2 = (0, 1, 0, . . . , 0, 0),

...

en = (0, 0, 0, . . . , 0, 1).

By definition, every vector v = (v1, . . . , vn) ∈ Rn has a unique expression as a linear combi-
nation of these basis vectors:

v = (v1, . . . , vn)

= v1(1, 0, . . . , 0, 0) + · · ·+ vn(0, 0, . . . , 0, 1)

= v1e1 + · · ·+ vnen.

However, subspaces of Rn do not come with standard basis vectors. For example, consider
the plane V ⊆ R3 defined by the equation x − 2y + z = 0.7 I claim that every vector v ∈ V
this plane has a unique expression of the form

v = a1(1, 1, 1) + a2(1, 2, 3).

Hence we say that B = {b1,b2} with b1 = (1, 1, 1) and b2 = (1, 2, 3) is a basis for the vector
space V , and if v = a1b1 + a2b2 we say that v = (a1, a2)B are the coordinates of v in the
B-basis. For example, the vector v = (1,−1,−3) ∈ R3 is in the plane V . It has coordinates
(1,−1,−3) as an element of R3 but it has coordinates (3,−2)B as an element of V , with
respect to the B-basis. Here is why we need the concept of an abstract vector space:

Subspaces of Rn do not come with a standard basis. Therefore we must study
them via the axioms of abstract vector spaces.

5The hardest part of the proof is to show that the sum of square integrable functions is square integrable.
This can be shown with the Cauchy-Schwarz inequality.

6A line or plane not through the origin is not a subspace because it doesn’t satisfy (3a). The concept of
“subspace” is not immediately intuitive but it is vital to the theory.

7Check that this is a subspace.
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Here is the technical definition of a basis in an abstract vector space.

Definition of Basis. Let V be a vector space over R and consider a finite subset B =
{b1, . . . ,bn} of vectors in V .

• We say that B is a spanning set if for all v ∈ V there exists at least one choice of
scalars a1, . . . , an ∈ R such that

v = a1b1 + · · ·+ anbn.

• We say that B is an independent set8 if for all v ∈ V there exists at most one
choice of scalars a1, . . . , an ∈ R such that

v = a1b1 + · · ·+ anbn.

• We say that B is a basis if it is spanning and independent; that is, if for all v ∈ V
there exists a unique choice of scalars a1, . . . , an ∈ R such that

v = a1b1 + · · ·+ anbn.

In this case we say that a1, . . . , an ∈ R are the B-coordinates of v, and we write

v = (a1, . . . , an)B.

After we have chosen a basis, we can work with coordinates and pretend that V is Rn.

The following point is fundamental, but its proof is more subtle than you would think.

Definition of Dimension. If a vector space V has a basis with n vectors, then any basis of
V must have n vectors. In this case we say that V has dimension n, and we write

dimV = n.

Proof. This uses a famous trick called “Steinitz Exchange”. See the homework.

Example: Euclidean Space. The vector space Rn has a standard basis e1, . . . , en consisting
of n vectors. It follows from Steinitz Exchange that any basis for Rn must have n vectors,
and hence dimRn = n, as it should be. It is relatively easy to find a basis: any sufficiently
random collection in n vectors in Rn will do. For example:

(1, 4, 3, 2), (3,−7, 4, 1), (100, 89,−72, 36), (23, 24, 25, 26) is almost certainly a basis of R4.

Not every vector space has a finite basis.

Example: Polynomials. Let R[x] denote the set of polynomials in x with real coefficients.
This set is a vector space over R. It does not have a finite basis, but it does have a fairly
obvious infinite basis B consisting of the elements

B = {1(= x0), x, x2, . . .}.
For infinite bases we need to modify slightly the definitions of independence and spanning. In
this case, the key fact is that each polynomial f(x) ∈ R[x] has a unique expression

f(x) =
∑
k≥0

akx
k,

8In proofs it is often convenient to use a different form of the definition. Say that B is independent if for
any scalars a1, . . . , an we have

a1b1 + · · ·+ anbn = 0 implies ai = 0 for all i.

Exercise: Check that the two definitions are equivalent.
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where only finitely many of the coefficients a0, a1, a2, . . . are nonzero. If we allow
infinitely many nonzero coefficients then we obtain power series, instead of polynomials.

In order to say anything about convergence of infinite series in a vector space, one needs a
way to measure “distance” between vectors.

(5) Axioms of Norms. Let V be a vector space with a function

v ∈ V  ‖v‖ ∈ R.
We call this function a norm when it satisfies the following axioms:

(a) ‖v‖ ≥ 0 for all v ∈ V with ‖v‖ = 0 if and only if v = 0.
(b) For all a ∈ R and v ∈ V we have ‖av‖ = |a|‖v‖.
(c) For all u,v ∈ V we have ‖u + v‖ ≤ ‖u‖+ ‖v‖.

(6) Axioms of Metrics. Let V be a vector space with a function

u,v ∈ V  dist(u,v) ∈ R.
We call this function a metric when it satisfies the following axioms:

(a) dist(u,v) = dist(v,u)
(b) dist(u,v) ≥ 0 for all u,v ∈ V with dist(u,v) = 0 if and only if u = v.
(c) dist(u,v) ≤ dist(u,w) + dist(w,v) for all u,v,w ∈ V .

Every inner product space becomes a normed space9 by taking ‖v‖ =
√
〈v,v〉, and every

normed space becomes a metric space by taking dist(u,v) = ‖u− v‖.

Concept of Orthonormal Sets. Let V be an inner product space. A collection of vectors
b1,b2, . . . is called orthonormal if

• 〈bi,bj〉 = 0 for all i, j with i 6= j
• 〈bi,bi〉 = 1 for all i

The first statement says that any two vectors in the set are orthogonal,10 and the second
statement says that each vector has length 1:

‖bi‖ =
√
〈bi,bi〉 =

√
1 = 1.

Orthonormal sets are very easy to work with. You will show on the homework that if bi are
orthonormal and v = a1b1 + · · ·+ anbn then we must have

ai = 〈v,bi〉 and ‖v‖2 = a2
1 + · · ·+ ann.

If the orthonormal set spans V then it is called an orthonormal basis. Orthonormal bases are
analogous to the standard basis in Euclidean space.

Example: Fourier Series. The inner product space L2[0, 1] of square integrable functions
[0, 1]→ R contains a particularly famous orthonormal set of functions. If we define

sn(x) :=
√

2 sin(2πnx),

cn(x) :=
√

2 cos(2πnx),

then you will show on the homework that the following set of functions is orthonormal:

B = {1, s1(x), s2(x), . . . , c1(x), c2(x), . . .}.

9You will prove this on the homework.
10In Euclidean space this corresponds to perpendicular vectors
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That is, you will show

• 〈1, sn(x)〉 = 〈1, cn(x)〉 = 0 for all n ≥ 1,
• 〈sm(x), cn(x)〉 = 0 for all m,n ≥ 1,
• 〈sm(x), sn(x)〉 = 0 for m 6= n and 1 for m = n,
• 〈cm(x), cn(x)〉 = 0 for m 6= n and 1 for m = n.

It follows from this that the set is independent. Is it also a spanning set? For a given function
f(x) ∈ L2[0, 1], the problem is to find scalars a0, a1, a2, . . . , b1, b2, . . . ∈ R such that

(∗) f(x) = a0 +
∞∑
n=1

ansn(x) +
∞∑
n=1

bncn(x).

In Fourier’s paper on the analytic theory of heat (1822) he gave a clever formula to find the
coefficients. For us this formula is an immediate consequence of the fact that B is orthonormal:

a0 = 〈f(x), 1〉 =

∫ 1

0
f(x) dx,

an = 〈f(x), sn(x)〉 =
√

2

∫ 1

0
f(x) sin(2πnx) dx,

bn = 〈f(x), cn(x)〉 =
√

2

∫ 1

0
f(x) cos(2πnx) dx.

So the coefficients are easy to find. The hard question is whether, and in what sense, the
infinite series (∗) converges. This is an important problem in the history of mathematics;
controversies surrounding its solution led to many of the concepts of modern analysis.

I will just state the simplest form of the answer; the proof is well beyond the scope of this
course. Consider the distance function induced by the inner product on L2[0, 1]. That is, for
any functions f(x), g(x) ∈ L2[0, 1] we define the “distance” between then by

dist(f(x), g(x))2 = ‖f(x)− g(x)‖2 = 〈f(x)− g(x), f(x)− g(x)〉 =

∫ 1

0
(f(x)− g(x))2 dx.

Now consider any function f(x) ∈ L2[0, 1] and let an, bn be the corresponding Fourier coeffi-
cients. Then we have the following theorems.

• Convergence of Fourier Series. The series (∗) converges in L2. That is, we have

dist

(
f(x), a0 +

N∑
n=1

ansn(x) +

N∑
n=1

bncn(x)

)
→ 0 as N →∞.

• Parseval’s Identity. Computing the “length” of each side of (∗) gives a convergent
series of real numbers:∫ 1

0
f(x)2 dx = 〈f(x), f(x)〉 = a2

0 + a2
1 + b21 + a2

2 + b22 + · · · .

For example, consider the square wave function

f(x) =

{
1 0 ≤ x < 1/2,

0 1/2 ≤ x ≤ 1.
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It is easy to check that a0 = 〈f(x), 1〉 = 1/2 and bn = 〈f(x), cn(x)〉 = 0 for all n ≥ 1. Next,
we compute

an = 〈f(x), sn(x)〉

=
√

2

∫ 1

0
f(x) sin(2πnx) dx

=
√

2

∫ 1/2

0
sin(2πnx) dx

=

√
2

2πn
[− cos(2πnx)]

1/2
0

=

√
2

2πn
[− cos(πn) + 1]

=

√
2

2πn
[−(−1)n + 1]

=

{
0 n even,√

2
πn n odd.

It follows that

f(x) =
1

2
+

√
2

π
sin(2πx) +

√
2

3π
sin(6πx) +

√
2

5π
sin(10πx) + · · · .

Here is a picture of the first 30 terms of this sequence:
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Finally, Parseval’s Identity gives the following interesting identity:∫ 1

0
f(x)2 dx =

(
1

2

)2

+

(√
2

π

)2

+

(√
2

3π

)2

+

(√
2

5π

)2

+ · · ·

1

2
=

1

4
+

2

π2
+

2

32π2
+

2

52π2
+ · · ·

1

4
=

2

π2
+

2

32π2
+

2

52π2
+ · · ·

1

4
=

2

π2

(
1

12
+

1

32
+

1

52
+ · · ·

)
π2

8
=

1

12
+

1

32
+

1

52
+ · · ·

That’s weird.11

Now seems like a good time to bring in complex numbers. I have a beef with the American
educational system, in that there is no course that reliably introduces complex numbers. The
system is able to sleep at night because complex numbers are in the pre-Calculus curriculum,
but the treatment is inadequate, and most math majors don’t take pre-Calculus. Indeed, I
believe it possible for a student to graduate with a math major having never seen a good
introduction to complex numbers. As is traditional, I will give a quick review and pretend
that you have seen this before, even if you haven’t.

Complex Numbers. The complex numbers are defined as

C = {a+ ib : a, b ∈ R},

where i is an abstract symbol satisfying i2 = −1. Given a complex number α = a + ib, we
define its absolute value and complex conjugate:12

|α| :=
√
a2 + b2,

α∗ := a− ib.

These satisfying the following properties.

(7) Properties of Complex Numbers. For all a, b ∈ R and α, β ∈ C we have

(a) (aα+ bβ)∗ = aα∗ + bβ∗

(b) (αβ)∗ = α∗β∗

(c) α = α∗ ⇐⇒ α ∈ R
(d) |α| ≥ 0 with |α| = 0 if and only if α = 0.
(d) |α| = α∗α
(e) |αβ| = |α||β|.
(f) If α 6= 0 then α−1 = α∗/|α|2.

11This series is related to the famous Basel problem. It is easy to see that the infinite series 1/12 + 1/22 +
1/32 + · · · converges, but is not at all clear how to find a formula for the sum. This problem was posed by
Pietro Mengoli 1650 and finally solved by Leonhard Euler in 1734, who showed that the limit is exactly π2/6.
The appearance of π in the answer was a big surprise.

12I will use α∗ instead of the traditional α to avoid conflict with the whiteboard notation for vectors: ~v.
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Many applications of linear algebra use complex instead of real scalars. Almost all of the
axioms are the same, but there is a key change in the definition of inner product.

(8) Axioms of Hermitian Inner Products. Let V be a vector space over C, together with
an algebraic operation

u,v ∈ V  〈u,v〉 ∈ C.
We call this a Hermitian inner product if it satisfies the following axioms:

(a) 〈u,v〉 = 〈v,u〉∗
(b) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉13

(c) For all α ∈ C we have 〈u, αv〉 = α〈u,v〉.14

(d) For all v ∈ V , part (a) tells us that 〈v,v〉 ∈ R. Furthermore, we must have 〈v,v〉 ≥ 0
with 〈v,v〉 = 0 if and only if v = 0.

Jargon: A Hermitian inner product is sometimes called sesquilinear (one and a half times
linear) because it is linear in the second coordinate:

〈u, αv + βw〉 = α〈u,v〉+ β〈u,w〉,
〈αu + βv,w〉 = α∗〈u,w〉+ β∗〈v,w〉.

Beware, some books switch these.

Example: The standard Hermitian product on Cn. Consider the set

Cn = {v = (v1, . . . , vn) : v1, . . . , vn ∈ C}.
This is naturally a vector space over C with the usual operations of addition and scalar
multiplication. We can still define the usual dot product

u • v = u1v1 + · · ·+ unvn,

but this turns out to have bad properties. For example, we might have v • v < 0, as with the
vector v = (i, i). To fix this, we instead consider the following operation:

〈u,v〉 = u∗1v1 + · · ·+ u∗nvn.

One can check that this satisfies the axioms of a Hermitian inner product. Most importantly,
we have 〈v,v〉 = v∗1v1 + · · · + v∗nvn = |v1|2 + · · · + |vn|2 ≥ 0, with 〈v,v〉 = 0 if and only if
v = 0, which allows us to define a norm and a metric:

‖v‖ =
√
〈v,v〉,

dist(u,v) = ‖u− v‖.

Quantum mechanics is the big reason for using complex Hermitian spaces, but the complex
numbers also allow us to simplify some classical problems.

Example: Complex Fourier Series. Recall Euler’s identities:

eiθ = cos θ + i sin θ,

e−iθ = cos θ − i sin θ,

cos θ = (eiθ + e−iθ)/2,

sin θ = (eiθ − e−iθ)/(2i).

13By combining (8ab) we also have 〈u + v,w〉 = 〈u,w〉+ 〈v + w〉.
14By combining (8ac) we also have 〈αu,v〉 = α∗〈u,v〉.
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Suppose that we have a real Fourier series15

f(x) = a0 +
∑
n≥1

an sin(2πnx) +
∑
n≥1

bn cos(2πnx).

We can write this as a complex Fourier series

f(x) =

∞∑
n=−∞

cne
i2πnx

by defining the complex coefficients:

cn :=


a0 n = 0,

(bn − ian)/2 n ≥ 1,

(b−n + ia−n)/2 n ≤ −1.

Why would we do this? Because the functions ei2ınx are easier to work with! Let’s define the
complex L2 space L2[0, 1] as the set of functions [0, 1]→ C satisfying∫ 1

0
|f(x)|2 dx <∞.

This space has a standard Hermitian inner product:

〈f(x), g(x)〉 =

∫ 1

0
f(x)∗g(x) dx.

And the functions ei2πnx for n ∈ Z are an orthonormal set:

〈ei2πmx, ei2πnx〉 =

∫ 1

0
(ei2πmx)∗e2πinx dx

=

∫ 1

0
e−i2πmxe2πinx dx

=

∫ 1

0
ei2π(n−m)x dx.

If m = n then this gives

〈ei2πnx, ei2πnx〉 =

∫ 1

0
1 dx = 1,

and if m 6= n then we get

〈ei2πmx, ei2πnx〉 =

∫ 1

0
ei2π(n−m)x dx

=
1

i2π(n−m)

[
ei2π(n−m)x

]1

0

=
1

i2π(n−m)
[1− 1]

= 0.

15I’ll absorb the
√

2 factors into the coefficients this time.
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Note: That was much easier than messing around with trigonometric identities. It also means
that we have a single formula for the complex Fourier coefficients:16

cn = 〈ei2πnx, f(x)〉 =

∫ 1

0
e−i2πnxf(x) dx.

Then we can convert back to real coefficients if desired.

Fourier Transform. For the physicists among you, I should mention what happens for
functions on the whole real line. Let L2(R) denote the set of functions f : R → C that are
square integrable: ∫ ∞

−∞
|f(x)|2 dx <∞.

As with L2[0, 1], this is a Hermitian space with Hermitian product

〈f(x), g(x)〉 =

∫ ∞
−∞

f(x)∗g(x) dx.

This space is more complicated than L2[0, 1] because it does not have a countable basis.17

However, the situation is not hopeless because we can generalize the Fourier series to the
Fourier transform:

f(x) =

∞∑
n=−∞

cne
i2πnx  f(x) =

∫ ∞
−∞

c(ω)ei2πωx dω.

We can view the function c : R → C as a generalization of the sequence of coefficients cn for
n ∈ Z. This function c(ω) is called the Fourier transform of f(x) and it is sometimes denoted

f̂(ω). In some sense we can view the set

{ei2πωx : ω ∈ R}
as an uncountably infinite basis for the space L2(R). There is just one issue; the functions
ei2πωx are not square integrable:∫ ∞

−∞
|ei2πωx|2 dx =

∫ ∞
−∞

1 dx =∞.

This is a typical problem in physics. It can be surmounted by generalizing the concept of
function to that of “distribution”, but the rigorous mathematical definitions make the subject
less understandable. Dirac showed that the intuitive point of view is a powerful tool for
studying quantum mechanics.

16Taking the inner product in the other direction gives 〈f(x), ei2πnx〉 = c∗n.
17The issue is that [0, 1] is a compact infinite set, while R is not compact.


