
Math 510 Fall 2022
Homework 1 Drew Armstrong

1. The Cauchy-Schwarz Inequality. Let V be an inner product space over R. Prove that
for all vectors u,v ∈ V we have

|〈u,v〉|2 ≤ 〈u,u〉〈v,v〉.
[Hint: If u = 0 and v = 0 then it’s easy, so let’s assume that v 6= 0. From Axiom (3d) we
must have 〈u + tv,u + tv〉 ≥ 0 for any scalar t ∈ R. Expand this expression using bilinearity
and then substitute t = 〈u,v〉/〈v,v〉.]

2. Normed Vector Spaces. Let V be an inner product space and consider the function

‖v‖ :=
√
〈v,v〉.

Use the axioms for inner products to prove the following properties.

(a) We have ‖v‖ ≥ 0 for all v ∈ V , with ‖v‖ = 0 if and only if v = 0.
(b) For all a ∈ R and v ∈ V we have ‖av‖ = |a|‖v‖.
(c) For all u,v ∈ V we have ‖u+v‖ ≤ ‖u‖+‖v‖. [Hint: Expand ‖u+v‖2 = 〈u+v,u+v〉

and use the Cauchy-Schwarz inequality to show that ‖u + v‖2 ≤ (‖u‖+ ‖v‖)2.]

3. Orthonormal Sets of Vectors. Let V be an inner product space. Suppose that a set of
vectors b1,b2, . . . ,bn ∈ V satisfies

〈bi,bj〉 =

{
1 i = j,

0 i 6= j.

In this case we say that the vectors are orthonormal.

(a) If v = a1b1 + · · ·+ anbn, show that ai = 〈v,bi〉 for all i.
(b) Use part (a) to show that the set b1,b2, . . . ,bn is linearly independent.
(c) If v = a1b1 + · · ·+ anbn, show that ‖v‖2 = a21 + · · ·+ a2n.1

4. Fourier Series. Consider the space L2[0, 1] of functions2 [0, 1]→ R with inner product

〈f(x), g(x)〉 =

∫ 1

0
f(x)g(x) dx.

For any integer n ≥ 1 we define the functions sn(x) :=
√

2 sin(2πnx) and cn(x) :=
√

2 cos(2πnx).
Recall the trigonometric angle sum identities:

cos(α± β) = cosα cosβ ∓ sinα sinβ,

sin(α± β) = sinα cosβ ± cosα sinβ.

(a) Prove that 〈1, sn(x)〉 = 〈1, cn(x)〉 = 0 for all n.
(b) Use the angle sum identities to prove that

2 sinα cosβ = sin(α+ β) + sin(α− β),

2 sinα sinβ = cos(α− β)− cos(α+ β),

2 cosα cosβ = cos(α− β) + cos(α+ β).

(c) Use (b) to prove that 〈sm(x), cn(x)〉 = 0 for all m,n ≥ 1.

1Define ‖v‖2 = 〈v,v〉 as in Problem 2.
2We require that

∫ 1

0
f(x)2 dx exists and is finite.



(d) Use (b) to prove that 〈sm(x), sn(x)〉 = δmn.
(e) Use (b) to prove that 〈cm(x), cn(x)〉 = δmn.

5. Steinitz Exchange (Optional). Let I and S be finite subsets of a vector space V , where
I is an independent set and S is a spanning set. Let’s say #I = m and #S = n. Our goal
is to show that m ≤ n. To prove this, we will use the method of Steinitz (1913). For any
1 ≤ k ≤ min{m,n} consider the following statement:

P (k): For any k elements u1, . . . ,uk ∈ I, there exist some n − k elements v1, . . . ,vn−k ∈ S
such that the set {u1, . . . ,uk,v1, . . . ,vn−k} spans all of V .

(a) Prove that P (1) is a true statement. [Hint: Write S = {v1, . . . ,vn} and choose any
vector u ∈ I. Since S spans V we can write u =

∑
aisi, and since u 6= 0 we must have

ap 6= 0 for some p. Show that {u,v1, . . . ,vp−1,vp, . . . ,vn} is a spanning set.]
(b) Assume that P (k) is true for some 1 ≤ k < min{m,n}. In this case prove that

P (k + 1) is also true. [Hint: Choose any u1, . . . ,uk+1 ∈ I. Since P (k) is true we can
find v1, . . . ,vn−k ∈ S such that {u1, . . . ,uk,v1, . . . ,vn−k} spans V . In particular we
can write uk+1 =

∑
biui +

∑
aivi. By the independence of I we must have ap 6= 0 for

some p. Show that {u1, . . . ,uk+1,v1, . . . ,vp−1,vp+1, . . . ,vn−k} spans V .]
(c) It follows from (a) and (b) that P (k) is true for all 1 ≤ k ≤ min{m,n}. Use this fact

to prove that m ≤ n. [Hint: Write I = {u1, . . . ,um}. If m > n then taking k = n
shows that {u1, . . . ,un} is a spanning set. But then we can write un+1 =

∑
aiui,

which contradicts the fact that I is independent.]
(d) Use part (c) to prove that any two bases for V have the same number of elements.

Remark: There is another way to prove this using matrix arithmetic, which will seem easier
when we get there, but which is ultimately a much longer proof.


