1. The Cauchy-Schwarz Inequality. Let V be an inner product space over \mathbb{R} . Prove that for all vectors $\mathbf{u}, \mathbf{v} \in V$ we have

$$|\langle \mathbf{u}, \mathbf{v} \rangle|^2 \leq \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle.$$

[Hint: If $\mathbf{u} = \mathbf{0}$ and $\mathbf{v} = \mathbf{0}$ then it's easy, so let's assume that $\mathbf{v} \neq \mathbf{0}$. From Axiom (3d) we must have $\langle \mathbf{u} + t\mathbf{v}, \mathbf{u} + t\mathbf{v} \rangle > 0$ for any scalar $t \in \mathbb{R}$. Expand this expression using bilinearity and then substitute $t = \langle \mathbf{u}, \mathbf{v} \rangle / \langle \mathbf{v}, \mathbf{v} \rangle$.

2. Normed Vector Spaces. Let V be an inner product space and consider the function

$$\|\mathbf{v}\| := \sqrt{\langle \mathbf{v}, \mathbf{v}
angle}.$$

Use the axioms for inner products to prove the following properties.

- (a) We have $\|\mathbf{v}\| \ge 0$ for all $\mathbf{v} \in V$, with $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$.
- (b) For all $a \in \mathbb{R}$ and $\mathbf{v} \in V$ we have $||a\mathbf{v}|| = |a|||\mathbf{v}||$.
- (c) For all $\mathbf{u}, \mathbf{v} \in V$ we have $\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|$. [Hint: Expand $\|\mathbf{u} + \mathbf{v}\|^2 = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle$ and use the Cauchy-Schwarz inequality to show that $\|\mathbf{u} + \mathbf{v}\|^2 \leq (\|\mathbf{u}\| + \|\mathbf{v}\|)^2$.]

3. Orthonormal Sets of Vectors. Let V be an inner product space. Suppose that a set of vectors $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n \in V$ satisfies

$$\langle \mathbf{b}_i, \mathbf{b}_j \rangle = \begin{cases} 1 & i = j, \\ 0 & i \neq j. \end{cases}$$

In this case we say that the vectors are *orthonormal*.

- (a) If $\mathbf{v} = a_1 \mathbf{b}_1 + \cdots + a_n \mathbf{b}_n$, show that $a_i = \langle \mathbf{v}, \mathbf{b}_i \rangle$ for all *i*.
- (b) Use part (a) to show that the set $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ is linearly independent. (c) If $\mathbf{v} = a_1 \mathbf{b}_1 + \dots + a_n \mathbf{b}_n$, show that $\|\mathbf{v}\|^2 = a_1^2 + \dots + a_n^2$.¹
- 4. Fourier Series. Consider the space $L^2[0,1]$ of functions² $[0,1] \to \mathbb{R}$ with inner product

$$\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x) \, dx$$

For any integer $n \ge 1$ we define the functions $s_n(x) := \sqrt{2} \sin(2\pi nx)$ and $c_n(x) := \sqrt{2} \cos(2\pi nx)$. Recall the trigonometric angle sum identities:

- $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta,$ $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta.$
- (a) Prove that $\langle 1, s_n(x) \rangle = \langle 1, c_n(x) \rangle = 0$ for all n.
- (b) Use the angle sum identities to prove that

$$2\sin\alpha\cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta),$$

$$2\sin\alpha\sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta),$$

$$2\cos\alpha\cos\beta = \cos(\alpha - \beta) + \cos(\alpha + \beta).$$

(c) Use (b) to prove that $\langle s_m(x), c_n(x) \rangle = 0$ for all $m, n \ge 1$.

¹Define $\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle$ as in Problem 2.

²We require that $\int_0^1 f(x)^2 dx$ exists and is finite.

- (d) Use (b) to prove that $\langle s_m(x), s_n(x) \rangle = \delta_{mn}$.
- (e) Use (b) to prove that $\langle c_m(x), c_n(x) \rangle = \delta_{mn}$.

5. Steinitz Exchange (Optional). Let I and S be finite subsets of a vector space V, where I is an independent set and S is a spanning set. Let's say #I = m and #S = n. Our goal is to show that $m \leq n$. To prove this, we will use the method of Steinitz (1913). For any $1 \leq k \leq \min\{m, n\}$ consider the following statement:

- P(k): For any k elements $\mathbf{u}_1, \ldots, \mathbf{u}_k \in I$, there exist some n k elements $\mathbf{v}_1, \ldots, \mathbf{v}_{n-k} \in S$ such that the set $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{v}_1, \ldots, \mathbf{v}_{n-k}\}$ spans all of V.
 - (a) Prove that P(1) is a true statement. [Hint: Write $S = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$ and choose any vector $\mathbf{u} \in I$. Since S spans V we can write $\mathbf{u} = \sum a_i \mathbf{s}_i$, and since $\mathbf{u} \neq \mathbf{0}$ we must have $a_p \neq 0$ for some p. Show that ${\mathbf{u}, \mathbf{v}_1, \ldots, \mathbf{v}_{p-1}, \mathbf{v}_p, \ldots, \mathbf{v}_n}$ is a spanning set.]
 - (b) Assume that P(k) is true for some $1 \leq k < \min\{m, n\}$. In this case prove that P(k+1) is also true. [Hint: Choose any $\mathbf{u}_1, \ldots, \mathbf{u}_{k+1} \in I$. Since P(k) is true we can find $\mathbf{v}_1, \ldots, \mathbf{v}_{n-k} \in S$ such that $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{v}_1, \ldots, \mathbf{v}_{n-k}\}$ spans V. In particular we can write $\mathbf{u}_{k+1} = \sum b_i \mathbf{u}_i + \sum a_i \mathbf{v}_i$. By the independence of I we must have $a_p \neq 0$ for some p. Show that $\{\mathbf{u}_1, \ldots, \mathbf{u}_{k+1}, \mathbf{v}_1, \ldots, \mathbf{v}_{p-1}, \mathbf{v}_{p+1}, \ldots, \mathbf{v}_{n-k}\}$ spans V.]
 - (c) It follows from (a) and (b) that P(k) is true for all $1 \le k \le \min\{m, n\}$. Use this fact to prove that $m \le n$. [Hint: Write $I = \{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$. If m > n then taking k = n shows that $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is a spanning set. But then we can write $\mathbf{u}_{n+1} = \sum a_i \mathbf{u}_i$, which contradicts the fact that I is independent.]
 - (d) Use part (c) to prove that any two bases for V have the same number of elements.

Remark: There is another way to prove this using matrix arithmetic, which will seem easier when we get there, but which is ultimately a much longer proof.