1. The Cauchy-Schwarz Inequality. Let V be an inner product space over \mathbb{R}. Prove that for all vectors $\mathbf{u}, \mathbf{v} \in V$ we have

$$
|\langle\mathbf{u}, \mathbf{v}\rangle|^{2} \leq\langle\mathbf{u}, \mathbf{u}\rangle\langle\mathbf{v}, \mathbf{v}\rangle .
$$

[Hint: If $\mathbf{u}=\mathbf{0}$ and $\mathbf{v}=\mathbf{0}$ then it's easy, so let's assume that $\mathbf{v} \neq \mathbf{0}$. From Axiom (3d) we must have $\langle\mathbf{u}+t \mathbf{v}, \mathbf{u}+t \mathbf{v}\rangle \geq 0$ for any scalar $t \in \mathbb{R}$. Expand this expression using bilinearity and then substitute $t=\langle\mathbf{u}, \mathbf{v}\rangle /\langle\mathbf{v}, \mathbf{v}\rangle$.]
2. Normed Vector Spaces. Let V be an inner product space and consider the function

$$
\|\mathbf{v}\|:=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle} .
$$

Use the axioms for inner products to prove the following properties.
(a) We have $\|\mathbf{v}\| \geq 0$ for all $\mathbf{v} \in V$, with $\|\mathbf{v}\|=0$ if and only if $\mathbf{v}=\mathbf{0}$.
(b) For all $a \in \mathbb{R}$ and $\mathbf{v} \in V$ we have $\|a \mathbf{v}\|=|a|\|\mathbf{v}\|$.
(c) For all $\mathbf{u}, \mathbf{v} \in V$ we have $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$. [Hint: Expand $\|\mathbf{u}+\mathbf{v}\|^{2}=\langle\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v}\rangle$ and use the Cauchy-Schwarz inequality to show that $\|\mathbf{u}+\mathbf{v}\|^{2} \leq(\|\mathbf{u}\|+\|\mathbf{v}\|)^{2}$.]
3. Orthonormal Sets of Vectors. Let V be an inner product space. Suppose that a set of vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n} \in V$ satisfies

$$
\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}\right\rangle= \begin{cases}1 & i=j, \\ 0 & i \neq j .\end{cases}
$$

In this case we say that the vectors are orthonormal.
(a) If $\mathbf{v}=a_{1} \mathbf{b}_{1}+\cdots+a_{n} \mathbf{b}_{n}$, show that $a_{i}=\left\langle\mathbf{v}, \mathbf{b}_{i}\right\rangle$ for all i.
(b) Use part (a) to show that the set $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ is linearly independent.
(c) If $\mathbf{v}=a_{1} \mathbf{b}_{1}+\cdots+a_{n} \mathbf{b}_{n}$, show that $\left.\|\mathbf{v}\|^{2}=a_{1}^{2}+\cdots+a_{n}^{2}\right]^{1}$
4. Fourier Series. Consider the space $L^{2}[0,1]$ of functions $s^{2}[0,1] \rightarrow \mathbb{R}$ with inner product

$$
\langle f(x), g(x)\rangle=\int_{0}^{1} f(x) g(x) d x
$$

For any integer $n \geq 1$ we define the functions $s_{n}(x):=\sqrt{2} \sin (2 \pi n x)$ and $c_{n}(x):=\sqrt{2} \cos (2 \pi n x)$. Recall the trigonometric angle sum identities:

$$
\begin{aligned}
\cos (\alpha \pm \beta) & =\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
\sin (\alpha \pm \beta) & =\sin \alpha \cos \beta \pm \cos \alpha \sin \beta .
\end{aligned}
$$

(a) Prove that $\left\langle 1, s_{n}(x)\right\rangle=\left\langle 1, c_{n}(x)\right\rangle=0$ for all n.
(b) Use the angle sum identities to prove that

$$
\begin{aligned}
2 \sin \alpha \cos \beta & =\sin (\alpha+\beta)+\sin (\alpha-\beta), \\
2 \sin \alpha \sin \beta & =\cos (\alpha-\beta)-\cos (\alpha+\beta), \\
2 \cos \alpha \cos \beta & =\cos (\alpha-\beta)+\cos (\alpha+\beta) .
\end{aligned}
$$

(c) Use (b) to prove that $\left\langle s_{m}(x), c_{n}(x)\right\rangle=0$ for all $m, n \geq 1$.

[^0](d) Use (b) to prove that $\left\langle s_{m}(x), s_{n}(x)\right\rangle=\delta_{m n}$.
(e) Use (b) to prove that $\left\langle c_{m}(x), c_{n}(x)\right\rangle=\delta_{m n}$.
5. Steinitz Exchange (Optional). Let I and S be finite subsets of a vector space V, where I is an independent set and S is a spanning set. Let's say $\# I=m$ and $\# S=n$. Our goal is to show that $m \leq n$. To prove this, we will use the method of Steinitz (1913). For any $1 \leq k \leq \min \{m, n\}$ consider the following statement:
$P(k):$ For any k elements $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k} \in I$, there exist some $n-k$ elements $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-k} \in S$ such that the set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n-k}\right\}$ spans all of V.
(a) Prove that $P(1)$ is a true statement. [Hint: Write $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ and choose any vector $\mathbf{u} \in I$. Since S spans V we can write $\mathbf{u}=\sum a_{i} \mathbf{s}_{i}$, and since $\mathbf{u} \neq \mathbf{0}$ we must have $a_{p} \neq 0$ for some p. Show that $\left\{\mathbf{u}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{p-1}, \mathbf{v}_{p}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set.]
(b) Assume that $P(k)$ is true for some $1 \leq k<\min \{m, n\}$. In this case prove that $P(k+1)$ is also true. [Hint: Choose any $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k+1} \in I$. Since $P(k)$ is true we can find $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-k} \in S$ such that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n-k}\right\}$ spans V. In particular we can write $\mathbf{u}_{k+1}=\sum b_{i} \mathbf{u}_{i}+\sum a_{i} \mathbf{v}_{i}$. By the independence of I we must have $a_{p} \neq 0$ for some p. Show that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k+1}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{p-1}, \mathbf{v}_{p+1}, \ldots, \mathbf{v}_{n-k}\right\}$ spans V.]
(c) It follows from (a) and (b) that $P(k)$ is true for all $1 \leq k \leq \min \{m, n\}$. Use this fact to prove that $m \leq n$. [Hint: Write $I=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$. If $m>n$ then taking $k=n$ shows that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ is a spanning set. But then we can write $\mathbf{u}_{n+1}=\sum a_{i} \mathbf{u}_{i}$, which contradicts the fact that I is independent.]
(d) Use part (c) to prove that any two bases for V have the same number of elements.

Remark: There is another way to prove this using matrix arithmetic, which will seem easier when we get there, but which is ultimately a much longer proof.

[^0]: ${ }^{1}$ Define $\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle$ as in Problem 2.
 ${ }^{2}$ We require that $\int_{0}^{1} f(x)^{2} d x$ exists and is finite.

